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Wall-resolved large-eddy simulations of flow over an axisymmetric body of revolution
(DARPA SUBOFF bare model) at ReL = 1.1 × 106 are performed to investigate wall
pressure fluctuations under the combined effects of transverse curvature and varying
pressure gradients. Due to the coexistence of convex and concave streamwise curvatures,
the flow in the stern region features alternating zones of favourable and adverse
pressure gradients (APGs). The simulation validates experimental findings by Balantrapu
et al. (2023, J. Fluid Mech., vol. 960, A28), confirming that in APG-dominant
axisymmetric boundary layers without streamwise curvatures, the root mean square
wall pressure fluctuations (pw,rms) decrease downstream alongside the wall shear stress
(τw), maintaining a constant ratio pw,rms/τw. This study further finds that when
streamwise curvatures and strong streamwise pressure gradient variations present, this
relationship breaks down, suggesting that τw is not the dominant contributor to wall
pressure fluctuations. Instead, the local maximum Reynolds shear stress −ρ〈usun〉max
emerges as a more robust pressure scaling parameter. Normalising the wall pressure
spectra by −ρ〈usun〉max yields better collapse across the entire stern region compared
to conventional inner or mixed scaling methods. The magnitude and location of
−ρ〈usun〉max significantly influence the spectral levels of wall pressure fluctuations across
different frequency bands. As the turbulence intensity and −ρ〈usun〉max shift away from
the wall, outer-layer structures – with larger spatial and temporal scales – dominate the
coherence of wall pressure fluctuations. This mechanism drives sustained attenuation of
high-frequency pressure fluctuations and a simultaneous increase in both the streamwise
and transverse correlation lengths of wall pressure fluctuations over the stern region.
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1. Introduction
As one of the unresolved challenges in fluid mechanics, the complexity of wall-bounded
turbulence arises from its inherently chaotic and nonlinear nature. At high Reynolds
numbers, the flow field around an axisymmetric body of revolution (BOR) is dominated by
intricate near–wall turbulence. Wall pressure fluctuations, induced by velocity variations
in the turbulent boundary layer (TBL), are regarded as the primary source of flow-
induced noise. Comprehensive investigations into wall pressure fluctuations are crucial for
understanding the underlying mechanisms of wall-bounded turbulence and for achieving
accurate predictions of flow-induced noise in engineering applications.

For zero pressure gradient (ZPG) flow over flat plates, the spectral characteristics of
wall pressure fluctuations and their scaling laws have been studied extensively, resulting
in a wealth of experimental (Blake 1970; Schewe 1983; Farabee & Casarella 1991; Keith,
Hurdis & Abraham 1992) and numerical (Kim 1989; Choi & Moin 1990; Panton, Lee &
Moser 2017; Yang & Yang 2022) simulation data. In principle, the pressure fluctuations
on the wall are typically determined by solving the Poisson equation

1
ρ

∇2 p = −2
∂ui

∂x j

∂U j

∂xi
− ∂2

∂xi ∂x j
(ui u j − 〈ui u j 〉), (1.1)

where p is the pressure fluctuation, ρ is the fluid density, and ui and Ui (i = 1, 2, 3) denote
the velocity fluctuations and mean velocity, respectively. The terms on the right-hand side
include the mean velocity gradient and the velocity fluctuations, which are referred to as
the rapid and slow source terms, respectively. Given that the pressure Poisson equation is
an elliptic partial differential equation, the fluctuating pressure on the wall typically results
from the integrated effect of the velocity field within the TBL. Turbulence similarity
theory (Farabee & Casarella 1991) suggests that wall pressure fluctuations across different
frequency bands arise from contributions of various scales of physical quantities within
the TBL. The low-frequency region is associated with large-scale motions in the outer
layer, while the high-frequency region corresponds to small-scale motions in the inner
layer, particularly in the logarithmic region. When normalised using the inner variables
(wall friction velocity uτ and viscous length δν = ν/uτ ), the high-frequency wall pressure
fluctuation spectra decay as ω−5. Similarly, scaling with external variables (boundary
layer thickness δ or displacement thickness δ∗, and outer edge velocity Ue) leads to
spectral collapses in the low-frequency region. However, owing to the multi-scale nature
of turbulence, no universal scaling law has been found that can collapse the pressure
spectra across a wide frequency range and for different Reynolds numbers (Goody 2004;
Rozenberg, Robert & Moreau 2012; Hu & Herr 2016; Lee 2018).

As a canonical BOR, the DARPA SUBOFF (Groves, Huang & Chang 1989) has been
widely used for research purposes. Figure 1 shows the geometry of the bare hull (AFF1)
configuration of the DARPA SUBOFF model. Over the past few decades, numerous
researchers have conducted extensive experimental measurements (Huang et al. 1992;
Jiménez et al. 2010b,c) and wall-resolved large-eddy simulations (WRLES) studies (Posa
& Balaras 2016, 2020; Kumar & Mahesh 2018; Morse & Mahesh 2021, 2023; Liu et al.
2023) on this benchmark model at Reynolds numbers of the order of 106−107. These
studies have focused primarily on hull forces, wake self-similarity, Reynolds number
effects, and the influence of appendages. In comparison to ZPG flow over a flat plate,
the investigation of wall pressure fluctuations on the SUBOFF model requires particular
attention to two critical factors: convex transverse curvature and varying streamwise
pressure gradient. The interaction between these factors gives rise to a more complex TBL
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L = 8.6D

D

Figure 1. Geometry of the bare hull (AFF1) configuration of the DARPA SUBOFF model.

on the surface of the SUBOFF model. In many previous studies, these two aspects have
often been analysed independently.

Convex transverse curvature is a critical factor that cannot be overlooked, especially
when the ratio γ = δ/r of boundary layer thickness δ to the radius of curvature r is
relatively large (Neves & Moin 1994). Compared to flat plates, axial flow over a cylinder
exhibits a fuller velocity profile and higher surface friction coefficient C f (Willmarth
et al. 1976; Snarski & Lueptow 1995). Alam (2020) reports in his review that for r+ =
ruτ /ν < 2.5 × 102 (the superscript ‘+’ denotes a non-dimensional parameter scaled by the
wall friction velocity uτ and the viscous length scale ν/uτ ), C f increases exponentially,
whereas for r+ > 2.5 × 102, the increase becomes relatively moderate. Regarding the
influence of transverse curvature on wall pressure fluctuations, early experiments by
Willmarth & Yang (1970) observed a slight increase of approximately 2 dB in the high-
frequency range, offset by a reduction in low-frequency fluctuations. As a result, the
root mean square (r.m.s.) of pressure fluctuations was comparable to that of a flat plate.
Their study also noted a shorter correlation length scale for wall pressure fluctuations in
both streamwise and transverse directions, suggesting that the generation of wall pressure
fluctuations occurs closer to the wall than in the flat plate case. Neves, Parviz & Moser
(1994) examined the effects of convex transverse curvature at γ = 5 (r+ ≈ 43) and γ = 11
(r+ ≈ 21). The results indicate that the Taylor frozen turbulence hypothesis (Taylor 1938)
for wall pressure fluctuations remains valid, albeit with a lower convection velocity. As the
curvature increases (and r decreases), the r.m.s. of pressure fluctuations decrease slightly.
Interestingly, wall pressure fluctuations appear to be relatively insensitive when r+ is
large, particularly in cases involving high Reynolds numbers (Rer , based on local radius of
curvature r ) and thin boundary layers (Piquet & Patel 1999). The mechanisms of near-wall
turbulence production and self-sustaining processes are also closely analogous to those
observed in flat plate flows.

The pressure gradient is another critical factor in flow over the DARPA SUBOFF model.
Early experimental studies by Schloemer (1966) demonstrated that the convection velocity
in adverse pressure gradient (APG) flows was lower than that in ZPG flows, and the
coherence in the streamwise direction decayed more rapidly in APG compared to ZPG.
The results also revealed that APG increased the low-frequency levels of wall pressure
fluctuations without significantly affecting the high-frequency components. In contrast,
favourable pressure gradients (FPGs) result in a stronger high-frequency content. However,
due to the relatively large size of sensors used in early experiments, the measurements of
high-frequency components were often inaccurate. Subsequent investigations (Cohen &
Gloerfelt 2018) demonstrated that wall pressure fluctuations in APG flows exhibited faster
attenuation in the mid-frequency range, and lower spectral levels in the high-frequency
region. In addition to the inner peak, an outer peak – similar to that observed in high-
Reynolds-number ZPG boundary layers (Monty et al. 2009; Marusic et al. 2010; Lee &
Moser 2015) – was also identified in APG flows (Harun et al. 2013; Kitsios et al. 2017). An
analysis of turbulence production (Kitsios et al. 2017) suggests that the combined effects of
mean shear and large-scale motions contribute to the increased turbulence intensity in the
outer layer, thereby amplifying the low-frequency spectral levels. As a consequence, some
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studies (Simpson, Ghodbane & Mcgrath 1987; Na & Moin 1998; Abe 2017; Schatzman &
Thomas 2017) have suggested that the maximum turbulent shear stress ρ〈|u′ν′|〉max can
also be used as a scaling quantity for wall pressure fluctuations.

Research on wall pressure fluctuations in axisymmetric boundary layers, particularly
when accounting for both convex transverse curvature and pressure gradient, remains
relatively limited. Balantrapu et al. (2020) conducted an experimental investigation on
an axisymmetric BOR with a small length-to-diameter ratio, providing wall pressure
fluctuation spectra at discrete measurement locations on the stern. Compared to the
SUBOFF model, the BOR used in their study featured an elongated stern with no curvature
variation in the tail section along the streamwise direction, resulting in a stable APG.
In subsequent studies, Balantrapu, Alexander & Devenport (2023) further revealed that
as the flow decelerates downstream, the r.m.s. of wall pressure fluctuations decreases
in tandem with the wall shear stress, both scaling consistently by approximately 7τw.
Additionally, when scaled using mixed variables (τw as the pressure scale and Ue/δ as
the frequency scale), the pressure fluctuations at all measurement locations collapsed
within a range of 2 dB. In terms of numerical simulations, Zhou, Wang & Wang (2020)
adopted a hybrid approach combining wall-modelled large-eddy simulations (WMLES)
and WRLES (with WMLES for the nose and centre-body sections, and WRLES for
the stern) to simulated the flow over the BOR under identical conditions, and compared
the wall pressure fluctuation spectra at three discrete measurement points on the stern.
The results showed good agreement with experimental data, indicating that WRLES can
achieve accuracy comparable to experiments in predicting wall pressure fluctuations.

The aforementioned studies focus primarily on equilibrium TBLs, where the pressure
gradient remains approximately constant, and the boundary layer inherently exhibits self-
similarity. Only a few studies (Tanarro, Vinuesa & Schlatter 2020; Volino 2020; Caiazzo
et al. 2023) have addressed the effects of streamwise curvature and the development
of non-equilibrium boundary layers. In practice, engineering flows often involve curved
surfaces, such as aerofoils and submarines, where the Clauser parameter (βc) and
acceleration parameter (K ) exhibit strong variations along the streamwise direction.
For instance, the stern of the SUBOFF model exhibits complex flow features, such as
pressure gradients, transverse curvature, and combined convex and concave streamwise
curvature. Morse & Mahesh (2021) investigated the evolution of the boundary layer
along the hull under a streamline coordinate system. However, they did not pay extra
attention to wall pressure fluctuations. To our knowledge, there are currently no publicly
available experimental or high-fidelity WRLES data on wall pressure fluctuations for this
benchmark model. While recent numerical studies (He et al. 2022; Zhou et al. 2022;
Jiang, Liao & Xie 2024) have begun to address wall pressure fluctuations for the SUBOFF
model, these efforts frequently suffer from two critical limitations: insufficient validation
against experimental data, and inadequately resolved near-wall grids. The latter fail to meet
the resolution requirements for accurately resolving wall pressure fluctuations at relevant
Reynolds numbers. Additionally, these researches focus solely on the parallel mid-body
region, while the evolution of wall pressure fluctuations at the stern of the SUBOFF model
is more complex and has not yet been investigated. As a consequence, further investigation
remains critically important to advance the fundamental understanding of wall pressure
fluctuations and refine predictive models for turbulence and flow noise.

