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ABSTRACT 

 

This paper investigates the influence of the streamwise adverse 

pressure gradient (APG) for an incompressible fully attached 

turbulent boundary layer. The turbulent flow over a 10-degree 

backward-facing slope is set up to generate a fully attached 

turbulent boundary layer with a streamwise APG. The large eddy 

simulation (LES) is carried out to solve the incompressible 

Navier-Stokes equations based on the open-source CFD toolkit 

OpenFOAM. Parabolized stability equations (PSE) are applied 

near the inlet to motivate the fully developed turbulent state. Then, 

detailed pressure-gradient parameters are determined, and the 

equilibrium state of the boundary layer is examined. A near-

equilibrium state is found between   = 6.7 and   = 6.8, where   is 

the boundary layer thickness at the inlet. The effect of the 

streamwise APG is discussed in this region by analyzing mean 

velocity profiles, turbulent fluctuations, and wall-pressure 

fluctuations along the slope. 

 

KEY WORDS: Pressure gradient, turbulent boundary layer, large 

eddy simulation 

 

INTRODUCTION 

 

The turbulent boundary layer under a streamwise adverse pressure 

gradient (APG) is a critical issue in ocean and offshore engineering 

applications. For instance, it is commonly observed in the stern regions 

of underwater vehicles and marine vessels, where it significantly impacts 

hydrodynamic performance. Understanding the physical characteristics 

and fundamental mechanisms of this flow is of great importance, as the 

APG influences the development of the turbulent boundary layer, 

including turbulent fluctuations and wall pressure fluctuations. These 

effects directly relate to challenges in engineering design, such as 

optimizing hull shapes, reducing drag, and mitigating structural 

vibrations in marine vessels and offshore structures. 

 

In past few years, lots of work, including experimental and numerical 

methods, has been conducted to investigate the influence of the 

streamwise APG. In particular, Krogstad and Skåre, (1995) conducted 

experimental investigations in a wind tunnel. They compared the 

turbulent structures between a zero-pressure gradient boundary layer and 

a boundary layer under a strong APG. They found the pressure gradient 

reverses the direction of the dominant turbulent diffusion, resulting in 

considerable turbulent transport towards the wall. (Aubertine and Eaton, 

2005) investigated a turbulent boundary layer over a 4  ramp. A 

relatively mild APG was established. The characteristics of mean 

velocity and turbulent fluctuations are studied. Harun et al. (2013) 

conducted experimental measures in an open-return blower wind tunnel 

and investigated the influence of the large-scale structures of boundary 

layers under zero, adverse and favourable pressure gradients. Baxerres 

et al. (2024) used experimental methods to study the quasi-equilibrium 

state for a series of pressure-gradient turbulent boundary layers. These 

experimental studies provide abundant data and reliable research 

findings. 

 

As the development of numerical methods and computational power, 

numerical methods are gradually applied to study the turbulent boundary 

subject to an APG. Lee (2017) used direct numerical simulations (DNS) 

to study the large-scale motions in turbulent boundary layers subjected 

to APGs. They found that the spatial organization of large-scale 

structures in the log region is significantly influenced by the strength of 

APGs. Yoon et al. (2018) investigated the contribution of large-scale 

motions to the skin friction using DNS. It was found that the large-scale 

energy was significantly enhanced due to the APG. Cohen and Gloerfelt 

(2018) used the large eddy simulation (LES) and investigated the effects 

of a pressure gradient beneath equilibrium turbulent boundary layers. 

The effects of curvature of the walls on wall pressure fluctuations were 

discussed. Tanarro et al. (2020) conducted LES simulations for the 

turbulent boundary layer over  NACA0012 and NACA4412 wing 

sections to analyze the characteristics of the pressure gradient. Pozuelo 

et al. (2022) evaluated the self-similarity of the outer region using two 

scaling methods based on LES. Above studies provided a great reference 

for studying the effect of the APG. However, existing work is still 

limited and the physical characteristics and mechanisms are still unclear. 
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This paper established a turbulent boundary layer over a slope based on 

LES and investigates the influence of the streamwise APG.  

 

The paper is organized as follows: First, the numerical approach is 

introduced. Second, details of the computational setup are discussed. 

