International Journal of Offshore and Polar Engineering (ISSN 1053-5381)
Copyright © by The International Society of Offshore and Polar Engineers

http://www.isope.org/publications

Vol. 35, No. 3, September 2025, pp. 225-233; https://doi.org/10.17736/ijope.2025.ak71

Different Artificial Neural-Network Architectures for Riser VIV Analysis

Maokun Ye* and Decheng Wan*{
Computational Marine Hydrodynamics Lab (CMHL), School of Naval Architecture, Ocean and Civil Engineering
Shanghai Jiao Tong University, Shanghai, China

Haichao Liu
Zhongnan Engineering Corporation, Ltd.
Changsha, China

Bowei Song
Ningbo Pilot Station, Ningbo Dagang Pilotage Co., Ltd.
Ningbo, China

Vortex-Induced Vibration (VIV) is a nonlinear fluid-structure interaction observed when a marine riser or pipeline is
placed into sea currents. In the present study, we adopt two representative artificial neural network (ANN) architectures
in machine learning, i.e., multi-layer perceptron and long short-term memory, to predict riser VIV. The training data is
generated by a three-dimensional computational fluid dynamics simulation performed by using the finite-analytic Navier-
Stokes code. Flow field quantities at selected spatial points and the response of the riser are recorded and the flow quantities
fed into the ANNSs to infer riser VIV. The performances of both ANN architectures are then evaluated and compared.

INTRODUCTION

Machine learning, especially deep learning (LeCun et al., 2015)
that takes advantage of artificial neural networks (ANNS), has
proved itself a powerful and effective approach in natural lan-
guage processing (NLP) (Collobert et al., 2011), image process-
ing (Sonka et al., 2013), object detection (Zhao et al., 2019),
recommender systems (Cheng et al., 2016), weather forecasting
(Bi et al., 2023), etc. To deal with modeling tasks with distinct
intrinsic characteristics, different neural network (NN) structures
have been designed to more effectively learn the different input
features. In general, three fundamental types of ANNSs exist, i.e.,
multi-layer perceptron (MLP; Gardner and Dorling, 1998), con-
volutional neural network (CNN; LeCun and Bengio, 1995), and
recurrent neural network (RNN; Lipton et al., 2015). MLP, which
features a stack of fully connected neuron layers, is the most fun-
damental structure of ANNs, and it can theoretically be applied to
any machine-learning task. To effectively learn image or matrix-
like data, a CNN was then designed in which the convolution
operation was leveraged in the abstraction of input features. An
RNN, on the other hand, was invented to account for the histor-
ical series of the input features, such that the information of the
input series itself could be effectively extracted.

With the fast development of machine-learning methods in
recent years, the capability of ANNs in ocean engineering appli-
cations has attracted increasing attention from researchers. Jin
et al. (2018) designed a CNN architecture that can handle spatial-
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temporal flow data and leveraged it to establish the mapping rela-
tionship between the pressure fluctuations on a cylinder and the
velocity field around the cylinder. Fukami et al. (2019) lever-
aged the capability of a CNN in image processing to reconstruct
high-fidelity flow fields from a low-resolution two-dimensional
flow around a fixed cylinder, and it was shown that both laminar
and turbulent flow can be accurately reconstructed. D’Agostino
et al. (2022) assessed three different types of RNN structures in
the time-series predictions of ship maneuvering and achieved a
20-second ahead prediction. Shi et al. (2023) leveraged the long
short-term memory (LSTM) type of an RNN to predict the plat-
form motions from mooring force, wave elevation, and the history
of platform motions, and they demonstrated that the prediction
accuracy from multi-variable inputs is more favorable than it is
from single-variable input.

The objective of the current work is to perform a compara-
tive study of the different ANN architectures in the predictions
of riser VIV to provide a better idea of the performance of those
structures. The aim of ANN implementation is to predict riser
displacement at a certain time instance by using the informa-
tion of the flow field quantities or the time history of the riser
motion itself. This is not only of research interest but also of
importance in engineering practice. The present work will con-
tribute to a better comprehension of the performance of different
ANN architectures in the prediction of riser VIV. The remain-
der of this paper is organized as follows. First, the methods used
in the current study, including the computational fluid dynamics
(CFD) approach adopted to generate the original VIV data and
the ANN structures to be implemented in the machine-learning
task, are introduced. Second, the generation of the VIV data of a
marine riser using CFD is described in detail. Afterward, differ-
ent ANNs are implemented to learn and predict the VIV motions
of the marine riser. Further, the performances of different train-
ing strategies are compared and discussed. Last, conclusions are
drawn from the results and discussions.
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METHODS
CFD Approach

Riser Motion Solver. A marine riser can be modeled as a top-
tensioned beam with streamwise and crossflow motions (Huang
et al., 2011; Ye and Chen, 2019). The partial differential equations
which govern the lateral motions are as follows:
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where T is the effective tension; x represents the pipe axial direc-
tion, which is vertical to the ground; y and z denote the in-line
and cross-flow displacements of a riser, respectively; E and [/ are
Young’s modulus and the area moment of inertia of the riser; m
and Dy denote the mass per unit length and damping coefficient
of the riser, respectively; and f, and f, are the forces in corre-
sponding directions. (

Flow Solver. The CFD simulations in the current study are per-
formed by using the finite-analytic Navier-Stokes code (FANS).
The code solves the unsteady incompressible Navier-Stokes equa-
tions by using the finite-analytic method (Chen and Patel, 1989;
Chen et al., 1990). FANS code solves the mean flow and turbu-
lence quantities in arbitrary combinations of embedded, overset,
or matched grids. In the simulations, the computational domain
is first decomposed into smaller blocks to efficiently deal with
calculations that involve complex configurations and flow condi-
tions. Within each computational block, the finite-analytic numer-
ical method is leveraged to solve the governing equations on a
general curvilinear, body-fitted coordinate system. The pressure-
velocity coupling is achieved through a hybrid PISO/SIMPLER
algorithm developed by Pontaza et al. (2005). The code is well-
validated and has been successfully applied to the investigations
of complex flow problems (Huang and Chen, 2021; Chen and
Chen, 2023; Ye et al., 2023).