In the present study, WRLES of flow over the DARPA SUBOFF bare hull at ReL =
1.1 × 106 are performed within a finite volume framework. The selected Reynolds number
is consistent with previous study of experiments (Jiménez et al. 2010b) and WRLES
(Kumar & Mahesh 2018; Morse & Mahesh 2021, 2023). The primary objectives of
this study are as follows: (i) to provide high-fidelity wall pressure fluctuation data for
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flow over this benchmark model at ReL = 1.1 × 106; (ii) to investigate the evolution
of wall pressure fluctuations under the combined effects of varying pressure gradients,
transverse curvature, and streamwise curvature; (iii) to investigate the scaling laws of
wall pressure fluctuations in the non-equilibrium axisymmetric boundary layer subjected
to varying pressure gradient; (iv) to analyse the structures and space–time correlations
of wall pressure fluctuations of the SUBOFF model; (v) to evaluate the applicability of
existing flat-plate wall pressure fluctuation models to an axisymmetric BOR. The paper is
organised as follows. In § 2, we provide details of the numerical methodology and the
validation of the present WRLES. In § 3, we present the instantaneous flow field and
boundary layer development around the SUBOFF model. The results of wall pressure
fluctuations are analysed in § 4, with final conclusions drawn in § 5.

2. Numerical methodology and validation

2.1. Governing equations
Large-eddy simulations (LES) are incapable of resolving vortices of all scales in the flow
field. By applying a filter to the incompressible Navier–Stokes equations, the governing
equations for LES can be obtained as

∂ ũi

∂t
+ ∂ ũi ũ j

∂x j
= − 1

ρ

∂ p̃

∂xi
+ ν

∂2ũi

∂x j∂x j
− ∂τ

sgs
ij

∂x j
, (2.1)

∂ ũi

∂xi
= 0, (2.2)

where ũi (i = 1, 2, 3) is the filtered velocity component in the xi direction, p̃ is the filtered
pressure, ν is the kinematic viscosity of the fluid, and τ

sgs
ij is the subgrid-scale (SGS) stress

term that is given by

τ
sgs
ij = 2νsgs S̃ij + 1

3τ
sgs
kk δij, (2.3)

with S̃ij the resolved strain rate tensor, δij the Kronecker delta, and νsgs the SGS eddy
viscosity. In this study, the wall-adapting local eddy viscosity (WALE) model (Nicoud &
Ducros 1999) is applied to compute the eddy viscosity

νsgs = (CwΔ)2

(
Sd

ij Sd
ij

)3/2

(
S̃ij S̃ij

)5/2 +
(

Sd
ij Sd

ij

)5/4 , (2.4)

where Cw = 0.325 is the WALE coefficient, Δ is the cube root of the local cell volume,
and Sd

ij is the traceless symmetric part of the square of the velocity gradient tensor.
The present simulation is performed using the open-source CFD platform OpenFOAM.

The spatial discretisation employs a second-order central differencing scheme for both
convective and diffusive terms to ensure low numerical dissipation, which is critical
for resolving turbulence structures in WRLES. The temporal term is discretised using
a second-order implicit backward scheme. The PISO algorithm (Issa 1986) is employed
to handle the pressure–velocity coupling, with three pressure corrections and one
extra loop for non-orthogonality at each time step. The momentum equation is solved
using the bi-conjugate gradient stabilised (PBiCGStab) solver with the diagonal-based
incomplete LU (DILU) preconditioner. For the pressure Poisson equation, we use the
conjugate gradient solver with the diagonal-based incomplete Cholesky preconditioner.
The tolerance is set to 10−7. The present numerical algorithm has been validated for a
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Figure 2. Computational domain.

variety of problems over a range of Reynolds numbers in our previous study (Fan et al.
2024a; He et al. 2024b; He, Zhao & Wan 2025), demonstrating good agreement with
experimental and direct numerical simulations (DNS) data in terms of mean velocity
profiles, Reynolds stresses and wall pressure statistics.

2.2. Computational domain and mesh
The computational domain and mesh are described as follows. Figure 2 shows the
computational domain adopted in the present study, which is larger than domains used
in Posa & Balaras (2016) and Kumar & Mahesh (2018). Taking the stagnation point at
the bow of the hull as the origin, the x-axis is aligned with incoming flow direction. The
computational domain extends over length 40D, and width and height 20D, where D
represents the diameter at the parallel mid-body of the hull. The hull length is L = 8.6D,
and the domain spans −10D < x < 30D, −10D < y < 10D and −10D < z < 10D. An
unstructured mesh is used in this study, with graded refinement applied near the hull.
Our previous study (He et al. 2024b) on turbulent channel flow demonstrated that for
WRLES, in addition to ensuring that the first wall-normal grid layer satisfies �y+

w < 1,
the spanwise (or azimuthal) grid resolution should also be kept below 15 to avoid log-
law mismatch in the near-wall velocity profile. This constraint arises because near-wall
velocity streaks, which contribute to wall friction, require relatively fine spanwise grid
resolution. Furthermore, the streamwise grid resolution �x+ plays a crucial role in
accurately capturing high-frequency wall pressure fluctuations, similar to the effect of
sensor size on high-frequency measurements in experimental studies. As the streamwise
grid is refined, the high-frequency content of the wall pressure spectrum increases and
eventually converges to DNS results. In present study, given the primary focus on wall
pressure fluctuations, the wake region is not further refined. The near-wall streamwise
grid resolution at the mid-body is �x+ = 24, which is finer than resolutions used in
previous studies (Kumar & Mahesh 2018; Morse & Mahesh 2021). The azimuthal grid
resolution is r+ �θ = 12, and the height of the first grid layer is �y+

w = 0.92. The total
number of grids is approximately 540 million. The time step used in the simulation is
�t∗ = �t U∞/L = 8.69 × 10−5, ensuring that the Courant–Friedrichs–Lewy number is
satisfied with CFL < 1. The unsteady simulations are run for six flow-past times, with the
first 2.5 flow-past times used for flow development, and the remaining 3.5 flow-past times
used for statistical analysis, which is longer than in the WRLES study by Kumar & Mahesh
(2018) (two flow-past times for flow development, and two flow-past times used for data
sampling). In Appendix A, we further examine the effect of the sampling time period to
ensure that the flow is fully developed and the sampling duration is sufficient.
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Figure 3. Mean pressure and skin friction coefficients on the hull. The experimental results (Huang et al.
1992) at ReL = 1.2 × 107 are shown for comparison.

To improve numerical stability and accelerate convergence in the WRLES, a steady-
state Reynolds-averaged Navier–Stokes (RANS) simulation is first performed on the
same computational mesh. The resulting steady-state pressure and velocity fields from
the precursor RANS solution are then used as the initial conditions for the WRLES
computation. For the boundary conditions, a uniform inflow is prescribed at the inlet to
achieve a hull-length Reynolds number ReL = 1.1 × 106. At the outlet, a zero-gradient
condition is imposed on the velocity field, while the pressure is set to zero. The SUBOFF
model hull is assigned a no-slip velocity condition and a zero-gradient pressure condition.
The remaining domain boundaries are treated as symmetry planes. At this Reynolds
number, the flow remains predominantly laminar over a significant portion of the hull.
To prompt rapid transition to turbulence, a numerical trip is introduced at the bow
(x/D = 0.75) by applying a steady wall-normal velocity. The trip location is the same
as that used in the experiments by Jiménez et al. (2010b) and the simulations by Kumar &
Mahesh (2018) and Morse & Mahesh (2021). Following the perturbation, the flow quickly
transitions from laminar to turbulent.

2.3. Validation of present WRLES
To validate the accuracy of the present numerical method, figure 3 shows the mean
pressure and skin friction coefficient on the hull surface, which are defined as

C p = p − p∞
0.5ρU 2∞

, C f = τw

0.5ρU 2∞
, (2.5)

where p∞ represents the reference pressure, and τw denotes the wall shear stress. Since
Jiménez’s experiment (Jiménez et al. 2010b) for the DARPA SUBOFF model did not
provide C f data, and the reference pressure selection also differed from the experiment
by Huang et al. (1992), the results here are only compared with Huang et al. (1992)
at Reynolds number ReL = 1.2 × 107. The application of numerical tripping introduces
minor fluctuations in the WRLES results within the bow region (0.08 � x/L � 0.1). The
pressure coefficient C p is known to be relatively insensitive to Reynolds number. However,
the friction coefficient C f is significantly affected by it, and the experimental C f is scaled
to the simulation Reynolds number using the scaling law C f ∼ Re−0.2. This scaling is
strictly valid only for TBLs under ZPG conditions. The predicted C f in the parallel mid-
body region shows good agreement with the scaled experimental data, but deviations
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Figure 4. Mean flow characteristics of the TBL at the mid-body of the hull (x/L = 0.42): (a) mean streamwise
velocity profile; (b) r.m.s. of velocity fluctuations (u+

x,rms, u+
r,rms, u+

θ,rms) and Reynolds stress 〈ux ur 〉+. The red
line represents the present WRLES results, while the blue line corresponds to the WRLES results from Kumar
& Mahesh (2018) at the same ReL . The scatter points represent DNS results for a flat plate at Reθ = 1551 from
Jiménez et al. (2010a).

appear in the stern region where strong APGs are present due to the limitations of the
scaling law under non-equilibrium conditions.

Figure 4 presents the mean velocity profile, r.m.s. of velocity fluctuations (u+
x,rms, u+

r,rms,
u+

θ,rms) and Reynolds stress 〈ux ur 〉+ profile at the mid-body (x/L = 0.42). The WRLES
results (Kumar & Mahesh 2018) at the same ReL , and DNS results (Jiménez et al. 2010a)
for a flat plate at a momentum thickness Reynolds number Reθ = 1551, are shown for
comparison. As mentioned in the Introduction, an axisymmetric TBL is characterised by
slightly higher wall friction compared to a flat-plate TBL at similar Reynolds numbers.
The outer edge velocity of the boundary layer is smaller, and this behaviour is consistent
with observations reported in previous studies (Kumar & Mahesh 2018; Morse & Mahesh
2021). In terms of the r.m.s. of velocity fluctuations and Reynolds stress, the WRLES
predictions for the near-wall inner layer agree well with both the WRLES results from
Kumar & Mahesh (2018) and the DNS results for a flat plate from Jiménez et al. (2010a).
The axisymmetric BOR exhibits a more rapid decay in wall-normal turbulence intensity
compared to the flat plate. In the region where y+ > 100, the r.m.s. values of streamwise
velocity fluctuations are lower than the corresponding flat-plate results, which is also
consistent with the findings of Kumar & Mahesh (2018).

