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The Rayleigh—-Taylor instability (RTI) problem is one of the classic hydrodynamic insta-
bility cases in natural scenarios and industrial applications. For the numerical simulation
of the RTI problem, this paper presents a multiphase method based on the moving parti-
cle semi-implicit (MPS) method. Herein, the incompressibility of the fluids is satisfied by
solving a Poisson Pressure Equation (PPE) and the pressure fluctuation is suppressed.
A single set of equations is utilized for fluids with different densities, making the method
relatively simple. To deal with the mathematical discontinuity of density in the two-
phase interface, a transitional region is introduced into this method. For particles in
the transitional region, a density smoothing scheme is applied to improve the numeri-
cal stability. The simulation results show that the present MPS multiphase method is
capable of capturing the evolutionary features of the RTI, even in the later stage when
the two-phase interface is quite distorted. The unphysical penetration in the interface is
limited, proving the stability and accuracy of the proposed method.

Keywords: Multiphase flows; MPS method; Rayleigh-Taylor instability; MLParticle-
SJTU solver.

1. Introdution

The Rayleigh—Taylor instability (RTI) is one of the most common instability phe-
nomena existing in multi-fluid flows. Due to the density difference of different fluids,
the two-phase interface is sensitive to various perturbations. Even a very small per-
turbation may induce a fingering RTT in which the light fluid violently pushes the
heavy fluid against gravity. The RTI can be observed in a wide range of natural
scenarios and industrial applications, including astrophysics, nuclear engineering,
turbulent mixing, and inertial confinement fusion (ICF).
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Due to the strong nonlinearity of the RTI, theoretical investigations have dif-
ficulties in obtaining correct results beyond the early linear regime. Experimental
investigations are easily influenced by the perturbation introduced in the experi-
mental process itself. In recent decades, the huge progress of Computational Fluid
Dynamics (CFD) facilitates the application of a variety of numerical methods to
the simulations of the RTI.

In the RTI simulations, the tracing of the two-phase interface is the most impor-
tant technology. Compared with grid-based methods, the gridless particle methods
are more advantageous for solving multiphase problems with large deformation of
the two-phase interface. However, stable multiphase simulation is difficult to be
conducted due to the discontinuity of density in the interface and the phenomenon
of pressure fluctuation commonly existing in particle method. Therefore, a stable
and accurate multiphase model in particle methods is necessary to be studied.

The moving particle semi-implicit (MPS) originally proposed by Koshizuka and
Oka M] is an important kind of particle method. By solving the Poisson Pressure
Equation (PPE), the MPS method is suitable for the simulation of fully incompressi-
ble flows. The first multiphase MPS method is developed by |Gotoh and Fredsed
] for solid-liquid two-phase flows. proposed a hybrid MPS-
FVM method for the viscous, incompressible, multiphase flows, in which the heavier
ﬁuld is represented by moving particles while the lighter fluid is defined on the mesh.

| studied a straightforward multiphase method based on
the weakly compressible MPS (WCMPS) method, by treating the multiphase sys-
tem as a multi-viscosity and multi-density system, but the unphysical penetration

is observed due to the weakly compressibility of their method.

| first developed four schemes which are more accurate and consistent than the
scheme of the original MPS method, then a first-order density smoothing scheme
by |Kha.;QLeLa.nd_G_0_‘mH MZOJ_j] is derived for multiphase flows characterized by high
density ratios. Although experiencing a much shorter development time than the
grid-based methods, the MPS method has shown the advantages in multiphase
simulation, especially when the large deformation of interface exists, such as the
simulation of RT1I.