Then, the characteristics of the turbulent boundary layer subject to the 

APG are analyzed. Finally, the conclusions are summarized. 

 

NUMERICAL APPROACH 
 

Governing Equations 
 

This paper uses LES to solve the turbulent flow. In LES, large eddies are 

directed solved and eddies smaller than the filter size are modeled. 

Governing equations are unsteady filtered Navier-Stokes equations for 

incompressible flows: 
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where i = 1, 2, 3 denotes different spatial coordinates, p  and u  are 

filtered pressure and velocity, and   is the molecular kinematic 

viscosity of the fluid. Space and time coordinates are represented by x 

and t. S
ij
SG  is the subgrid-scale (SGS) stress tensor calculated by the 

SGS model. 

 

AMD SGS model  
 

In LES, eddies with large scales are directly resolved, and the effect of 

smaller eddies than the filtered size is represented through the SGS stress 

tensor SGS =ij
SGS2 - (1/ 3)t ij kk ijS   . ijS  is the resolved the resolved 

strain-rate tensor. SGS  is the SGS eddy viscosity calculated by the SGS 

model. This study uses the anisotropic minimum-dissipation (AMD) 

SGS model. The AMD SGS model was derived by Rozema et al. (2015) 

with modified Poincare inequality considering the grid anisotropy. It 

minimizes dissipation by ensuring the energy of sub-grid scales not 

increasing. In AMD SGS model, SGS  is calculated by:  
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where, x  is defined as grid dimensions in different directions of the 

coordinate system. The AMD model is successfully applied in 

simulations of decaying grid turbulence (Zahiri, 2019; Zahiri and Roohi, 

2021),, high-Reynolds-number rough-wall boundary-layer flow (Abkar 

et al., 2016), fully developed planar channel flow, and non-cavitating and 

cavitating flows over a 3D sphere (Zahiri, 2019). It has been proved that 

the AMD SGS model can provide accurate results with lower 

computational cost than these dynamic SGS models. 
 

 

COMPUTATIONAL SETUP 

 

Computational Domain 
 

Fig. 1 illustrates the side view of the current computational domain. The 

Cartesian coordinate system o-xyz is used. The x and y axes are along the 

streamwise and normal directions, respectively, and the z axis is along 

the spanwise direction. A flat region with a length of 1L  = 650 0  is set 

to make the flow develop into a turbulent state. 0  is the boundary layer 

thickness at the inlet. Then, a slope with a streamwise length 2L  = 10

0  is set to form an APG region. The inclination angle of the slope is set 

as 10 , which is chosen to ensure that the boundary layer would 

decelerate as rapidly as possible without separating. The outlet is located 

3L  = 200 0  downstream from the end of the slope. The height of the 

computational domain at the inlet is zL  = 300 0 . 

 
Fig. 1 The schematic of the computational domain 

 

In past studies, many methods have been proposed to predict the 

transition and generate turbulent boundary layer, such as linear stability 

theory, parabolized stability equations (PES), and numerical trip using a 

suctioning and blowing boundary condition (He et al., 2024; Kumar and 

Mahesh, 2018; Morse and Mahesh, 2021, 2023; Wang et al., 2025). In 

this paper, the Parabolized Stability Equations (PSE) (Kim et al., 2019) 

are used to predict the laminar-to-turbulent transition by applying a 

boundary condition on the inlet. PSE was proposed by considering non-

parallel flow effects and nonlinear interactions between instabilities 

during the development of laminar-to-turbulent transition. Disturbance 

growth in the boundary layer can be better captured in PSE than other 

methods. For the detailed process of PSE method please refer to (Kim et 

al., 2019). The freestream velocity is u  = 1 m/s and the momentum 

thickness Reynold number is Re 200
u





 =  at the inlet, where   is 

the boundary layer momentum thickness. 

 

Computational Mesh 
 

Fig. 2 shows the computational mesh around the APG region. The near-

wall mesh is refined using a growth rate of 1.05 to ensure the accurate 

resolution of near-wall flow. The grid points are evenly spaced in both 

streamwise and spanwise directions. The grid resolution is set wy +  in 

the wall-normal direction. In the streamwise and spanwise directions, the 

mesh is further refined based on the work of Kim et al. (2019) to ensure 

the flow in the APG region well-resolved. Finally, in the transition and 

turbulent region, the grid resolution in streamwise and spanwise 

directions meets x+  and z+  less than 15. 