Figure 5 shows the profiles of pressure coefficients (C p), streamwise velocity (Ux ),
radial velocity (Ur ) and r.m.s. of velocity fluctuations (ux,rms, ur,rms, uθ,rms) at the stern of
the hull (x/L = 0.904 and 0.978). The WRLES results from Kumar & Mahesh (2018) at
the same ReL , and the experimental results from Huang et al. (1992) at ReL = 1.2 × 107,
are shown for comparison. Here, r0 is the local radius of the hull at the stern, and R is
the radius of the mid-body. The velocity profiles in figures 5(c,d) reveal the progressive
thickening of TBL in the stern region. Due to flow separation, the peaks of velocity
fluctuation r.m.s. in figure 5(f ) shift away from the wall. From figures 5(e,f ), it can be
observed that the predicted r.m.s. of velocity fluctuations within the boundary layer agree
well with the data of Kumar & Mahesh (2018). However, the predicted results outside
the boundary layer ((r − r0)/R > 0.75) are slightly lower than those of Kumar & Mahesh
(2018). Given that the present study focuses primarily on the flow dynamics within the
boundary layer, we did not apply additional grid refinement in the wake region. While
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Figure 5. Mean flow characteristics of the TBL at the stern of the hull, for (a,c,e) x/L = 0.904, (b,d, f ) x/L =
0.978. (a,b) Mean pressure coefficients profile; (c,d) mean streamwise (Ux ) and radial (Ur ) velocity profile;
(e, f ) r.m.s. of velocity fluctuations (ux,rms, ur,rms, uθ,rms). The WRLES results from Kumar & Mahesh (2018)
at the same ReL , and the experimental results from Huang et al. (1992) at ReL = 1.2 × 107, are shown for
comparison.

the WRLES study by Kumar & Mahesh (2018) specially targeted the wake. The grid
resolution at the stern away from the wall is lower than that in Kumar & Mahesh (2018),
which can result in higher dissipation and lower predicted r.m.s. of velocity fluctuations.
Overall, the WRLES predictions in this study agree well with existing WRLES datasets
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0 1.2

Tripping

Ux/U∞

Figure 6. Instantaneous near-wall vortical structures visualised by the Liutex vortex identification method
(Ω̃R = 0.52). The vortical structures are coloured by instantaneous streamwise velocity normalised by the
mean inflow velocity U∞.

(Kumar & Mahesh 2018) and experimental measurements (Huang et al. 1992), validating
the accuracy of the present numerical simulation.

3. Overview of flow fields and boundary layer development

3.1. Overview of the flow fields
Figure 6 shows the instantaneous three-dimensional vortex structures using the Liutex
vortex identification method (Liu et al. 2018). Iso-surfaces are extracted at threshold
Ω̃R = 0.52, with the non-dimensional streamwise velocity used for colouring. The vortex
structures illustrate that numerical tripping initiates a rapid transition from laminar to
turbulent flow, with near-wall turbulence exhibiting multi-scale characteristics. Along the
flow direction, the TBL continuously develops, and the vortex structures attached to the
hull grow rapidly, leading to an increase in boundary layer thickness. At the stern, APG
induces flow separation, generating a wake region densely populated by vortical structures.

Figure 7 presents the instantaneous flow fields around the SUBOFF model, showcasing
both the instantaneous streamwise velocity and pressure distributions. The velocity field
highlights concentration of fluctuations within the near-wall boundary layer. In the instan-
taneous pressure field shown in figure 7(b), the stagnation point at the bow corresponds to
a high-pressure region, while the stern region is characterised by an APG. The mid-body
exhibits a near ZPG, with pronounced pressure fluctuations observed throughout.

3.2. Boundary layer development
Building upon the analysis of instantaneous flow fields, we further investigate the
development of the TBL. Figure 8 presents the spatial evolution of TBL parameters along
the hull. The complex curvature variations in the stern region render traditional methods,
such as the 99 % freestream velocity criterion, inadequate for reliably quantifying
boundary layer thickness under APG. Recent studies have introduced advanced approaches
for boundary layer thickness estimation in flows with curved geometries, such as
vorticity-based (Spalart & Watmuff 1993; Coleman, Rumsey & Spalart 2018) and total-
pressure-based (Patel, Nakayama & Damian 1974; Griffin, Fu & Moin 2021; He et al.
2024a) methodologies. This work employs the total-pressure-based method, defining the
boundary layer thickness as the location where 99 % of the total pressure Cp,total is
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Figure 7. Instantaneous flow field of (a) streamwise velocity and (b) pressure.
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Figure 9. Evolution of (a) Clauser pressure gradient parameter β and (b) acceleration parameter K along the
hull.

recovered. Figure 8(a) depicts the distribution of key boundary layer integral parameters,
thickness δ, displacement thickness δ∗, and momentum thickness θ along the hull.
As the boundary layer evolves downstream, all integral thickness parameters increase
monotonically, with accelerated growth under the APG in the stern region. A slight dip
is observed at x/L ≈ 0.77, primarily due to the local FPG. Figure 8(b) presents the
distribution of local Reynolds numbers, include the friction Reynolds number Reτ =
δuτ /ν and momentum thickness Reynolds number Reθ = θU∞/ν. In addition, the ratios
of boundary layer thicknesses δ/δ∗, δ/θ and shape factor H = δ∗/θ are shown in figures
8(c,d), respectively. All the parameters are highly sensitive to FPG and APG. At the
parallel mid-body, H is approximately 1.4, whereas at the stern, H rapidly increases from
1.3 under FPG conditions to nearly 1.7 under APG conditions.

Figure 9 shows the evolution of Clauser pressure gradient parameter β (Clauser 1954)
and acceleration parameter K (Kline et al. 1967) along the hull, defined as

β = δ∗

τw

dP

dx
, K = ν

U 2
e

dUe

dx
, (3.1)

where the β parameter can be defined using either Pe or Pw, corresponding to the
local static pressure at the edge of the boundary layer and on the wall, respectively.
Figure 9(a) reveals a markedly stronger near-wall pressure gradient compared to that at the
boundary layer edge, consistent with the results reported by Morse & Mahesh (2021). The
pressure gradient around the SUBOFF model exhibits a complex spatial evolution, with
alternating regions of APG and FPG along the hull. Beyond x/L > 0.3, the influence of the
numerical trip becomes negligible, and a near ZPG is observed over most of the parallel
mid-body. Notably, a small FPG region is observed before the APG zone at the stern,
approximately within 0.71 < x/L < 0.78. In this region, the flow accelerates, with the
acceleration parameter K > 0 peaking at x/L ≈ 0.75. Due to the FPG, the local boundary
layer thickness decreases, as shown in figure 8(a). Subsequently, for 0.79 < x/L < 0.94,
the flow experiences a strong APG due to the contraction of the body shape. Beyond
x/L ≈ 0.94, the streamwise concave curvature induces another FPG region.

Figure 10 shows the evolution of transverse curvature parameters δ/r0 and r+
0 along the

hull. As noted in the Introduction, these parameters govern transverse curvature effects.
For large local curvature radius r0, transverse curvature minimally impacts boundary
layer dynamics, primarily influencing the outer layer (Piquet & Patel 1999). For small
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Figure 10. Evolution of transverse curvature parameters (δ/r0 and r+
0 ) along the hull.

r0, particularly when δ/r0 > 1, transverse curvature alters TBL behaviour, elevating wall
friction (Alam 2020) and attenuating low-frequency wall pressure fluctuations (Neves
et al. 1994). As the flow develops downstream, δ/r0 continuously increases. In the FPG
region, rising local wall friction drives r+

0 upwards. Conversely, in the APG region, r+
0

rapidly decreases.

4. Analysis of wall pressure fluctuations
In this section, we study the spectral and statistical characteristics of wall pressure
fluctuations on the SUBOFF model. Due to the lack of publicly available experimental
or high-fidelity WRLES data for the SUBOFF model, the predicted results are compared
with the WRLES (Cohen & Gloerfelt 2018), DNS (Na & Moin 1998), experimental mea-
surement (Schewe 1983) and empirical models (Goody 2004; Rozenberg et al. 2012; Hu &
Herr 2016; Lee 2018) for flat-plate TBLs. Figure 11 presents the wall pressure fluctuation
frequency spectra at the mid-body of the hull (x/L = 0.5). The one-sided power spectral
density (PSD) was computed by applying a discrete Fourier transform (DFT) to single-
point fluctuating pressure time-history data. To mitigate spectral leakage, the time series
(25 600 samples) was divided into three overlapping segments with 50 % overlap, and a
Hanning window was applied. The spectra were further smoothed using circumferential
averaging across azimuthally equivalent positions on the axisymmetric hull.

As shown in figure 11, the amplitude of wall pressure spectra initially rises with
frequency before decaying, exhibiting a characteristic broadband peak. The spectra align
closely with DNS (Na & Moin 1998), WRLES (Cohen & Gloerfelt 2018) and experiment
(Schewe 1983) data. In the inertial subrange (ωδ∗/Ue ≈ 1.5−4), the spectral levels in the
present study are slightly lower than those in Cohen & Gloerfelt (2018) due to the smaller
Reθ . At higher frequencies (ωδ∗/Ue > 4), however, the spectral levels exceed those of
Cohen & Gloerfelt (2018), with a slower decay rate. The discrepancy stems from the finer
streamwise grid resolution at x/L = 0.5, where �x+ = 24, compared to �x+ = 37.6 used
by Cohen & Gloerfelt (2018). The reduced grid spacing better resolves high-frequency
fluctuations, mitigating numerical dissipation and preserving spectral energy at smaller
scales. In terms of empirical spectral models, the current results align most closely with
the Goody model (Goody 2004) and Lee model (Lee 2018) in the low-frequency region,
while the Hu model (Hu & Herr 2016) shows the poorest agreement. The Rozenberg
model (Rozenberg et al. 2012) slightly overestimates spectral levels at low frequencies,
and underestimates spectral levels at high frequencies, which is consistent with the
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Figure 11. Wall pressure fluctuations frequency spectra at the mid-body of the hull (x/L = 0.5). The black
solid line represents the results of present WRLES for axisymmetric boundary layers at Reθ = 1631. The red
circles correspond to the WRLES results by Cohen & Gloerfelt (2018) for ZPG flat-plate flow at Reθ = 1693,
while the green triangles in (a) and (b) represent DNS results by Na & Moin (1998) and experimental
measurement by Schewe (1983) for ZPG flat-plate flow at Reθ = 1400, respectively. The dashed lines in four
different colours represent empirical models for flat-plate wall pressure fluctuation spectra.

observations in a previous study (Lee 2018). Furthermore, the high-frequency spectral
levels predicted by the LES are systematically lower than those from DNS, experiment
and empirical models, attributable to energy loss caused by the SGS model’s inherent
dissipation.

Based on the validation results, the spatial evolution of wall pressure fluctuations
along the hull is analysed in detail. After that, we further investigate the scaling laws
and space–time correlations for the non-equilibrium axisymmetric boundary layer under
spatially varying pressure gradients, elucidating the interplay between pressure gradients
and curvature effects.

4.1. Evolution of wall pressure fluctuations
Figure 12 illustrates the streamwise evolution of the wall pressure r.m.s. normalised by
reference dynamic pressure q∞, local dynamic pressure qe, local wall shear stress τw,
and local maximum magnitude of Reynolds shear stress τmax . Here, q∞ = 0.5ρU 2∞ and
qe = 0.5ρU 2

e , and τmax is defined as

τmax = −ρ〈usun〉max , (4.1)

where us and un are obtained from axial velocity ux and radial velocity ur through the
coordinate transformation

us = ux cos α − ur sin α, un = ux sin α + ur cos α, (4.2)

in which s and n represent the tangential and normal directions relative to the wall,
respectively, and α is the angle between the wall tangential direction and the axial direction
of SUBOFF.

As the flow moves downstream, the r.m.s. of the wall pressure fluctuations follows a
non-monotonic trend, characterised by an initial decrease, followed by an increase, and
a subsequent decrease. When normalised by qe, the r.m.s. values diminish more sharply
in FPG regions but amplify more rapidly in APG regions. This behaviour stems from
competing mechanisms: FPG suppresses wall pressure fluctuations while increasing outer
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Figure 12. Wall pressure r.m.s. values normalised by: (a) reference dynamic pressure q∞ and local dynamic
pressure qe; (b) local wall shear stress τw and local maximum magnitude of Reynolds shear stress τmax .

edge velocity Ue, whereas APG intensifies wall pressure fluctuations while reducing Ue.
Consequently, qe proves suboptimal for scaling wall pressure fluctuations under spatially
varying pressure gradients.