In this paper, a multiphase MPS solver is developed and applied to the simu-
lation of RTI. The multiphase solver is based on our in-house single-phase parti-
cle method solver MLParticle-SJTU, and a density smoothing scheme is included
for the treatment of two-phase interface. The MLParticle-SJTU solver adopts the
modified MPS method and has been commonly applied to a variety of violent hydro-

dynamic problems, such as liquid sloshing flows [Duan et all (2017); Wen_ et al.
. [Zhang and Wail (2014)], dam-breaking flows [Chen et all (2016); Zhangd
@) Tang et al. (2016)], wave—floating body interaction [Tang et al. (2016);
Zhang and Wail (IM ], water entry problems |Zhang et all (2016g|); Chen et al.
M)], fluid-structure interaction [Zhang et all (20161); Zhang et all (20160)]. The

density smoothing scheme here is similar with the scheme adopted by Shakibaeinia
and Jin [|2£)J_j]7 in which the density discontinuity in the interface is avoided through
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setting a transitional region. In the next parts of this paper, the multiphase MPS
method is first introduced in detail. Then, the simulation of RTT is conducted and
the stability and accuracy of the multiphase MPS method is validated.

2. Numerical Scheme
2.1. Governing equations

In the present method, the multiphase system is treated as a multi-density system.
The form of governing equations for different fluids is identical, written as:

1Dp

- L= VvV. V=0 1
D ; (1)
DV 1

— =_-V.P 2.v 2
o pv + vV +g, (2)

where V is the flow velocity vector, P is the pressure, p is the fluid density, v is the
kinematic viscosity, g is the gravitational acceleration vector. For different fluids,
p and v in above equations are different. Different from the governing equations
in grid-based methods, the convective acceleration term in the left-hand side of
momentum conservation equation is included in the material derivative, thus the
numerical diffusion is eliminated.

2.2. Kernel function

The spatial derivatives in the governing equation need to be approximated by the
particles interaction. A particle interacts with all particles within a specified domain.
The size of this domain is defined as the radius of the interaction area of each par-
ticle. To weigh the interaction of each pair of particles, a kernel function is intro-
duced in the MPS method. This paper adopts a modified kernel function proposed
by [Zhang and Warl lZOJ_dL which can be written as:

Te
Tt (0<ry <)
W(ri;) = 0.857;; 4 0.157 J , (3)

0 (re <1ij)

where r;; is the distance between particle ¢ and particle j, 7. is the maximum
radius of support region. Compared with the original kernel function proposed by
Koshizuka and Oka HM}, the modified kernel function prevents the existence of
singular point by making the value of W (r;;) finite when the r;; is equal to zero.
Thus, the numerical instability of the MPS method can be improved.

2.3. Gradient model

In the MPS method, the gradient operator is discretized into a local weighted aver-
age of radial function. In this paper, an anti-symmetric gradient model is adopted,
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written as:

T o Z [P — i (rj —ri) - W(r)|, (4)

2
i ril

where ( ); represents the kernel approximation in particle i, n” represents the initial
particle number density, d is the number of space dimension, P; i, refers to the
minimum pressure within the support domain of particle i. This model is proposed
by [Koshizika. et all ], to overcome the tensile instability of original model by

ensuring repulsive force between particles.

2.4. Laplacian model

The Laplacian model used here is derived by |[Koshizuka et all I1998} from the
physical concept of diffusion, written as:

(V29)i = =365 — 60)- W), 6
J#i
\ = 2z Wlrig) ey — ri|? ©

> ji W(rij) ’
where ) is a parameter introduced to keep the increase of variance equal to analytical
solution.

2.5. Model of incompressibility

In order to keep the fluids incompressible, a semi-implicit algorithm is employed
in the MPS method. The main characteristic of this algorithm is the prediction—
correction process in each iteration. In the prediction step, a temporal velocity is
explicitly predicted based on the gravity term and viscosity term as follows:

Vi=VFt AtV V +g). (7)

Since the temporal velocity field doesn’t satisfy the divergence-free condition, a
second correction step is required to project the velocity field into a divergence-free
space. The velocity is corrected based on the pressure gradient as follows:

At

k+1 k

Vit =vr - 7VP L (8)
In the MPS method, the pressure field is obtained by solving the PPE. To suppress
the pressure oscillation, we employ the PPE with the mixed source term of constant
particle number density condition and divergence-free condition. This is developed

by tEanaka..a.mLMa.mmagJ lZDJ_QI] and rewritten by Lee et all m as:

0

2phtly _ 1y Loy P (0=

where 7 is a parameter suggested to be 0.01, the superscripts k and k + 1 indicate
the current time step, (n*); represents the particle number density at kth time step.
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2.6. Density smoothing

When the particle methods are employed to simulate the multiphase flows, a major
challenge is the density discontinuity in the two-phase interface, which would result
in an unsmooth pressure gradient field. This is the main reason of the interface
disorder and the blow-up of simulation.