 

Fig. 2 Computational Mesh 
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Numerical Solution and Schemes 
 

The numerical simulations are conducted using the incompressible 

solver pisoFoam, which is part of the open-source computational fluid 

dynamics framework, OpenFOAM. The governing equations are 

spatially discretized using the finite volume method (FVM). For 

temporal discretization, a second-order implicit backward time-stepping 

scheme is employed. The gradient and viscosity terms are discretized 

using the second-order central difference scheme, while the convective 

term is handled with the linear-upwind stabilized transport (LUST) 

scheme. To solve the coupling between velocity and pressure, the 

Pressure Implicit with Splitting of Operators (PISO) algorithm is utilized. 

For the pressure Poisson equation, the generalized geometric-algebraic 

multigrid (GAMG) solver is applied. The number of times a solution for 

pressure is set as 3 within each timestep. During the solution process, the 

Gauss-Seidel smoother is used in the initial stages, followed by the 

Diagonal incomplete-Cholesky with Gauss-Seidel (DICGaussSeidel) 

smoother for the final solution.  
 

Boundary Conditions 
 

The setting of boundary conditions is following to Kim et al. (2019). At 

the inlet, disturbances are introduced by superimposing a baseline 

laminar solution with time-varying two-dimensional velocity 

disturbance profiles generated using PSE. The free-stream velocity in the 

inlet is set as ( u
, 0, 0). The zeroGradient condition in OpenFOAM is 

used for the pressure boundary condition. For the outlet boundary, the 

convective condition is used for the velocity. The fixed value p=0 is used 

for the pressure boundary condition. For the top boundary, the 

zeroGradient condition is used for the velocity and the fixed value p=0 

is used for the pressure. No-slip boundary condition is used for the 

velocity and the zeroGradient condition is used for pressure on the solid 

wall. Periodic boundary condition is used in the spanwise direction to 

simulate the infinite domain.  
 

Time Step and Solution Time 
 

The time step in this study is set as 1
0 0t U t + − =    = 0.1, satisfying 

that the maximum Courant number is less than 1. The simulation is 

conducted for over six flow-through times to discard transients and the 

results are sampled for another five flow-through times to collect 

statistics. 

 

 

RESULTS AND DISCUSSIONS 
 

Overview of the Flow Field 

 

Fig. 3 illustrates the near-wall vortex structures during the boundary 

layer development, identified using the modified normalized Liutex-

Omega method (Liu and Yu, 2022; Pang et al., 2023). This method 

utilizes the isosurface of a normalized scalar R  to detect vortex 

structures, with the threshold value for the isosurface set to the 

recommended value of 0.52 (Zhao et al., 2020). From Fig. 3, the 

development of the boundary layer is clearly described. The Tollmien-

Schlichting (T-S) wave is first formed and keeps the two-dimensional 

characteristic during the linear growth stage. Then the  -shape three-

dimensional vortices are formed due to the enchance of the disturbances 

in the spanwise direction. 

 

 
Fig. 3 Near-wall vortex structures colored by the streamwise velocity 

nondimensionalized by u . 

 

As the flow continues to develop downstream, the   shape vortices 

begin to be stretched and deformed and the hairpin vortex structures are 

formed. The interaction between different types of vortices is gradually 

enhanced and develops towards the turbulent state. The turbulent state is 

formed before the beginning of the slope, and then the vertices are 

influenced by the streamwise pressure gradient on the slope. The vortex 

structures begin to shed from the slope and form the wake vortices. 

However, the boundary layer is still attached on the slope and separation 

is not observed.  

 
(a) Instantaneous pressure coefficient 

 

 
(b) Instantaneous streamwise velocity  

 

 
(c) Instantaneous streamwise velocity fluctuations 

 

Fig. 4 Contours of instantaneous pressure coefficient Cp, streamwise 

velocity, and velocity fluctuations nondimensionalized by u , in xoy 

plane. 