In contrast, the wall shear stress τw appears to be a more effective scaling parameter for
wall pressure fluctuations. For a flat-plate TBL, the ratio pw,rms/τw increases monotoni-
cally with Reτ . Prior studies (Farabee & Casarella 1991; Abe, Matsuo & Kawamura 2005;
Cohen & Gloerfelt 2018) established an empirical relationship for ZPG flows:(

pw,rms/τw

)2 = 6.5 + 1.86 ln(Reτ /333), (4.3)

suggesting Reynolds number dependence. However, in the aft section of the parallel
mid-body (0.5 < x/L < 0.7), the ratio pw,rms/τw does not exhibit a slight increase with
Reτ . Instead, it remains approximately constant at 2.1. This behaviour can be attributed to
the influence of a mild FPG. As shown in figure 9, the Clauser pressure gradient parameter
β slightly decreases in the range 0.5 < x/L < 0.7, while the acceleration parameter K
gradually increases. Additionally, it is noteworthy that the value pw,rms/τw ≈ 2.1 over
the parallel mid-body is slightly lower than experimental observations of ZPG TBL in
the corresponding Reynolds number range (Sillero, Jiménez & Moser 2013), which can
be attributed to the influence of transverse curvature. As discussed in the Introduction,
transverse curvature effects can lead to increased wall shear stress and a slight suppression
of wall pressure fluctuations.

In the range 0.86 < x/L < 0.9, pw,rms and τw decline concurrently, stabilising at a
plateau pw,rms/τw ≈ 6. As shown in figure 9, this plateau corresponds to the APG-
dominant regime, where βe peaks before decreasing. The streamwise curvature is
approximately zero, and the pressure gradient remains relatively stable in this region.
A similar trend was observed experimentally by Balantrapu et al. (2023) for flow over
BOR under APG. In their study, the stern region of the BOR experienced a nearly
uniform APG without streamwise curvature, resulting in pw,rms/τw ≈ 7. They concluded
that wall-friction-induced motion remains a dominant contributor to pressure fluctuations
in attached flows, even under strong APG. The present numerical results align with
this observation, though the simulated ratio pw,rms/τw ≈ 6 is slightly lower than the
experimental value. Two factors can explain this discrepancy: the Reynolds number effects
and the pressure gradient strength. The Reynolds number ReL = 1.1 × 106 in the study
is lower than the experimental ReL = 1.8 × 106. The local friction Reynolds number
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Figure 13. Schematic diagram of the flow region division at the stern.

Reτ is also smaller. Moreover, the APG in this study (βe = 6−8) is weaker than in
the experiments (βe = 11−16). For axisymmetric APG flows, pw,rms/τw can correlate
with the local pressure gradient parameters (such as βe), reflecting the boundary layer’s
proximity to equilibrium. As noted by Cohen & Gloerfelt (2018), equilibrium boundary
layers require a near-constant streamwise pressure gradient to achieve self-similarity,
enabling scaling via τw. However, the relationship pw,rms/τw ≈ 6 breaks down when
streamwise curvatures and strong streamwise pressure gradient variations present. In non-
equilibrium flows (e.g. 0.79 < x/L < 0.85, where βe increases rapidly), pw,rms/τw rises
sharply from 1.5 to 6. Beyond x/L > 0.9, transverse and concave streamwise curvature
effects cause βe to decrease abruptly, reducing pw,rms/τw.

Among the three pressure scaling parameters, the local maximum magnitude of the
Reynolds shear stress τmax appears to be the most effective scaling parameter for wall
pressure fluctuations. As discussed in the Introduction, prior studies (Simpson et al. 1987;
Na & Moin 1998; Abe 2017; Schatzman & Thomas 2017) have highlighted the significant
role of the turbulent shear term in governing wall pressure fluctuations within APG TBLs.
These works proposed scaling wall pressure fluctuations using the maximum turbulent
shear stress under APG conditions. However, the flow in the present configuration
demonstrates greater complexity due to the continuous variation in streamwise curvature
along the stern part, which includes both convex and concave curvatures. This curvature
variation is further coupled with an evolving transverse curvature. In the APG region
without streamwise curvature (0.86 < x/L < 0.9), τw is demonstrated to be an effective
scaling parameter. However, across the entire APG region (0.79 < x/L < 0.94), the
variation in pw,rms/τmax (ranging from 1.7 to 2.7) is significantly smaller compared to
pw,rms/qe (ranging from 0.0053 to 0.0124) and pw,rms/τw (ranging from 1.5 to 6).

Due to the coexistence of convex and concave streamwise curvatures, the flow in the
stern region features alternating zones of FPGs and APGs. To facilitate systematic analysis,
based on the pressure gradient distribution in figure 9 and the r.m.s. of the wall pressure
fluctuations in figure 12, the stern boundary layer is further divided into six distinct
regions, as shown in figure 13.

(i) FPG-1 (0.71 < x/L < 0.75): the flow gradually transitions from ZPG to FPG,
reaching the peak of the FPG at x/L ≈ 0.75.

1016 A28-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
42

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10427


Journal of Fluid Mechanics

(ii) FPG-2 (0.75 < x/L < 0.79): the FPG gradually decreases and returns to the ZPG at
x/L ≈ 0.79.

(iii) APG-1 (0.79 < x/L < 0.85): this region is characterised by convex streamwise
curvature, where the flow transitions from ZPG to APG.

(iv) APG-2 (0.85 < x/L < 0.90): the streamwise curvature is unchanged, with the
wall pressure r.m.s. and wall shear stress exhibiting a linear relationship, i.e.
pw,rms/τw ≈ 6.

(v) APG-3 (0.90 < x/L < 0.94): the flow is approaching a concave streamwise curvature,
with APG gradually decreasing and eventually returning to ZPG.

(vi) FPG-3 (0.94 < x/L < 0.99): due to the change in streamwise curvature, the flow
transitions back to FPG again, with flow separation occurring very close to the stern.

Figure 14 illustrates the evolution of wall pressure fluctuations frequency spectra at the
stern, normalised by reference pressure pref = 20 μPa, with the fluid density specified
as 1.225 kg m−3. The inset displays the corresponding pre-multiplied spectra ω φpp(ω),
where the x-axis employs a logarithmic scale, and the y-axis uses a linear scale. This
ensures that the area under the pre-multiplied curve corresponds to the total energy of wall
pressure fluctuations. Figure 15 further visualises the spatially continuous pre-multiplied
power spectra as contour plots, highlighting their temporal and spatial evolution. In
figure 14(a), a mild strengthening of the FPG correlates with a modest reduction in
spectral levels at low-to-mid frequencies (ω < 1000 rad s−1), and a slight elevation at high
frequencies (ω > 1000 rad s−1). This trend suggests that stronger FPG suppresses large-
scale turbulent structures while amplifying small-scale fluctuations. In figure 14(b), as
the FPG weakens and transitions toward a ZPG in region FPG-2, spectral levels decrease
uniformly across all frequencies.

Subsequently, the TBL encounters a strong APG induced by the convex streamwise
curvature. While prior studies (Na & Moin 1998; Rozenberg et al. 2012; Cohen & Gloerfelt
2018; Lee 2018) have examined the isolated effects of APG on wall pressure fluctuations,
conclusively demonstrating that APG amplifies low-frequency energy and attenuates high-
frequency components, the dynamic evolution of APG (emerges, intensifies and decays)
in this work reveals a more nuanced response. As shown in figures 14(c) and 14(d), the
spectra exhibit a distinct two-stage evolution: a sharp rise in low- and mid-frequency
energy during APG onset, followed by progressive attenuation of mid- and high-frequency
energy as the APG stabilises. In the APG-1 region, the parameter βe increases rapidly from
1.05 to 5.2. Correspondingly, figure 14(c) reveals a sharp escalation in the low- and mid-
frequency spectral energy (ω < 1000 rad s−1), while the attenuation of high-frequency
components (ω > 1000 rad s−1) remains relatively subdued at this stage. However, as βe
reaches its peak and gradually begins to decline, a rapid reduction in spectral energy
emerges across the mid- and high-frequency range (ω > 150 rad s−1), consistent with
experimental observations (Balantrapu et al. 2023).

In the APG-3 region, as shown in figure 14(e), βe gradually decreases due to the
introduction of concave streamwise curvature. A decay in wall pressure fluctuations is
observed across the entire frequency range. Notably, the reduction of APG does not lead
to a replenishment of high-frequency spectral levels, which can be attributed to the shifting
of turbulent structure away from the wall. This phenomenon will be further discussed later.
Downstream in the FPG-3 region, shown in figure 14(f ), the concave streamwise curvature
locally enhances the FPG, accelerating the flow and amplifying high-frequency wall
pressure fluctuations through increased small-scale turbulence production. Eventually,
flow separation occurs beyond x/L > 0.99 as the streamwise curvature transitions from
concave to convex.
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Figure 14. Evolution of wall pressure fluctuation frequency spectra at the stern: (a) FPG-1, (b) FPG-2, (c)
APG-1, (d) APG-2, (e) APG-3, (f ) FPG-3. The inset shows corresponding pre-multiplied form ω φpp(ω). The
SUBOFF model and probe locations are displayed at the top.

4.2. Scaling laws of wall pressure fluctuations
To identify the dominant contributors to wall pressure fluctuations across different
frequency bands, it is critical to examine the scaling law governing these fluctuations in
axisymmetric boundary layers with varying pressure gradient. Over the past few decades,
numerous scaling approaches (Schloemer 1966; Choi & Moin 1990; Farabee & Casarella
1991; Keith et al. 1992; Na & Moin 1998) have been proposed. However, owing to
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Figure 15. Contour of wall pressure fluctuations pre-multiplied energy frequency spectra at the stern.

the multi-scale nature of turbulence, no universal scaling law has been established that
achieves consistent collapse across all frequency ranges.

Figure 16 illustrates the non-dimensional PSD of wall pressure fluctuations under
different scaling methods in the stern region. Six common scaling methods have been
examined: outer scaling (qe, δ and Ue), inner scaling (τw, δv and uτ ), mixed scaling (τw, δ

and Ue), Zagarola–Smits scaling (τw, δ2/δ∗ and Ue), Reynolds shear stress scaling (τmax ,
δ and Ue), and displacement thickness scaling (τmax , δ∗ and Ue). As shown in figure 14,
the wall pressure spectra exhibit a generally monotonic trend within each flow region.
Therefore, we select the start and end points of each region for comparison, which better
highlights the variation of wall pressure fluctuations across different stern regions under
various scaling laws. Figure 16 clearly illustrates that when both varying streamwise and
transverse curvatures are present, conventional inner or mixed scaling methods completely
fail. Among all the scaling approaches, normalisation using the local maximum Reynolds
shear stress yields the best collapse, consistent with the trend observed in figure 12. Across
the entire stern region, the variation of pw,rms/τmax is minimal. This underscores the
pivotal role of τmax in governing wall pressure fluctuations, particularly in non-equilibrium
boundary layers. Notably, the Zagarola–Smits scaling performs poorly in the stern region
of the SUBOFF model, primarily because δ and δ∗ are not equivalent length scales, as
their ratio varies with the pressure gradient parameter βe (figure 8c). Compared to the
displacement thickness δ∗ scaling (figure 16f ), the boundary layer thickness δ (figure 16e)
is clearly a more effective scaling parameter.