To overcome this problem, we adopt a density smoothing method used by

]. In this method, a transitional region is introduced
to smooth the densities of particles within a certain distance (the width of den-
sity smoothing) from the interface (Fig. ). The densities of these particles are
re-evaluated according to a spatial averaging of the densities of all neighboring
particles. The spatial averaging follows the formula below:

Zj;éi pj - W(rij)
Zj;éi Wi(rij)

From the above model of incompressibility, we can see that the incompressibility
in MPS method is represented by a constant volume, other than a constant density.
Through the density smooth process, only the densities of interface particles are
spatially averaged, and the divergence-free condition and particle number density
condition are still satisfied. Therefore, the incompressibility will not be affected by
the density smooth process and is kept well with the application of Eq. (@). The
smooth process is mainly for the purpose of a continuous acceleration field which
brings about a better stability. Besides, the density smoothing is limited in the
transitional region, which means that the fuzziness of the interface cannot spread
because the interface fixing is prior to the smooth process.

The results obtained by [Shakibaeinia and Jin HZDlj] have validated the relia-
bility of the density smoothing scheme. However, there still are some unphysical
penetrations observed in the interface, even in the early stage when the motion of

(p)i = (10)
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Fig. 1. Sketch of density smoothing.
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particles is not violent. This may be induced by the weak compressibility of the
WCMPS method used in their study. In this paper, we employ a fully incompress-
ible MPS, which has been proven to be effective to suppress the pressure fluctuation.
Therefore, the density smoothing scheme is believed to be enough to deal with the
density discontinuity in the two-phase interface.

3. Numerical Simulation
3.1. Numerical setup

In this part, we consider the RTI problem in a rectangular container with the
dimension of 0.5m (width) x 1m (height), as illustrated in Fig. 2. The origin of
coordinates is fixed in the middle point of this container. The heavier fluid is identi-
fied by the Green color, with a density of 3,000 kg/m3. The lighter fluid is identified
by the blue color, with a density of 1,000kg/m?3. The interface of these two fluids
gives an initial single mode perturbation, Yinterface = 0.025cos(47x).

The gravity acceleration in this simulation is set to be ¢ = 10m/s and points
downwards. To better test the stability of this method, the viscous effect is ignored
in our simulation. The initial particle distance rg is 0.005m, meaning that totally
100 x 200 fluid particles are used in our simulation. In the MPS method, the radiuses
of the interaction area for different models don’t need to be quite the same. For the
purpose of saving computational cost, the radius of the interaction area for gradient
model and the width of density smoothing is 4.1 7y, the radius of the interaction
area for Laplacian model is 8.1 ¢ in our simulation.

For Rayleigh-Taylor instability, the experimental conditions are very hard to be
controlled as perfectly as numerical simulation. For example, the light fluid should
be put below the heavy fluid, and a desirable perturbation should be produced at
the interface without other influence on the flow field. Therefore, we didn’t find

Fig. 2. Initial distribution of particles.
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a suitable benchmark experiment to compare. In this paper, we mainly compared

with the numerical simulation conducted by Shakibaeinia_and Jir l20lj} Different
from their simulation, we adopted a more violent case in which the viscosity is set
to 0 and the free-slip condition is considered. This is because the focus of this paper
is to validate the stability of present multiphase MPS method when applied to the
RTTI characterized by large deformation of interface.

