基于 NM 理论和序列二次规划的船型优化设计

刘晓义,吴建威,赵 敏,万德成 (上海交通大学 海洋工程国家重点实验室 船舶海洋与建筑工程学院 高新船舶与深海开发装备协同创新中心,上海 200240)

摘要

阻力性能的优化一直是船舶设计工作的重要环节,它将直接决定船舶的经济性和可用性。为了实现这一目的,传统的方法一般是通过比较若干个船型设计方案,从中选择阻力最小的船型。随着计算机技术和兴波理论的发展,我们已经可以通过数值计算快速预报船舶的兴波阻力。因此,基于兴波理论的船型优化设计成为研究工作者日益关注的问题。本文的研究工作是基于 Francis Noblesse 等学者提出的Neumann-Michell (NM)理论和序列二次规划方法(Sequence Quadratic Program, SQP)进行的,以标准船型 Series60为例,利用平移法(Shifting Method)与径向基函数法(Radial Basis Function Method, RBF Method)修改船体曲面,将兴波阻力作为目标函数, 对高航速(Fr=0.30)下的 Series60 船型进行优化。最终得到能使兴波阻力有效减小的优化船型,并对优化船型做了分析。分析结果表明,基于 NM 理论的兴波阻力预报能够有效应用于船型优化过程,SQP 方法也较为适合应用于船型优化设计当中。这为进一步改进和完善船型优化流程奠定了基础。

关键词: 船型优化; 兴波阻力; NMShip-SJTU; 序列二次规划

1 引言

船体型线设计是船舶设计过程中的重要环节,其设计水平将直接影响到船舶的水动力性能、综合航行性能和经济营运效益等。随着船舶行业的不断发展,如何得到具有更优性能的船体型线已经成为船舶设计者亟需解决的问题。传统的型线设计方法往往是通过经验丰富的船舶设计人员不断地修改母型船,经过模型试验,对所有的设计方案进行验证,并从中选择最优的设计方案,以此作为改进的新船型。这样的设计方法不仅对设计人员提出了很高的要求,效率和经济性也较低,还很难得到最优的设计方案。正因如此,船形优化设计方法需要进行全面改进。

近些年来,计算机性能的不断提升以及计算流体力学的蓬勃发展,使得基于数值计算的船型优化设计(Simulation Based Design, SBD)技术成为可能。它是集成了船型变换方法、最优化技术以及数值计算模块的新型设计模式。该设计模式现在已经大规模应用于船型优化设计领域,并取得了丰富的成果。Tahara 等[1]通过参数模型法,引入六个设计参数控制船型生成,并利用序列二次规划方法对 DTMB5415 的船首、声纳罩、船尾型线进行了优化。Peri 等[2]以总阻力和船艏兴波波幅作为目标函数对某油船球鼻艏的几何外形进行优化,该研究以贝塞尔曲面(Bezier Patch)方法实现船体曲面重构,利用计算流体力学(Computational Fluid Dynamics, CFD)方法预报船舶阻力与运动,又分别基于三种不同的优化算法变梯度法,序列二次规划,最速下降法进行优化计算,同时通过模型试验对优化结果进行了验证。Peri 等[3]为了解决数值模拟耗时长、耗费高的弊端,将近似技术引入基于CFD 的船型优化当中,并对 RSM、VFM、Kriging、RBF等近似模型分别进行了研究,得到了详细的分析结果。国内学者在这一领域也做出了许多工作。冯佰威等[4]利用叠加调和方法(Morphing 222

Approach)成功实现了对两个初始船型的线性叠加重构,并以总阻力为优化目标得到了最优的重构船型。张宝吉等^[5]通过日本铃木和夫提出的船型修改函数变换船型,借助 Dawson 方法和遗传算法,以总阻力为优化目标,对某高速巡逻艇进行船型优化,得到了总阻力下降 13.1%的最优船型。李胜忠^[6]以自由变形技术(Free-Form Deformation, FFD)实现船体表面的几何重构,以粒子群优化算法(PSO)为优化格式对阻力性能优异的 3000T 级船舶进行了优化,分别进行了设计船型与优化船型的模型试验,试验结果表明优化船型在设计航速时模型总阻力减小了 6.3%,剩余阻力系数减小了14.5%;在整个航速范围内,优化船型总阻力均有大幅减小。