Figure 17 illustrates the non-dimensional PSD of wall pressure fluctuations under
different scaling methods in the APG-2 region (0.85 < x/L < 0.90). In this region, the
streamwise curvature is approximately zero, and the r.m.s. wall pressure exhibits a linear
relationship with the wall shear stress, specifically pw,rms/τw ≈ 6. This relationship
closely resembles the experimental results studied by Balantrapu et al. (2023) in their
BOR experiment. Among the selected scaling methods, the mixed scaling (τw, δ and Ue)
achieves an excellent collapse of the wall pressure fluctuation spectra across the entire
frequency range. This finding is in complete agreement with the experimental conclusions
of Balantrapu et al. (2023), confirming τw, δ and Ue as the optimal scaling parameters in
this flow regime. Notably, the scaling retains its effectiveness within the viscous region
(figure 17b), consistent with experimental observations. The viscous time scale ν/u2

τ

exhibits dependence on the outer time scale δ/Ue, suggesting coupling between inner
viscous dynamics and outer flow scales. Additionally, scaling using the local maximum
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Figure 16. Non-dimensional PSD of wall pressure fluctuations under different scaling methods: (a) outer
scaling (qe, δ and Ue); (b) inner scaling (τw , δv and uτ ); (c) mixed scaling (τw , δ and Ue); (d) Zagarola–Smits
scaling (τw , δ2/δ∗ and Ue); (e) Reynolds shear stress scaling (τmax , δ and Ue); (f ) displacement thickness
scaling (τmax , δ∗ and Ue).

magnitude of the Reynolds shear stress τmax (figure 17e) also collapses the spectra across
the entire frequency range.

Figures 14 and 15 demonstrate that the strong APG at the stern drives abrupt changes
in the wall pressure fluctuation spectra within localised regions. In the APG-1 region
shown in figure 14(c), the low-frequency component of wall pressure fluctuations increases
sharply by approximately 10 dB, while the APG-3 region exhibits a broadband reduction in
spectral energy levels across all frequencies. For the two APG regions, we also conducted
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Figure 17. Non-dimensional PSD of wall pressure fluctuations under different scaling methods in the APG-
2 region (0.85 < x/L < 0.90): (a) outer scaling (qe, δ and Ue); (b) inner scaling (τw , δv and uτ ); (c) mixed
scaling (τw , δ and Ue); (d) Zagarola–Smits scaling (τw , δ2/δ∗ and Ue); (e) Reynolds shear stress scaling (τmax ,
δ and Ue); (f ) displacement thickness scaling (τmax , δ∗ and Ue).

additional and detailed comparisons of these scaling methods in Appendix B. The results
further confirm the significant advantage of scaling based on the Reynolds shear stress.

4.3. Space–time characteristics of wall pressure fluctuations
Since turbulence is a spatiotemporal coupled problem, performing a one-dimensional
spectral analysis of wall pressure fluctuations solely in the time domain inevitably results
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Figure 18. Space–time contours of wall pressure fluctuations along the streamwise direction in the mid-body
region (x/L = 0.3−0.7) of the hull.

in the loss of spatial information. In this subsection, we investigate the space–time char-
acteristics of wall pressure fluctuations by analysing their wavenumber–frequency spectra
and space–time correlation functions. Analysing wavenumber–frequency spectra typically
requires the assumption of streamwise uniformity. However, the flow over the SUBOFF
stern exhibits significant streamwise pressure gradient variations. The APG boundary
layers, in particular, are strongly influenced by upstream flow history (Bobke et al. 2017)
and the specific manner of gradient application, complicating direct comparisons with
datasets derived from simpler configurations. To mitigate this, our wavenumber–frequency
spectral analysis is restricted to the parallel mid-body section, where the conventional
assumption of negligible streamwise boundary layer thickening remains valid.

Figure 18 presents the space–time contour (spanning half the flow-past time) of wall
pressure fluctuations along the streamwise direction in the mid-body region (x/L =
0.3−0.7) of the hull. The fluctuations are normalised by the wall shear stress τw. The
contours reveal alternating high- and low-pressure regions, clearly illustrating the convec-
tion and distortion of vortical structures. According to Taylor’s frozen-flow hypothesis
(Taylor 1938), the ‘world lines’ of these pressure fluctuations should form perfectly
straight trajectories. However, significant deviations from this idealised behaviour are
evident, arising from random sweeping effects (Kraichnan 1964; Tennekes 1975) caused
by large-scale structures and nonlinear interactions among small-scale turbulent motions.

To compute the wavenumber–frequency spectra of wall pressure fluctuations, a standard
methodology involves deploying a streamwise-aligned array of pressure probes to capture
space–time fluctuating pressure signals. These signals are stored in a two-dimensional
matrix p(x = m�X, t = n�T ), where m = 1, 2, 3, . . . , M and n = 1, 2, 3, . . . , N . Here,
�X denotes the spatial interval between adjacent probes, and �T represents the temporal
sampling interval. In this study, the probe spacing �X matches the computational grid
resolution, while �T corresponds to the simulation time step. The acquired pressure data
(25 600 time steps) are segmented into 19 overlapping blocks with 50 % overlap to enhance
statistical convergence. To mitigate spectral leakage, each segment is multiplied by a
Hanning window. Four independent probe arrays, spaced uniformly along the streamwise
direction, are circumferentially averaged to improve signal-to-noise ratios. The windowed
space–time signals are then transformed into the wavenumber–frequency domain via a
two-dimensional discrete Fourier transform:

p̂(kx , ω) =
√

8/3
M N

M∑
m=1

N∑
n=1

w(n�T ) p(m�X, n�T ) × exp−i(m�X kx−n�T ω), (4.4)
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Figure 19. (a) Wavenumber–frequency spectra of wall pressure fluctuations at mid-body (x/L = 0.3−0.7) of
SUBOFF, for present WRLES. The result is compared with semi-empirical models for the flat-plate TBL:
(b) Corcos model; (c) Chase I model; (d) Witting model.

where the factor
√

8/3 compensates for the amplitude attenuation induced by the Hanning
window w(t), preserving the r.m.s. value of p. The wavenumber–frequency spectrum
φpp(kx , ω) is obtained by ensemble-averaging the squared Fourier coefficients:

φpp(kx , ω) = p̂(kx , ω) p̂∗(kx , ω)

�kx�ω
, (4.5)

where �kx = 2π/(M�X) and �ω = 2π/(N�T ) define the streamwise wavenumber and
frequency resolutions, respectively. This procedure fully maps the fluctuating pressure
field from the space–time domain to the wavenumber–frequency domain.

Figure 19 presents the two-dimensional wavenumber–frequency spectra of wall pressure
fluctuations in the mid-body region (x/L = 0.3−0.7) of the hull. The results are compared
with semi-empirical wavenumber–frequency spectral models for flat-plate TBLs (Corcos
1964; Chase 1980; Witting 1986). The details of these models are provided in Appendix C.
Similar to one-dimensional spectral models, wavenumber–frequency spectral models also
require mean boundary layer parameters as inputs. Notably, the Corcos model (Corcos
1964) additionally depends on a self-spectral model. In this study, the Goody model
(Goody 2004) is selected as the input for the Corcos model. Due to the central symmetry
of the wavenumber–frequency spectrum, only the first quadrant (ω > 0, kx > 0) is shown.
Figure 19(a) reveals that spectral energy at any frequency concentrates near the convection
wavenumber kc, forming a distinct ‘convective ridge’. Contrary to Taylor’s frozen-flow
hypothesis (Taylor 1938), the convective ridge broadens with increasing frequency and
wavenumber – a phenomenon termed Doppler broadening. The spectral widening reflects
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the distortion of turbulent eddies, driven by the random sweeping effects of large-scale
structures on small-scale eddies and nonlinear interactions among the small-scale eddies.
Additionally, the highest spectral energy resides in the low-frequency, low-wavenumber
regime, decaying continuously with increasing ω and kx , in agreement with experimental
(Abraham & Keith 1998), DNS (Choi & Moin 1990; Yang & Yang 2022), LES (Francis
et al. 2023; Fan et al. 2024b) and semi-empirical (Corcos 1964; Chase 1980; Witting 1986)
results. A notable feature is the contraction of spectral contours towards (kx , ω) = (0, 0) as
kx approaches zero. This behaviour, linked to the rapid source term in the pressure Poisson
equation (Yang & Yang 2022), indicates that the wall pressure spectrum initially rises and
then declines with increasing kx – a trend consistent with the one-dimensional spectra in
figure 11.

The comparison in figure 19 demonstrates that the high-frequency, high-wavenumber
regions of the wavenumber–frequency spectrum from the present WRLES exhibit
lower spectral levels than those predicted by semi-empirical models. As noted earlier,
this discrepancy stems primarily from streamwise grid resolution limitations and the
dissipative effects of the SGS model. Among the three models, the Corcos model (Corcos
1964) significantly overestimates spectral energy away from the convective ridge, likely
due to its simplified treatment of spatiotemporal decorrelation mechanisms. Conversely,
the Witting model (Witting 1986) underestimates the spectral width, failing to adequately
capture the random sweeping effects and distortion dynamics of small-scale eddies. In
contrast, the Chase I model (Chase 1980) shows the closest agreement with the WRLES
results, accurately reproducing both the convective characteristics and spectral broadening
trends of the wall pressure fluctuations.

To enable quantitative comparison of the wavenumber–frequency spectra, figure 20
shows wavenumber-dependent spectral slices at selected frequencies ωδ/(uτ =
100, 150, 200, 250) in wavenumber–frequency spectra. The comparison reveals that all
three semi-empirical models accurately predict the convective peak locations across these
frequency bands. Among them, the Chase I model (Chase 1980) shows the closest
agreement with the present WRLES results, particularly in the low-wavenumber regime.
Notably, the convective ridge in the WRLES spectra exhibits asymmetry about the peak –
a feature consistent with prior observations in flat-plate TBLs and turbulent channel
flows (Abraham & Keith 1998; Viazzo, Dejoan & Schiestel 2001; Francis et al. 2023;
Fan et al. 2024b). In summary, transverse curvature effects exert minimal influence
on wall pressure fluctuations in the parallel mid-body region compared to flat-plate
configurations. Consequently, the Chase I model remains applicable for rapid prediction
of wavenumber–frequency spectra in this region, offering practical utility for engineering
applications.

Another point worth noting is the convection velocity Uc of wall pressure fluctuations,
which is the slope of the convective ridge in the wavenumber–frequency spectra, defined
as (Wills 1971)

Uc(ω) = ω/kc(ω), (4.6)

where kc is the convection wavenumber, and(
∂φpp(kx, ω)

∂kx

)
kx=kc(ω)

= 0. (4.7)

Figure 21 shows the frequency-dependent convection velocity of wall pressure
fluctuation. The results are compared with experiment measurement (Abraham & Keith
1998) and the Smol’yakov model (Smol’yakov 2006) for a flat-plate TBL. The model
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Figure 20. Wavenumber-dependent spectra of wall pressure fluctuations at various frequencies: (a)
ωδ/uτ = 100, (b) ωδ/uτ = 150, (c) ωδ/uτ = 200, (d) ωδ/uτ = 250.

expression is given as

Uc

U∞
= 1.6(ωδ∗/U∞)

1 + 16(ωδ∗/U∞)2 + 0.6. (4.8)

The convection velocity of present WRLES reaches its peak at ωδ∗/U∞ = 0.3. Then, as
frequency increases, the convection velocity decreases from approximately 0.8U∞ at low
frequencies to 0.7U∞ at high frequencies, consistent with flat-plate TBL studies (Abraham
& Keith 1998; Smol’yakov 2006).