 

Furthermore, Fig. 4 shows contours in the APG region of instantaneous 

axial velocity normalized by u , pressure coefficient Cp and vorticity 

magnitude in xoy plane, plotted using Turbulucid (Mukha, 2018). The 

pressure coefficient is defined as 
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where p  is the reference pressure. The edge of the boundary layer is 

plotted using the black solid line. For the turbulent boundary layer under 

the APG, the conventional definition of the boundary layer thickness 

(0.995 u ) is unsuitable, as the velocity varies outside the boundary 

layer due to streamwise pressure gradients. As a result, alternative 

definitions have been proposed. Various methods for determining 

boundary layer thickness have been suggested, including those based on 

vorticity (Coleman et al., 2018; Spalart and Watmuff, 1993) and total 

pressure(Patel et al., 1974; Griffin et al., 2021). In this paper, the method 

based on 0.99 ,totalCp   criterion is employed to determine the edge of 

the boundary layer. From Fig. 4, the adverse pressure on the slope is 

obviously observed. The pressure and velocity fluctuations are 

significant inside the boundary layer. The method based on 0.99

,totalCp   criterion effectively determines the edge of the boundary layer 

under the APG. The boundary thickness gradually increases under the 

APG. 

 

Pressure-gradient parameters 

 

The pressure gradient in boundary layer flows can be characterized by a 

variety of non-dimensional parameters according to previous 

studies(Aubertine and Eaton, 2005; Cohen and Gloerfelt, 2018; 

Parthasarathy and Saxton-Fox, 2023; Pozuelo et al., 2022; Sanmiguel 

Vila et al., 2017). The Clauser pressure-gradient parameter c , the 

acceleration parameter K  (Kline et al., 1967), the viscous-scaled 

pressure gradient p  are defined as 
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where eU  and eP  are the mean streamwise velocity and local static 

pressure at the edge of the boundary layer.   are *  are the boundary 

layer thickness and displacement thickness.   and   are the density 

and kinematic viscosity of the fluid. w  is the wall stress and u  is the 

friction velocity. The turbulent boundary layer is also characterized by 

its shape factor H  and the defect shape factor G  defined as 
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The equilibrium for the boundary layers subjected to a pressure gradient 

is an important characteristic. A turbulent boundary layer at the 

equilibrium state is significant for wavenumber-frequency analysis and 

avoiding the effect of the dependence on the upstream history and the 

way the gradient is applied (Cohen and Gloerfelt, 2018). Next, we 

discuss the equilibrium characteristic of the present turbulent boundary 

layer. Here, we use the criterion that the turbulent boundary layer under 

the APG achieves an equilibrium region if the above non-dimensional 

parameters maintain constant. 

 

 
Fig. 5 Streamwise evolution of (a) Re  on the slope and (b) the enlarged 

region between 1
0x  −  = 6.7 and 1

0x  −  = 6.8. 

 

 

Fig. 5 present the streamwise evolution of the momentum thickness 

Reynold number Re  on the slope. As the development of the boundary 

layer on the slope, the boundary layer momentum thickness increases 

and hence Re  increases. We enlarge the region between 1
0x  −  = 6.7 

and 1
0x  −  = 6.8 and found Re  increases linearly with 1

0x  − . The 

pressure gradient in this region will be analyzed and a equilibrium state 

will be found in this region. 

 

 
Fig. 6 Streamwise evolution of ratios of boundary-layer thicknesses: (a) 

* 1  − , 1  − , and (b) shape factor * 1H  −=   between 1
0x  −  = 

6.7 and 1
0x  −  = 6.8. 

 

 

Fig. 6 shows the streamwise evolution of ratios of boundary-layer 

thicknesses: (a) * 1  − , 1  − , and shape factor * 1H  −=  . Fig. 7 

presents the streamwise evolution of corresponding pressure gradient 

parameters. One can see that * 1  −  and 1  −  decrease linearly as 

the development of the turbulent boundary layer. Pressure gradient 

including the shape factor * 1H  −=  , the Clauser pressure-gradient 

parameter c , the acceleration parameter K , the viscous-scaled 

pressure gradient p , and defect shape factor G  are nearly constant 

between 
1

0x  −  = 6.7 and 
1

0x  −  = 6.8. Corresponding values are H  

= 1.58, c  = 2.00, K =-1.70, p  = 0.26, and G  = 8.70. Therefore, a 
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near-equilibrium is achieved between 1
0x  −  = 6.7 and 1

0x  −  = 6.8. 