本文以兴波阻力最小为优化目标函数对标准船型 Series 60 进行优化设计。我们利用平移法与径向基函数法修改船体曲面;应用基于 NM 理论开发的求解器 NMShip-SJTU 计算船型阻力;选取序列二次规划算法为优化方法,求解得到了指定傅汝德数下兴波阻力最小的优化船型,并对优化结果进行了分析。

2 Neumann-Michael 理论

Neumann-Michell 理论^[7]是由 Francis Noblesse 等学者在 Neumann-Kelvin(NK)理论的基础上提出来的。NM 理论成功消去了 NK 理论中原有的沿船舶水线的积分项,将全部的计算转化为在船体湿表面上的积分。基于 NM 理论的阻力预报效率非常高,同时也具有一定的精度,因此非常适用于船型优化。

2.1 问题陈述

一艘船长为 L_s 的船舶以匀速 V_s 沿直线前进,它所在的水域拥有无限大的自由水面与无限水深,没有外来的波浪干扰,不考虑水的粘性。我们在一个固定于船上并随船运动的右手直角坐标系 $\mathbf{X}=(X,Y,Z)$ 中观察船体周围的流动,无因次化坐标定义为 $\mathbf{x}=\mathbf{X}/L_s$,无因次化速度定义为 $\mathbf{u}=\mathbf{U}/V_s$,无因次化速度势定义为 $\boldsymbol{\phi}=\boldsymbol{\Phi}/(V_sL_s)$ 。

2.2 边界积分表达式

NM 理论基于格林函数方法。从格林第二公式出发,我们首先得到边界积分表达式:

$$C\phi = \left| (G\mathbf{n} \cdot \nabla \phi - \phi \mathbf{n} \cdot \nabla G) da \right| \tag{1}$$

格林函数 G的值在远场中迅速衰减,再结合船体是表面处的不可穿透边界条件 $\mathbf{n}\cdot\nabla\phi=n^{r}$,并忽略了自由表面升高中的非线性项,可以得到:

$$\phi = \int_{\mathcal{A}} G n^{x} da - \int_{\mathcal{A}} \phi \mathbf{n} \cdot \nabla G da + F^{2} \int_{\mathcal{A}} \frac{\phi G_{x} - G \phi_{x}}{\sqrt{(n^{x})^{2} + (n^{y})^{2}}} n^{x} dl + \int_{\mathcal{A}} (\pi^{G} \phi - G \pi^{\phi}) dx dy \qquad (2)$$

其中,F表示傅汝德数, π^G 和 π^{ϕ} 的定义为: $\pi^G = G + F^2 G_x$, $\pi^{\phi} = G + F^2 \Phi_x$, Γ 代表平均水线。对于协调线性理论模型,(2)式中在船体真实湿表面积上对源强的积分项可以写成:

$$\int_{\mathbb{R}^{H}} G n^{x} da \approx \int_{\mathbb{R}^{H}} G n^{x} da + F^{2} \int_{\mathbb{R}^{H}} \frac{G \phi_{x} n^{x} dl}{\sqrt{(n^{x})^{2} + (n^{y})^{2}}}$$
(3)

将(3)式代入(2)式,两式中的水线积分项部分抵消,得:

$$\phi = \int_{\mathbb{R}^{H}} (G n^{x} - \phi \mathbf{n} \cdot \nabla G) da + F^{2} \int \frac{\phi G_{x} n^{x} dl}{\sqrt{(n^{x})^{2} + (n^{y})^{2}}} + \int_{\mathbb{R}^{F}} (\pi^{G} \phi - G n^{\phi}) dx dy$$
(4)

我们将格林函数 G分解为兴波部分 W与当地流动部分 L两部分,又经过一系列数学变换,得到 NM 理论的最终表达式为:

$$\mathbf{\vec{\phi}} = \mathbf{\vec{\phi}}_H + \mathbf{\vec{\psi}}^W \tag{5}$$

其中有:

$$\phi_{H} \equiv \int_{\mathbb{H}} G n^{x} da - \int_{\mathbb{H}^{c}} G \pi^{\phi} dx dy$$

$$\phi^{W} = \int_{\mathbb{H}^{c}} (\phi_{\mathbf{t}} \mathbf{d}_{\mathbf{t}} + \phi_{d} \mathbf{t}_{\mathbf{t}}) \cdot \mathbf{W} da$$
(6)