Figure 22 presents contour plots of the space–time correlation functions of wall pressure
fluctuations at key streamwise locations. Spatial separation is normalised by the freestream
velocity U∞ and boundary layer thickness δmid at the parallel mid-body (x/L = 0.5). The
space–time correlation function is defined as

Rpp(s, t, �s, �t) = 〈p′(s, t) p′(s + �s, t + �t)〉√〈
p′2(s, t)

〉√〈
p′2(s + �s, t + �t)

〉 , (4.9)

where �s and �t are the streamwise spatial and temporal separations, respectively. The
convection velocity of wall pressure fluctuations is derived from the slope d(�s)/d(�t).
Figures 22(a–f ) correspond to the ZPG, the FPG, the onset of the APG region, the peak
of the APG region, the decline of the APG region, and the end of the APG region,
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Figure 21. Frequency-dependent convection velocity of wall pressure fluctuations.
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Figure 22. Contours of two-point correlation of wall pressure fluctuations as functions of streamwise spatial
and temporal separations: (a) x/L = 0.50, (b) x/L = 0.76, (c) x/L = 0.80, (d) x/L = 0.85, (e) x/L = 0.88,
(f ) x/L = 0.95. The solid lines represent contours ranging from 0.2 to 0.95 with increments of 0.15, while the
dashed line denotes the contour at −0.1.
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Figure 23. Contours of two-point correlation of wall pressure fluctuations as a function of transverse spatial
and temporal separations: (a) x/L = 0.50, (b) x/L = 0.76, (c) x/L = 0.80, (d) x/L = 0.85, (e) x/L = 0.88, (f )
x/L = 0.95. Contour levels are from 0.2 to 0.9 with increments of 0.1.

respectively. The APG markedly reduces convection velocities, while the FPG enhances
them. Streamwise coherence exhibits strong sensitivity to pressure gradient magnitude.
In the APG onset region (figure 22c), the streamwise correlation scale decreases
rapidly downstream, with further reductions under strengthening APG. Conversely, FPG
significantly amplifies streamwise coherence, particularly at large separations (evident in
low-level contours), aligning with prior studies (Na & Moin 1998; Caiazzo et al. 2023). As
the APG weakens (figures 22d–f ), the streamwise correlation scale recovers, accompanied
by contour broadening. This recovery reflects an increase in the correlation time scale of
wall pressure fluctuations. Notably, at x/L = 0.85, where the APG is strongest, negative
contours are observed on both sides of the convective ridge (figure 22d). This phenomenon
will be discussed further in figure 24.

Figure 23 presents two-point correlation contours of wall pressure fluctuations as
functions of transverse spatial and temporal separations. Unlike streamwise coherence,
transverse coherence exhibits weaker sensitivity to pressure gradients. Under mild FPG
(figure 23b), the contours remain nearly unchanged compared to the ZPG (figure 23a).
However, with increasing APG (figures 23c,d), the transverse correlation scale grows as
contours elongate spatially – a trend consistent with prior flat-plate and aerofoil studies
(Na & Moin 1998; Caiazzo et al. 2023). Notably, as the APG diminishes downstream
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Figure 24. Two-point correlation coefficients of wall pressure fluctuations as a function of (a,b) streamwise
separation and (c,d) transverse separation in regions (a,c) APG-1, (b,d) APG-2.

(figure 23d–f ), the transverse integral scale continues to increase rather than decrease.
This behaviour aligns with observations on another LES study of BOR (Zhou et al. 2020),
but contrasts with flat-plate conclusions (Na & Moin 1998; Caiazzo et al. 2023), which can
be attributed to the contraction of geometry at the stern. As the turbulent structures and
shear layer motions shift away from the wall, larger outer-layer structures, characterised
by longer correlation lengths, dominate the coherence of wall pressure fluctuations. This
aligns with the simultaneous growth of streamwise and transverse correlation scales
(figures 22(d–f ) and 23(d–f )) and the shift of spectral energy to lower frequencies (figure
14d,e).

In terms of the effect of transverse curvature, APG and the contraction of the SUBOFF
stern’s geometry drive rapid boundary layer thickening, amplifying the curvature ratio
δ/r0 to ∼ 6 : 1 at x/L = 0.95 (figure 10). Although transverse curvature is generally
considered to have a minor effect on wall pressure fluctuations in previous studies
(Willmarth & Yang 1970; Neves et al. 1994; Piquet & Patel 1999), its influence becomes
non-negligible when δ/r0 is relatively large. Interestingly, the observed increase in
correlation scales with increasing transverse curvature at the stern contradicts the findings
of Willmarth & Yang (1970) regarding transverse curvature effects. Their study concluded
that transverse curvature leads to smaller streamwise and transverse integral scales,
suggesting that pressure-generating motions occur closer to the wall compared to a flat
plate. However, the experiments by Willmarth & Yang (1970) were conducted on a straight
cylinder, with the flow approximately in a ZPG state. For the SUBOFF geometry, the flow
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Figure 25. Instantaneous non-dimensional wall pressure fluctuation field plotted versus rθ and x .

history near the stern shows great difference due to the distinct geometric configuration.
The influence of streamwise curvature variations seems to be more significant than that
of transverse curvature. To isolate the influence of transverse curvature alone, additional
simulation cases would be required.

Figure 24 presents two-point correlation coefficients of wall pressure fluctuations as
functions of streamwise separation and transverse separation in the APG-1 and APG-2
regions. Under APG conditions, the streamwise correlation curves (figures 24a,b) exhibit
distinct negative lobes flanking the central positive peak at �s/δmid = ±0.2, which is
consistent with the observation in figure 22(d). Additionally, the streamwise integral length
scales of wall pressure fluctuations are smaller than the transverse counterparts, which can
also be observed in the instantaneous non-dimensional wall pressure fluctuation field. As
shown in figure 25, the amplitude of wall pressure fluctuations increases rapidly within the
stern APG region, accompanied by a sharp reduction in the streamwise integral scale. As
the APG weakens, the streamwise integral scale gradually recovers. Beyond x/L > 0.9, it
is evident that wall pressure fluctuations exhibit larger streamwise and transverse scales.
This observation is consistent with the analysis above, primarily attributed to turbulent
structure and the local maximum Reynolds shear stress shifting away from the wall. The
structure of wall pressure fluctuations in this region tends to more isotropic.

5. Conclusions
In this study, wall-resolved large-eddy simulations (WRLES) of flow over an axisymmetric
body of revolution (BOR) (the DARPA SUBOFF bare model) at ReL = 1.1 × 106 are
performed within a finite-volume framework. To fully resolve near-wall small-scale
vortices, we employ a computational grid exceeding 540 million cells. Extensive validation
of the numerical methodology is conducted, and the results demonstrate great agreement
with experimental data (Huang et al. 1992) and prior WRLES studies (Kumar & Mahesh
2018). In the parallel mid-body region, wall pressure fluctuations show close alignment
with planar experiment (Schewe 1983), DNS (Na & Moin 1998), LES (Cohen & Gloerfelt
2018) and empirical models (Chase 1980; Goody 2004; Lee 2018). Building on this, we
investigate scaling laws and space–time correlations of wall pressure fluctuations at the
stern. The key findings and conclusions are as follows.

Due to the coexistence of convex and concave streamwise curvatures, the flow over
the SUBOFF model in the stern region features alternating zones of favourable and
adverse pressure gradients (FPGs and APGs), which exhibits greater complexity than the
BOR configuration studied experimentally by Balantrapu et al. (2023). By synthesising
streamwise curvature and pressure gradient effects, the stern flow is divided into six
distinct regions. In the APG-2 region (straight contraction segment, 0.85 < x/L < 0.90),
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the r.m.s. value of wall pressure fluctuations decreases alongside the wall shear stress,
maintaining a ratio pw,rms/τw = 6. This aligns with the Balantrapu et al. (2023)
experimental observations, but yields a lower ratio than their reported pw,rms/τw = 7.
The ratio pw,rms/τw is considered to be influenced by the local Reynolds number and the
pressure gradient intensity. Further investigation is required to establish a comprehensive
scaling framework accounting for these effects.

The present study also finds that the constant pw,rms/τw ratio holds only for
equilibrium boundary layers under steady APG. In non-equilibrium regions with strong
streamwise curvature or rapidly varying APG (APG-1 and APG-3), this relationship
breaks down, and conventional inner or inner–outer variable scaling methods become
largely ineffective. Neither the local dynamic pressure qe nor the wall shear stress τw

serves as a suitable pressure scale. Instead, scaling wall pressure fluctuations using
the local maximum Reynolds shear stress −ρ〈usun〉max achieve significantly improved
collapse across the entire stern region. This underscores near-wall turbulent shear motion
as the dominant contributor of wall pressure fluctuations in the non-equilibrium region,
and establishes −ρ〈usun〉max as a robust pressure scaling parameter. The magnitude
and location of −ρ〈usun〉max significantly influence the spectral levels of wall pressure
fluctuations across different frequency bands. Downstream of the stern, as the turbulence
intensity and −ρ〈usun〉max shift away from the wall, the high-frequency wall pressure
component decays persistently, with pre-multiplied spectra gradually shifting towards
lower frequencies. For axisymmetric boundary layers with varying pressure gradient, δ,
Ue and −ρ〈usun〉max emerge as more appropriate length, velocity and pressure scales,
respectively.

In terms of the space–time characteristics, as anticipated, the APG reduces the
convection velocity of wall pressure fluctuations, shortens the streamwise correlation
length scale, and increases the transverse correlation length scale. However, as the APG
weakens (APG-2 and APG-3), the streamwise correlation length scale recovers, while
the transverse correlation length scale continues to grow, which can be attributed to the
contraction of SUBOFF geometry and differences in the upstream flow history compared
to previously studied cases (Willmarth & Yang 1970). As −ρ〈usun〉max weakens and
shifts away from the wall, larger outer-layer structures – characterised by longer decay
lengths – dominate the coherence of wall pressure fluctuations. However, the shear layer
motions typically drive the wall pressure dynamics not by directly slapping the wall.
They exert a strong but indirect influence by modulating the near-wall boundary layer
turbulence, thereby affecting the wall pressure fluctuations. Quantifying this influence
clearly requires further work. A feasible approach is to rigorously examine the source terms
in the pressure Poisson equation, including the mean-shear term and the nonlinear term,
and to quantify their contributions to wall pressure fluctuations across different frequency
bands.

Finally, we think that this study holds significant practical value for naval and
aerospace applications. Given the prohibitive computational cost of WRLES for predicting
wall pressure fluctuations in high-Reynolds-number turbulent flows, our results are
benchmarked against many established empirical models (Corcos 1964; Chase 1980;
Witting 1986; Goody 2004; Smol’yakov 2006; Rozenberg et al. 2012; Hu & Herr 2016;
Lee 2018). For wavenumber–frequency spectrum modelling, the Chase I model shows
great agreement with the current dataset in the low-wavenumber regime, reaffirming its
utility for rapid engineering predictions. However, several limitations warrant attention.
For instance, the observed asymmetry in spectral energy near the convective ridge remains
unaccounted for in existing models. Furthermore, wavenumber–frequency spectrum
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Figure 26. Stationarity test of flow statistics: wall pressure r.m.s. normalised by τw for each section.

models tailored for flows under APG require further development to address the unique
spectral redistribution caused by APG-induced turbulence modulation.
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Appendix A. Stationarity test with respect to the length of sampling time
To verify whether the flow is fully developed and the statistical properties remain invariant
with sampling time, we conduct a stationarity test similar to that in He et al. (2025) in
this appendix. The present simulation is run for six flow-past times, with the first 2.5
flow-past times used for flow development, and the remaining 3.5 flow-past times used
for statistical analysis. The sampling data of the 3.5 flow-past times are divided into five
sections, with each section increasing in length by 20 %. Figure 26 shows the wall pressure
r.m.s. normalised by τw for each section. The results are largely unaffected by the sampling
duration, indicating that the flow is fully developed and the sampling time is sufficient.