The value of c  is relatively small, indicating the present pressure 

gradient is moderate. 

 

 
Fig. 7 Streamwise evolution of (a) the Clauser pressure-gradient 

parameter c , (b) the acceleration parameter K , (c) the viscous-scaled 

pressure gradient p , and (d) defect shape factor G  between 1
0x  −  

= 6.7 and 1
0x  −  = 6.8. 

 

Time-averaged statistics 
 

Fig. 8 illustrates eleven profiles between 1
0x  −  = 6.7 and 1

0x  −  = 6.8 

of the mean streamwise velocity. The interval in the flow direction for 

every profile is 0.01 0  and the color is marked from white to black. The 

distribution is non-dimensionalized using the wall units. The wall units 

are defined by the kinematic viscosity   and friction velocity u . As 

we can see, all the profiles collapse well, especially in the viscous sub-

layer and buffer layer region. This is expected due to the mild magnitude 

of the pressure gradient. 

 
Fig. 8 Mean streamwise velocity profiles in wall units: eleven profiles 

between 1
0x  −  = 6.7 and 1

0x  −  = 6.8. 

Turbulent fluctuations 

 
Furthermore, Fig. 9 illustrates eleven profiles of the streamwise velocity 

fluctuations between 1
0x  −  = 6.7 and 1

0x  −  = 6.8. From Fig. 9, it is 

seen that a degree of self-similarity within the very near-wall region ( y+  

< 10). Near-wall peaks in the streamwise velocity fluctuations are 

observed in the profiles and located at y+  ≈ 12. The peak value mildly 

increase as 1x  −  increases while corresponding location remain 

unchanged in wall units. Otherwise, outer peaks are observed in profiles 

of the streamwise velocity fluctuations. The outer peaks move outward 

with increasing strength and width as 1x  −  increases. The appearance 

of outer peaks in streamwise velocity fluctuation profiles is a typical 

feature of turbulent boundary layers under APGs (APG), leading to the 

amplification of large-scale turbulent structures. 

 

 
Fig. 9 Profiles of the streamwise velocity fluctuations in wall units: 

eleven profiles between 1
0x  −  = 6.7 and 1

0x  −  = 6.8. 

 

Wall pressure fluctuations 

 

To study the characteristics of the wall pressure fluctuations, we 
calculate the frequency power spectra using the fast Fourier transform 

algorithm in Python by segmenting the time series into 30 blocks of 2000 

samples in each block, along with a 50% overlap and Hanning window. 

Fig. 10 shows the frequency power spectra for various streamwise 

positions. 

 
Fig. 10 Frequency power spectra with mixed scalings for different 

positions between 
1

0x  −  = 6.7 and 
1

0x  −  = 6.8. 
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The famous mixed scaling is used to non-dimensionalize the spectra, 

which w  is the pressure scale, and * 1u −  is the frequency scale. The 

resulting non-dimensional spectrum from all locations collapses well. 

The magnitude of the non-dimensional spectrum initially exhibits a mild 

increase at low frequencies and then decreases as the frequency   

increases. 

 

CONCLUSIONS 
 

In this paper, a turbulent boundary layer under a moderate APG is 

established by a 10  slope. The turbulent boundary layer is fully 

developed and attached to the wall, which means the separation is not 

observed. The near-equilibrium region is found by analyzing the 

pressure-gradient parameters. In this region, the streamwise velocity 

profiles collapse well, especially in the viscous sub-layer and buffer layer 

region. The streamwise turbulent fluctuations collapse well in the sub-

layer region and the peak values of mean streamwise velocity 

fluctuations mildly increases as  1x  −  increases. For the wall pressure 

fluctuations, the resulting non-dimensional spectrum from all locations 

collapses well. The magnitude of the non-dimensional spectrum initially 

exhibits a mild increase at low frequencies and then decreases as the 

frequency   increases. 
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