其中,**d.**, t_* ,t',d'均是与船体相切的单位向量,波浪函数 **W**与W满足 $\nabla \times$ **W**= ∇W 关系。

3 船型变换方法

船型变换方法以及优化算法是船型优化设计过程中的核心环节。选择合适的船型变换方法、合理的船型变换参数,是船型优化设计过程科学有效的基础。而选择恰当的优化算法,则是船型优化设计过程高效准确的保障。下面介绍本文选取的两种分别针对船型整体和局部的变换方法。

3.1 基于平移法的整体船型变换

早在上世纪 50 年代,Lankenby^[8]就提出了基于横剖面积曲线的船型变换方法,其基本思想是通过对母型船各站位的型线进行有序的前后平行移动,以此来获得新的船型。

在本文中,为了对接 NMShip-SJTU 求解器的求解需要,我们以母型船的表面网格为初始研究对象,因此我们的平移也是针对母型船表面的网格节点进行的。这样的处理不仅满足了船型变换之后的计算需求,而且相比于直接修改母型船站位其变换精度更高。

为了使全船的变换协调连续,本文引入修改函数g:

$$g = \begin{cases} \alpha_1 \left[0.5(1 - \cos 2\pi \frac{x - \alpha_2}{\alpha_2 - x_1}) \right]^{0.5}, & x_1 \le x \le \alpha_2 \\ -\alpha_1 \left[0.5(1 - \cos 2\pi \frac{x - \alpha_2}{\alpha_2 - x_2}) \right]^{0.5}, & \alpha_2 \le x \le x_2 \end{cases}$$

$$0, \qquad \text{elsewhere}$$

$$(7)$$

平移变换法涉及四个变量: x_1 , x_2 分别为船体曲面变换区域的起始位置, α_1 为变换的最大幅度, α_2 为变换区域内不动点的位置。

基于修改函数,只需获取节点在船长方向上的初始位置即可求得该节点的平移矢量。平移法的 特点是变量少,变换效率高,非常适用于对大范围曲面(全船、半船)的整体修改变换。

3.2 基于 RBF 方法的局部船型变换

为了实现船体曲面的局部变换,有必要采用新的船型变换方法,国内外的学者对此都开展了一些尝试。其中,Boer^[9]介绍了一种基于径向基函数的曲面网格变形方法,该方法在处理网格变形时

224

简单有效,因此受到优化研究者的关注。本文在进行船体局部变形时,首先将整个船体曲面离散成若干三角形面元,利用三角形面元的节点位移,控制整个船体曲面的变形。由于需要有针对性的考察船体某些特殊位置(如首柱、球鼻首、船尾等),同时为了避免整个船体由于局部变形受到的影响,整个船体曲面的节点被划分为三类:

- (1) 固定不动的节点(固定控制点);
- (2) 由优化设计参数控制移动的节点(移动控制点);
- (3) 随控制点的移动而变动的其他节点。

基于此,定义位移函数 $s(\mathbf{X})$,用来表示船体表面每个节点 $\mathbf{X}=(x,y,z)$ 的位移大小:

$$s(X) = \sum_{j=1}^{N} \lambda_j \phi(\|X - X_j\|) + p(X)$$
(8)

式中, $s(\mathbf{X})$ 被表示为 N 个径向基函数与一个多项式函数的和,其中,N 是所有控制点的个数,包括固定控制点和移动控制点, $\mathbf{X}_{\mathbf{j}}=(x_{\mathbf{j}},y_{\mathbf{j}},z_{\mathbf{j}})$ 表示每个径向基函数的中心,也就是 N 个控制点的坐标,基函数 φ 是空间中任一点 \mathbf{X} 与函数中心 $\mathbf{X}_{\mathbf{j}}$ 的欧氏距离的函数,本文选择如下具有紧支性的 Wedndland's 基函数:

$$\phi(\|X\|) = (1 - \|X\|)^4 (4\|X\| + 1) \tag{9}$$

式 (8) 中的多项式 p 为仿射变换的低阶多项式:

$$p(X) = c_1 + c_2 x + c_3 y + c_4 z \tag{10}$$

式 (8) 中的系数 λ_i 以及式(10)中的 c_i 可以通过两类控制点的位移求解得到:

$$s(X_i) = f_i$$
 , $j = 1, 2, ..., N$ (11)