Appendix B. Detailed comparisons of scaling laws in the APG-1 and APG-3 regions
Figure 27 compares non-dimensional PSD of wall pressure fluctuations in the APG-1
region (0.79 < x/L < 0.85) using different scaling approaches. As shown in figure 27(b),
inner scaling fails to collapse the high-frequency spectral components due to the
decreasing τw, aligning with prior studies of non-equilibrium TBLs (Na & Moin 1998;
Cohen & Gloerfelt 2018; Caiazzo et al. 2023). The Zagarola–Smits scaling successfully
collapses the spectra at high frequencies, while discrepancies exceeding 10 dB remain
at low frequencies. This failure of conventional inner and mixed inner–outer scaling
methods reflects the flow’s departure from equilibrium. Supporting this, figure 12 reveals
a 134 % increase in dimensionless ratio pw,rms/qe (0.0053 to 0.0124) and a 273 % rise in
pw,rms/τw (1.5 to 5.6) across this region. These diverging trends confirm that neither qe
nor τw provides a reliable pressure scale for APG TBL in non-equilibrium conditions. In
contrast, scaling the wall pressure fluctuation spectra with the local maximum Reynolds
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Figure 27. Non-dimensional PSD of wall pressure fluctuations under different scaling methods in the APG-
1 region (0.79 < x/L < 0.85): (a) outer scaling (qe, δ and Ue); (b) inner scaling (τw , δv and uτ ); (c) mixed
scaling (τw , δ and Ue); (d) Zagarola–Smits scaling (τw , δ2/δ∗ and Ue); (e) Reynolds shear stress scaling (τmax ,
δ and Ue); (f ) displacement thickness scaling (τmax , δ∗ and Ue).

shear stress τmax achieves a collapse within 3 dB across the entire frequency range. The
59 % increase of pw,rms/τmax (1.7 to 2.7) is much smaller than pw,rms/qe and pw,rms/τw

in the APG-1 region.
Figure 28 presents non-dimensional PSD plots of wall pressure fluctuations in the

APG-3 region (0.90 < x/L < 0.94), where the APG weakens progressively as the Clauser
parameter βe decreases from 7.2 to 0. Figure 14(e) shows a broadband attenuation of
spectral energy across all frequencies in this region. None of the conventional scaling
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Figure 28. Non-dimensional PSD of wall pressure fluctuations under different scaling methods in the APG-
3 region (0.90 < x/L < 0.94): (a) outer scaling (qe, δ and Ue); (b) inner scaling (τw , δv and uτ ); (c) mixed
scaling (τw , δ and Ue); (d) Zagarola–Smits scaling (τw , δ2/δ∗ and Ue); (e) Reynolds shear stress scaling (τmax ,
δ and Ue); (f ) displacement thickness scaling (τmax , δ∗ and Ue).

methods (figures 28a–c) achieves full spectral collapse in all frequency bands, which
demonstrates the persistent challenge in scaling wall pressure spectra for boundary layers
under transient APG conditions, irrespective of whether βe is increasing or decreasing
during the flow evolution. In comparison, the Reynolds shear stress scaling also achieves
the best collapse across the entire frequency range, suggesting its robustness as a scaling
parameter for axisymmetric TBL under APG conditions, irrespective of the boundary
layer’s equilibrium state.
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Appendix C. Wavenumber–frequency spectra model of wall pressure fluctuations
In this appendix, we provided the formulas and details of wavenumber–frequency spectra
model of wall pressure fluctuations used in § 4, including the Corcos model (Corcos 1964),
Chase I model (Chase 1980) and Witting model (Witting 1986).

The Corcos model (Corcos 1964) is the earliest wavenumber–frequency spectrum model
and remains widely used today. The model begins by fitting the temporal Fourier transform
of the space–time correlation function for TBL wall pressure fluctuations. Subsequently, it
applies a generalised Fourier transform in the spatial domain to derive the wavenumber–
frequency spectrum model. The model expression is given as

φ(kx , kz, ω) = φ(ω)

(
α1α3

π2k2
c

) [
α2

1 +
(

kx

kc
− 1

)2
] [

α2
3 +

(
kz

kc

)2
]

, (C1)

where kx and kz are the streamwise and spanwise wavenumbers, respectively, kc =
ω/Uc represents the convective wavenumber, with Uc being the convection velocity
(approximately 60–80 % of the inflow velocity U∞), and α1 and α3 are empirical constants
representing the decay rates of spatial correlations in the streamwise and spanwise
directions. According to Bull’s experiment (Bull 1967), for a smooth flat plate, α1 = 0.1,
α3 = 0.715.

The Chase I model (Chase 1980) is a classic incompressible flow model based on the
Poisson equation, which does not need the self-spectral model as input. It models the
rapid and slow source terms of the Poisson equation separately. The model expression is
given as

φ(kx , kz, ω) = φr (kx , kz, ω) + φs(kx , kz, ω)

= ρ2u3
τ

(
Cr k2

x K −5
r + Csk2

x K −5
s + Csk2

z K −5
s

)
, (C2)

where

K 2
i = (ω − Uckx )

2

h2
i u2

τ

+ k2
x + k2

z + (biδ)
−2, i = r, s, (C3)

where the subscripts r and s denote the rapid and slow parts, respectively. The key model
coefficients are set to be Cr = 0.0745, Cs = 0.0474, br = 0.756, bs = 0.378, hr = 3 and
hs = 3.

The Witting model (Witting 1986), which also targets incompressible flows, adopts a
distinct modelling approach compared to other models. It postulates that the generation
of fluctuating pressure in incompressible flows is closely tied to TBL phenomena, such
as bursts and sweeps. Viewing these as dipole sound sources, the model constructs
a stochastic theoretical framework based on these phenomena. Witting interprets each
burst/sweep as an event, and the wavenumber–frequency spectrum is derived as the Fourier
transform of the fluctuating pressure induced by countless such events, combined with
their respective coefficients. The model expression is given as

φ(kx , kz, ω) = 8
3

p2 δ∗3

Uc

Aω̂2

ξ5

∫ ξmax

ξmin

y4 e−2y dy, (C4)
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where

ξ = k̂xz + C |ω̂ − k̂x |,
ξmax = ξδmax

δ∗ , ξmin = ξδmin

δ∗ ,

k̂x = kxδ
∗, k̂z = kzδ

∗, k̂xz =
√

k̂2
x + k̂2

z ,

ω̂ = ωδ∗

Uc
, A = C

π

1(
1 + 2

3C3

)
ln

(
δmax

δmin

) .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C5)

The mean square p2 is modelled as

p2 = 0.015U 2
c u2

τ ρ
2. (C6)

The key coefficients of the Witting model, C , δmax and δmin, are set to be C = 8, δmax = 8δ∗
and δmin = 0.005δ∗.

To obtain the two-dimensional spectra of the wall pressure fluctuations, integration is
required over kz of φ(x, kz, ω):

φ(kx , ω) =
∫ +∞

−∞
φ(kx , kz, ω) dkz . (C7)

For the Corcos model, the analytical solution of its two-dimensional spectrum can be
obtained through integration. In contrast, for the Chase I and Witting models, numerical
solutions are derived using the trapezoidal rule.

REFERENCES

ABE, H. 2017 Reynolds-number dependence of wall-pressure fluctuations in a pressure-induced turbulent
separation bubble. J. Fluid Mech. 833, 563–598.

ABE, H., MATSUO, Y. & KAWAMURA, H. 2005 A DNS study of Reynolds-number dependence on pressure
fluctuations in a turbulent channel flow. In 4th International Symposium on Turbulence and Shear Flow
Phenomena, pp. 189–194. Begel House Inc.

ABRAHAM, B.M. & KEITH, W.L. 1998 Direct measurements of turbulent boundary layer wall pressure
wavenumber–frequency spectra. J. Fluids Engng 120 (1), 29–39.

ALAM, M.M. 2020 A review of transverse curvature effect on friction force and leading-edge flow. Ocean
Engng 218, 107573.

BALANTRAPU, N.A., ALEXANDER, W.N. & DEVENPORT, W. 2023 Wall-pressure fluctuations in an
axisymmetric boundary layer under strong adverse pressure gradient. J. Fluid Mech. 960, A28.

BALANTRAPU, N.A., FRITSCH, D.J., MILLICAN, A.J., HICKLING, C., GARGIULO, A., VISHWANATHAN,
V., ALEXANDER, W.N. & DEVENPORT, W.J. 2020 Wall pressure fluctuations in an axisymmetric turbulent
boundary layer under strong adverse pressure gradient. In AIAA Scitech 2020 Forum, American Institute of
Aeronautics and Astronautics.

BLAKE, W.K. 1970 Turbulent boundary-layer wall-pressure fluctuations on smooth and rough walls. J. Fluid
Mech. 44 (4), 637–660.

BOBKE, A., VINUESA, R., ÖRLÜ, R. & SCHLATTER, P. 2017 History effects and near equilibrium in adverse-
pressure-gradient turbulent boundary layers. J. Fluid Mech. 820, 667–692.

BULL, M.K. 1967 Wall-pressure fluctuations associated with subsonic turbulent boundary layer flow. J. Fluid
Mech. 28 (4), 719–754.

CAIAZZO, A., PARGAL, S., WU, H., SANJOSÉ, M., YUAN, J. & MOREAU, S. 2023 On the effect of adverse
pressure gradients on wall-pressure statistics in a controlled-diffusion aerofoil turbulent boundary layer.
J. Fluid Mech. 960, A17.

CHASE, D.M. 1980 Modeling the wavevector–frequency spectrum of turbulent boundary layer wall pressure.
J. Sound Vib. 70 (1), 29–67.

CHOI, H. & MOIN, P. 1990 On the space–time characteristics of wall-pressure fluctuations. Phys. Fluids 2 (8),
1450–1460.

1016 A28-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
42

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10427


G. Fan, H. Chen, W. Zhao and D. Wan

CLAUSER, F.H. 1954 Turbulent boundary layers in adverse pressure gradients. J. Aeronaut. Sci. 21 (2), 91–108.
COHEN, E. & GLOERFELT, X. 2018 Influence of pressure gradients on wall pressure beneath a turbulent

boundary layer. J. Fluid Mech. 838, 715–758.
COLEMAN, G.N., RUMSEY, C.L. & SPALART, P.R. 2018 Numerical study of turbulent separation bubbles

with varying pressure gradient and Reynolds number. J. Fluid Mech. 847, 28–70.
CORCOS, G.M. 1964 The structure of the turbulent pressure field in boundary-layer flows. J. Fluid Mech.

18 (3), 353–378.
FAN, G.Q., LIU, Y., ZHAO, W.W. & WAN, D.C. 2024a Effect of wall stress models and subgrid-scale models

for flow past a cylinder at Reynolds number 3900. Phys. Fluids 36 (1), 015152.
FAN, G.Q., ZHU, J., ZHAO, W.W. & WAN, D.C. 2024b A comparative study between wall-resolved and

wall-modeled large eddy simulation of turbulent channel flows. In 34th International Ocean and Polar
Engineering Conference, pp. 220–226. OnePetro.

FARABEE, T.M. & CASARELLA, M.J. 1991 Spectral features of wall pressure fluctuations beneath turbulent
boundary layers. Phys. Fluids 3 (10), 2410–2420.

FRANCIS, R., EBENEZER, D.D., BHATTACHARYYA, S.K. & SHARMA, R. 2023 Estimation of wavenumber–
frequency spectra of wall pressure due to turbulent flow over a flat plate using large-eddy simulation. Phys.
Fluids 35 (6), 065110.

GOODY, M. 2004 Empirical spectral model of surface pressure fluctuations. AIAA J. 42 (9), 1788–1794.
GRIFFIN, K.P., FU, L. & MOIN, P. 2021 General method for determining the boundary layer thickness in

nonequilibrium flows. Phys. Rev. Fluids 6 (2), 024608.
GROVES, N.C., HUANG, T.T. & CHANG, M.S. 1989 Geometric Characteristics of DARPA SUBOFF Models:

(DTRC Model Nos. 5470 and 5471). David Taylor Research Center.
HARUN, Z., MONTY, J.P., MATHIS, R. & MARUSIC, I. 2013 Pressure gradient effects on the large-scale

structure of turbulent boundary layers. J. Fluid Mech. 715, 477–498.
HE, K.J., ZHAO, W.W. & WAN, D.C. 2025 Physical characteristics of wall pressure fluctuations for fully

developed turbulent annular channel flows. Phys. Fluids 37 (4), 045133.
HE, K.J., ZHOU, F.C., ZHAO, W.W. & WAN, D.C. 2024a Wall-modeled large eddy simulation for a highly

decelerated axisymmetric turbulent boundary layer. In 34th International Ocean and Polar Engineering
Conference. OnePetro.