3.2. Results

Figure 3] shows the evolution of the RTI problem with a density ratio of 3:1 at 0.5,
1, 1.5 and 2s. The simulation snapshot of the simulation demonstrates the ability
of the present multiphase MPS method to capture the complex interface between
two different fluids. Under the effect of initial perturbation, the lighter fluid moves
upward and pushes the heavier fluid upon, then a bubble is formed at 0.5s. After
about 1s, the upside part of the lighter fluid starts to form a mushroom shape. At
1.5, due to the influence of the neighboring heavier fluid moving downward, two
streams of the lighter fluid are separated from the rising part and strong vortex roll
can be observed. At 2s, the vortex roll becomes stronger and the light fluid reaches
the top of the container. The evolution of RTT is similar with the results obtained
by Shakibaeinia_and Jin ﬂZD_‘Lj] at early stage, but due to ignorance of viscous effects
in our simulation, more of the lighter fluid is able to move upward, resulting in a

more complex vortex structure. And the unphysical penetrations in our simulation
are much less compared with the results obtained by Shakibaeinia. and Jin [|2Q].j]
with a large kinematic viscosity of 0.01.

Figure [ compared the growth rate of RTI with different density ratios. When
the density ratio increases from 2:1 to 5:1, the time needed for the lighter fluid to
reach the top of the container is largely reduced, indicating the importance of the

Fig. 3. Evolution of RTI with a density ratio of 3:1, at t = 0.5s,1s,1.5s and 2s.
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Fig. 5. Velocity vector of RTT with a density ratio of 3:1, at ¢t = 0.5,1,1.5 and 2s.
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density ratio for RTI problems. This also illustrates the applicability of the present
MPS multiphase method for multiphase flows with different density ratios.

Figure [ shows the velocity vector of all particles in the RTI simulation. An
obvious symmetry property can be observed during the whole RTI evolution pro-
cess. Two vortexes appear respectively at the two balanced positions of the initial
perturbation at 0.5s, which is induced by the interaction of upward motion of the

Velocity Y

Fig. 6. Y-velocity of RTI with a density ratio of 3:1, at ¢ = 0.5,1,1.5 and 2s.

Velocity X

Fig. 7. X-velocity of RTI with a density ratio of 3:1, at ¢ = 0.5,1, 1.5 and 2s.
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lighter fluid and downward motion of the heavier fluid. Then, these vortexes keep
developing fast and form multilayer vortexes with clear two-phase interface at 2s.
Moreover, another two vortexes appear near the corner in the bottom of the con-
tainer at 2, complicating the flow field structure.

FiguresBland[7ldemonstrate the y-velocity and x-velocity during the simulation,
respectively. In y direction, the velocity of middle part of the fluid field points
upside, just the reverse for the fluid near two side walls. In z direction, the fluid
near the bottom converges toward the middle of the tank, while the fluid near the
top separately flows to two side walls.

4. Conclusion

The paper proposes a MPS multiphase method and develops corresponding solver
based on our in-house single phase particle method solver MLParticle-SJTU. When
the multiphase solver is applied to the simulation of Rayleigh—Taylor instability,
stable and accurate results can be obtained. The density smoothing scheme used
in this paper can greatly reduce the unphysical penetrations appearing in other
multiphase methods and keep the two-phase interface clear and natural, even when
the interface is quite distorted. The results show that the complete evolution of RTI
when an initial perturbation is given to the interface position.

At the beginning, the lighter fluid pushes upon the heavier fluid and forms a
mush-like shape. Two vortexes appear and develop fast to become the main flow
characteristic in the container. Another two vortexes appear in the later time, indi-
cating the complexity of the RTT problems. The simulations of RTT with different
density ratios demonstrate the important role of the high density ratio in improv-
ing the growth rate of RTI, and validating the applicability of the MPS multiphase
method in different conditions. As the extension of this work, the higher-order den-
sity smoothing scheme or the new multi-density model proposed respectively by
Khayyer and Gotoh M} and [Duan et all [IM] can be adopted in the future, to
obtain a continuous acceleration field even with large density continuity. After that,
the RTT with a higher density ratio, such as the RTI between water and air, will be
simulated by our multiphase MPS method.
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