式中, fi表示每个控制点的位移值, 同时附加条件:

$$\sum_{i=1}^{N} \lambda_{j} p(X_{j}) = 0 , j = 1, 2, ..., N$$
 (12)

可以得到如下线性方程组:

$$\begin{pmatrix} f \\ 0 \end{pmatrix} = \begin{pmatrix} M & P \\ P^T & 0 \end{pmatrix} \begin{pmatrix} \lambda \\ c \end{pmatrix} \tag{13}$$

其中,

$$\lambda = [\lambda_1, \lambda_2, ..., \lambda_N]^T; \quad c = [c_1, c_2, c_3, c_4]^T; \quad f = [f_1, f_2, ..., f_N]^T; \quad (14)$$

$$M_{i,j} = \phi(||X_i - X_j||)$$
, $i, j = 1, 2, ..., N$ (15)

$$P_{i,j} = p_i(X_i)$$
, $i = 1,2,...,N$, $j = 1,2,3,4$ (16)

至此,我们只需求解线性方程组(13),即可得到式(8)中的各个系数,并将所有网格节点坐标代入(8),就可以得到所有网格节点的变形情况,从而完成船型变换。

4 Series 60 船型优化算例

4.1 目标函数

本文的船形设计优化是基于船舶的兴波阻力进行的,目标函数即指定航速下的船舶兴波阻力, 本文采用的序列二次规划算法具体流程可参考文献[10]:

$$f_{obj} = \min Rw, \quad Fr = 0.30 \tag{17}$$

表 1 Series 60 模型参数

船型	航速 Fr	船长 L	船宽 B	吃水 D
Series 60	0.30	1.00m	0.13m	0.05m

4.2 设计变量

本算例的优化设计是基于上文中的两种船型变换方法进行的,共有八个设计变量: α_{1f} , α_{2f} , α_{1a} , α_{2a} , f_1 , f_2 , f_3 , f_4 。 其中 α_{1f} , α_{2f} , α_{1a} , α_{2a} 分别为 3.1 所述船型变换参数,下标 f 代表前半体,a 代表后半体; f_1 分别为四个控制点的移动距离,控制点均位于船体首柱,且只沿船长方向移动。

4.3 优化结果与分析

经过共计耗时 20 小时的 360 步迭代计算,最终得到目标函数最优解,优化结果列表如下:

表 2 优化结果 兴波阻力系数(×10⁻³) 湿表面积(m²)

	7 1001227073090()	
初始船型	2.00236	3.40952
最优船型	1.50487	3.40546
改变量	-24.85%	0.19%

从优化结果可以看出,最优船型在该航速下的兴波阻力系数有明显降低,而湿表面积基本不变,说明我们的最优船型在基本保持初始船型特征的基础上,整体和局部较小的变化就有效改善了其兴波阻力。从图 1 可以看出,相对于初始船型,最优船型的首部和尾部都有变得更加肥大的趋势,而船体中部则变得更加瘦削。从图 2 中可以看出,最优船型的兴波幅值减小,尾流场横波明显降低,表面压力幅值也有所减小,尤其是首部高压区和船中低压区有明显改善,这都表明最优船型的阻力降低是合理有效的。

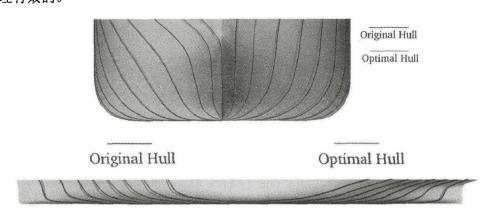
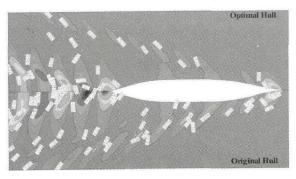