HE, X., HUANG, Q.G., SUN, G.C. & WANG, X.H. 2022 Numerical research of the pressure fluctuation of the
bow of the submarine at different velocities. J. Mar. Sci. Engng 10 (9), 1188.

HE, Y.H., ZHOU, F.C., ZHAO, W.W. & WAN, D.C. 2024b Grid resolution requirements for wall-resolved
large eddy simulation of wall pressure fluctuations in turbulent channel flows. In 34th International Ocean
and Polar Engineering Conference. OnePetro.

HU, N. & HERR, M. 2016 Characteristics of wall pressure fluctuations for a flat plate turbulent boundary layer
with pressure gradients. In 22nd AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics
and Astronautics.

HUANG, T., LIU, H.L., GROVES, N.C., FORLINI, T., BLANTON, J. & GOWING, S. 1992 Measurements
of flows over an axisymmetric body with various appendages in a wind tunnel: the DARPA SUBOFF
experimental program. In Proceedings of the 19th Symposium on Naval Hydrodynamics. National Academy
Press.

ISSA, R.I. 1986 Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput.
Phys. 62 (1), 40–65.

JIANG, P., LIAO, S.J. & XIE, B. 2024 Large-eddy simulation of flow noise from turbulent flows past an
axisymmetric hull using high-order schemes. Ocean Engng 312, 119150.

JIMÉNEZ, J., HOYAS, S., SIMENS, M.P. & MIZUNO, Y. 2010a Turbulent boundary layers and channels at
moderate Reynolds numbers. J. Fluid Mech. 657, 335–360.

JIMÉNEZ, J.M., HULTMARK, M. & SMITS, A.J. 2010b The intermediate wake of a body of revolution at high
Reynolds numbers. J. Fluid Mech. 659, 516–539.

JIMÉNEZ, J.M., REYNOLDS, R.T. & SMITS, A.J. 2010c The effects of fins on the intermediate wake of a
submarine model. J. Fluids Engng 132, 031102.

KEITH, W.L., HURDIS, D.A. & ABRAHAM, B.M. 1992 A comparison of turbulent boundary layer wall-
pressure spectra. J. Fluids Engng 114 (3), 338–347.

KIM, J. 1989 On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid Mech. 205,
421–451.

KITSIOS, V., SEKIMOTO, A., ATKINSON, C., SILLERO, J.A., BORRELL, G., GUNGOR, A.G., JIMÉNEZ,
J. & SORIA, J. 2017 Direct numerical simulation of a self-similar adverse pressure gradient turbulent
boundary layer at the verge of separation. J. Fluid Mech. 829, 392–419.

1016 A28-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
42

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10427


Journal of Fluid Mechanics

KLINE, S.J., REYNOLDS, W.C., SCHRAUB, F.A. & RUNSTADLER, P.W. 1967 The structure of turbulent
boundary layers. J. Fluid Mech. 30 (4), 741–773.

KRAICHNAN, R.H. 1964 Kolmogorov’s hypotheses and Eulerian turbulence theory. Phys. Fluids 7 (11), 1723–
1734.

KUMAR, P. & MAHESH, K. 2018 Large-eddy simulation of flow over an axisymmetric body of revolution. J.
Fluid Mech. 853, 537–563.

LEE, M. & MOSER, R.D. 2015 Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200. J.
Fluid Mech. 774, 395–415.

LEE, S. 2018 Empirical wall-pressure spectral modeling for zero and adverse pressure gradient flows. AIAA J.
56 (5), 1818–1829.

LIU, C.Q., GAO, Y., TIAN, S.L. & DONG, X.R. 2018 Rortex – a new vortex vector definition and vorticity
tensor and vector decompositions. Phys. Fluids 30 (3), 035103.

LIU, Y., WANG, H.P., WANG, S.Z. & HE, G.W. 2023 A cache-efficient reordering method for unstructured
meshes with applications to wall-resolved large-eddy simulations. J. Comput. Phys. 480, 112009.

MARUSIC, I., MCKEON, B.J., MONKEWITZ, P.A., NAGIB, H.M., SMITS, A.J. & SREENIVASAN, K.R. 2010
Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22
(6), 065103.

MONTY, J.P., HUTCHINS, N., NG, H.C.H., MARUSIC, I. & CHONG, M.S. 2009 A comparison of turbulent
pipe, channel and boundary layer flows. J. Fluid Mech. 632, 431–442.

MORSE, N. & MAHESH, K. 2021 Large-eddy simulation and streamline coordinate analysis of flow over an
axisymmetric hull. J. Fluid Mech. 926, A18.

MORSE, N. & MAHESH, K. 2023 Tripping effects on model-scale studies of flow over the DARPA SUBOFF.
J. Fluid Mech. 975, A3.

NA, Y. & MOIN, P. 1998 The structure of wall-pressure fluctuations in turbulent boundary layers with adverse
pressure gradient and separation. J. Fluid Mech. 377, 347–373.

NEVES, J.C. & MOIN, P. 1994 Effects of convex transverse curvature on wall-bounded turbulence. Part 2. The
pressure fluctuations. J. Fluid Mech. 272, 383–406.

NEVES, J.C., PARVIZ, M. & MOSER, R.D. 1994 Effects of convex transverse curvature on wall-bounded
turbulence. Part 1. The velocity and vorticity. J. Fluid Mech. 272, 349–382.

NICOUD, F. & DUCROS, F. 1999 Subgrid-scale stress modelling based on the square of the velocity gradient
tensor. Flow Turbul. Combust. 62 (3), 183–200.

PANTON, R.L., LEE, M. & MOSER, R.D. 2017 Correlation of pressure fluctuations in turbulent wall layers.
Phys. Rev. Fluids 2 (9), 094604.

PATEL, V.C., NAKAYAMA, A. & DAMIAN, R. 1974 Measurements in the thick axisymmetric turbulent
boundary layer near the tail of a body of revolution. J. Fluid Mech. 63 (2), 345–367.

PIQUET, J. & PATEL, V.C. 1999 Transverse curvature effects in turbulent boundary layer. Prog. Aerosp. Sci.
35 (7), 661–672.

POSA, A. & BALARAS, E. 2016 A numerical investigation of the wake of an axisymmetric body with
appendages. J. Fluid Mech. 792, 470–498.

POSA, A. & BALARAS, E. 2020 A numerical investigation about the effects of Reynolds number on the flow
around an appended axisymmetric body of revolution. J. Fluid Mech. 884, A41.

ROZENBERG, Y., ROBERT, G. & MOREAU, S. 2012 Wall-pressure spectral model including the adverse
pressure gradient effects. AIAA J. 50 (10), 2168–2179.

SCHATZMAN, D.M. & THOMAS, F.O. 2017 An experimental investigation of an unsteady adverse pressure
gradient turbulent boundary layer: embedded shear layer scaling. J. Fluid Mech. 815, 592–642.

SCHEWE, G. 1983 On the structure and resolution of wall-pressure fluctuations associated with turbulent
boundary-layer flow. J. Fluid Mech. 134, 311–328.

SCHLOEMER, H.H. 1966 Effects of pressure gradients on turbulent boundary-layer wall-pressure fluctuations.
J. Acoust. Soc. Am. 40 (5_Suppl), 1254.

SILLERO, J.A., JIMÉNEZ, J. & MOSER, R.D. 2013 One-point statistics for turbulent wall-bounded flows at
Reynolds numbers up to δ+ ≈ 2000. Phys. Fluids 25 (10), 105102.

SIMPSON, R.L., GHODBANE, M. & MCGRATH, B.E. 1987 Surface pressure fluctuations in a separating
turbulent boundary layer. J. Fluid Mech. 177, 167–186.

SMOL’YAKOV, A.V. 2006 A new model for the cross spectrum and wavenumber–frequency spectrum of
turbulent pressure fluctuations in a boundary layer. Acoust. Phys. 52 (3), 331–337.

SNARSKI, S.R. & LUEPTOW, R.M. 1995 Wall pressure and coherent structures in a turbulent boundary layer
on a cylinder in axial flow. J. Fluid Mech. 286, 137–171.

SPALART, P.R. & WATMUFF, J.H. 1993 Experimental and numerical study of a turbulent boundary layer with
pressure gradients. J. Fluid Mech. 249, 337–371.

1016 A28-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
42

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10427


G. Fan, H. Chen, W. Zhao and D. Wan

TANARRO, Á., VINUESA, R. & SCHLATTER, P. 2020 Effect of adverse pressure gradients on turbulent wing
boundary layers. J. Fluid Mech. 883, A8.

TAYLOR, G.I. 1938 The spectrum of turbulence. Proc. R. Soc. Lond. A 164 (919), 476–490.
TENNEKES, H. 1975 Eulerian and Lagrangian time microscales in isotropic turbulence. J. Fluid Mech. 67 (3),

561–567.
VIAZZO, S., DEJOAN, A. & SCHIESTEL, R. 2001 Spectral features of the wall-pressure fluctuations in

turbulent wall flows with and without perturbations using LES. Intl J. Heat Fluid Flow 22 (1), 39–52.
VOLINO, R.J. 2020 Non-equilibrium development in turbulent boundary layers with changing pressure

gradients. J. Fluid Mech. 897, A2.
WILLMARTH, W.W., WINKEL, R.E., SHARMA, L.K. & BOGAR, T.J. 1976 Axially symmetric turbulent

boundary layers on cylinders: mean velocity profiles and wall pressure fluctuations. J. Fluid Mech.
76 (1), 35–64.

WILLMARTH, W.W. & YANG, C.S. 1970 Wall-pressure fluctuations beneath turbulent boundary layers on a
flat plate and a cylinder. J. Fluid Mech. 41 (1), 47–80.

WILLS, J.A.B. 1971 Measurements of the wave-number/phase velocity spectrum of wall pressure beneath a
turbulent boundary layer. J. Fluid Mech. 45 (1), 65–90.

WITTING, J.M. 1986 A spectral model of pressure fluctuations at a rigid wall bounding an incompressible
fluid based on turbulent structures in the boundary layer. Noise Control Engng J. 26 (1), 28–43.

YANG, B.W. & YANG, Z.X. 2022 On the wavenumber–frequency spectrum of the wall pressure fluctuations
in turbulent channel flow. J. Fluid Mech. 937, A39.

ZHOU, D., WANG, K. & WANG, M. 2020 Large-eddy simulation of an axisymmetric boundary layer on a
body of revolution. In AIAA Aviation 2020 Forum. American Institute of Aeronautics and Astronautics.

ZHOU, Z.T., XU, Z.Y., WANG, S.Z. & HE, G.W. 2022 Wall-modeled large-eddy simulation of noise generated
by turbulence around an appended axisymmetric body of revolution. J. Hydrodyn. 34 (4), 533–554.

1016 A28-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
42

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10427

	1. Introduction
	2. Numerical methodology and validation
	2.1. Governing equations
	2.2. Computational domain and mesh
	2.3. Validation of present WRLES

	3. Overview of flow fields and boundary layer development
	3.1. Overview of the flow fields
	3.2. Boundary layer development

	4. Analysis of wall pressure fluctuations
	4.1. Evolution of wall pressure fluctuations
	4.2. Scaling laws of wall pressure fluctuations
	4.3. Space"2013`time characteristics of wall pressure fluctuations

	5. Conclusions
	References