图 1 优化型线对比

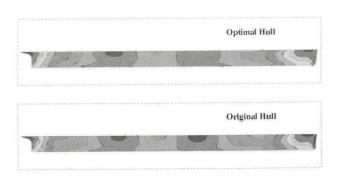


图 2 自由面兴波与船体表面压力对比

5 结论

- (1) 本文采用 NMShip-SJTU 计算船体兴波阻力,以此作为优化目标,利用平移法与基于径向基函数的船型变换方法,对船体整体型线以及首部型线进行了优化设计;
- (2) 本文的优化对象是标准船型 Series 60,通过序列二次规划算法优化后的最优船型,与初始船型相比,其在高航速(Fr=0.30)下的兴波阻力系数下降了 24.85%;
- (3)本文成功实现了基于 NM 理论的船体型线设计优化,序列二次规划算法也能够高效地给出最优解,以后的研究中应当对其他船型及航速进一步验证,由于 NM 理论只能预报船舶兴波阻力,未来还应考虑针对船舶总阻力的优化设计。

致 谢

本文工作得到国家自然科学基金项目(Grant Nos 51379125, 51490675, 11432009, 51411130131), 长江学者奖励计划(Grant No. 2014099), 上海高校特聘教授(东方学者)岗位跟踪计划(Grant No. 2013022), 国家重点基础研究发展计划(973 计划)项目(Grant No. 2013CB036103), 工信部高技术船舶科研项目的资助。在此一并表示衷心感谢。

参考文献

- [1] TAHARA Y. Flow-and wave-field optimization of surface combatants using CFD-based optimization methods [C]//23rd Symposium on Naval Hydrodynamics, September 17-22, Val de Ruil, 2000. 2000.
- [2] Peri D, Rossetti M, Campana E F. Design optimization of ship hulls via CFD techniques[J]. Journal of Ship Research, 2001, 45(2): 140-149.
- [3] Peri D, Campana E F. Variable fidelity and surrogate modeling in simulation-based design[C]//27th Symposium on Naval Hydrodynamics. Seoul, Korea. 2008.
- [4] 冯佰威, 刘祖源, 詹成胜, 等. 基于 CFD 的船型自动优化技术研究 [C] //2008 年船舶水动力学学术会议暨中国船舶学术界进入 ITTC30 周年纪念会论文集. 2008.
- [5] 张宝吉, 马坤, 纪卓尚. 基于遗传算法的最小阻力船型优化设计[J]. 船舶力学, 2011, 15(4): 325-331.
- [6] 李胜忠, 蒋昌师, 倪其军, 等. 基于 FFD 重构方法的船型优化设计及其模型试验验证[C]//第十三届全国水动力学术会议暨第二十六届全国水动力学研讨会论文集——D 水动力学实验和测试技术. 2014.

- [7] Noblesse F, Huang F, Yang C. The Neumann-Michell theory of ship waves[J]. Journal of Engineering Mathematics, 2013, 79(1): 51-71.
- [8] Lackenby H. On the systematic geometrical variation of ship forms[J]. Trans. INA, 1950, 92: 289-315.
- [9] De Boer A, Van der Schoot M S, Bijl H. Mesh deformation based on radial basis function interpolation[J]. Computers & structures, 2007, 85(11): 784-795.
- [10] 石国春. 关于序列二次规划 (SQP) 算法求解非线性规划问题的研究 [D][D]. 兰州大学, 2009.

Ship hull optimization design based on NM Theory and SQP Method

LIU Xiaoyi, WEI Jian Wu, ZHAO Min, WAN Decheng

(State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China)

Abstract

Resistance of performance optimization has always been an important part of ship conceptual design, for its direct demonstration to economy and usability of the ship. In order to achieve this goal, the traditional way is generally by comparing several ship form designs, choosing the design with the least resistance. With the development of computer technology and potential flow theory, we can already predict wave drag of ship through numerical simulation fast . Therefore, ship hull optimization design based on the potential theory has become increasingly concerned problem. The paper is based on Neumann-Micheal (NM) theory proposed by Francis Noblesse and sequential Quadratic programming (SQP) Method. We take the standard ship Series60 for an instance. By using the Shifting Method and Radial Basis Function Method to modify the hull surface, minimizing the wave drag as the objective function, the Series60 ship form is optimized under the high speed (Fr = 0.30) . Finally the optimal hull design with low wave drag has been got. And further analysis is drawn in the last. We conclude that the prediction of wave drag using NM and SQP method are suitable to the optimization program, which is fundamental to our future ship hull optimization design.

Key Words: ship hull optimization; wave drag; NMShip-SJTU; SQP