ANN Structures

Multi-Layer Perceptron (MLP). An MLP network consists of
an input layer, one or more hidden layers, and an output layer.
The input layer receives the input data, which is then fed forward
through the hidden layers to the output layer. The hidden layers
perform a series of non-linear transformations on the input, allow-
ing the network to model complex relationships between the input
and output. An illustration of an MLP is shown in Fig. 1.

Figure 2 shows the details of the operations within an MLP
node inside the hidden layers. Each node in the hidden layer per-
forms a weighted sum of its inputs followed by an activation func-
tion, which activates the node by performing a nonlinear transfor-
mation as denoted by o in Fig. 2. During training, the MLP net-
work adjusts the weights to learn the intrinsic relations between
the input and output data by using back-propagation, a technique
for computing the gradient of the loss function with respect to
the weights. This allows the network to learn the optimal set of
weights that minimizes the error between the predicted output and
the true output.

Unless otherwise specified, the activation function used in the
current study is the tanh activation function, defined as
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Fig. 1 A multi-layer perceptron (MLP)

A A

(% — wy \

L A 4

(22 —{ w2 ) b+ wixi | output |
N v ! 'fl 4 \\\__J_ 4
N A

Y

Fig. 2 An MLP node

Long Short-Term Memory (LSTM) Networks. An LSTM (Yu
et al., 2019) network is a type of RNN that was specifically
designed to address the issue of vanishing gradients in traditional
RNNs. LSTMs are widely used in various fields of machine learn-
ing, including NLP, speech recognition, and time series analysis.
The key idea behind LSTM is to introduce a memory cell that
can retain information over long sequences, allowing it to capture
long-term dependencies in the data. This memory cell is com-
posed of three main components: an input gate, a forget gate, and
an output gate. A schematic diagram for an LSTM network is
shown in Fig. 3, and the according equations can be written as
follows:

h, = a[dot(state,, U,) + dot(input,, W,) + dot(c,, V;,) + b,] (4)
where U, V, and W are trainable coefficients, and
Crt1 :if*k1+c1*ﬁ (5)

in which i,, f;, and k, are calculated by

i, = o[dot(state,, U;) + dot (input,, W;) + b;] 6)
fi =oldot(state,, U;) + dot(input,, W;) + b] @)
k, = o[dot(state,, U,) + dot(input,, W,) + b ] 8)

By introducing these gates, LSTM networks can selectively up-
date and retrieve information over long sequences, making them
capable of capturing both short-term and long-term dependencies
in the data. The ability to remember or forget information over
extended time spans makes LSTMs particularly effective in tasks
involving sequential data. LSTMs have become a fundamental
building block in many deep-learning models due to their ability
to handle sequential information effectively.
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Fig. 3 An LSTM cell

VIV SIMULATION OF A MARINE RISER BY CFD

In the current study, CFD simulations are first carried out to
generate the data to be used in the machine-learning process. In
the simulations, the time histories of the lateral displacements, i.e.,
the motions in streamwise and crossflow directions, are collected
along with the time histories of the flow quantities at selected
spatial locations.

Test Case Description

In the simulations, a riser model with a length-to-diameter ratio
(L/D) of 482.5 is used. The riser stands vertically in the fluid
field with a linearly distributed tension. Both ends of the riser
are pinned. The basic properties of the studied riser are listed in
Table 1.

Computational Setup

A computational domain with 20D (riser diameter) in the
streamwise direction and 10D in the crossflow direction is created,
with the riser positioned at the center of the domain. Overset grids
are then generated to discretize the computational domain. An
overview and a detailed cross-section view of the grids are shown
in Fig. 4. It can be seen that two overset-grid blocks are con-
structed including a near field block (red) and a background grid
block (green). The near field block has 231,322 computational
points in total with a dimension of 31 (in the axial direction)x 182
(in the circumferential direction)x41 (in the radial direction), and
the background block has a total of 629,331 grid points with a
dimension of 31 x 201 x 101. The time step size used in this
paper is 0.01 dimensionless time, i.e., the flow travels 0.01D at
every time step. To capture the unsteady vortex-shedding, the CFD
simulations are performed under a Large Eddy Simulation (LES)
framework. A uniform current of 0.42 m/s is specified at the inlet
in the simulations.

Parameter Unit Value
Riser diameter m 0.3
Riser length m 144.45
Bending stiftness N.-m? 6.85E6
Top pretension N 1.84E5
Bottom pretension N 1.75ES5

Table 1 Riser properties

(a) Overview of the overset grids
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(b) Cross-sectional view of the overset grids

Fig. 4 Computational grids
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Fig. 5 Vortex shedding along vertical direction of the riser

CFD Results

The CFD results are shown briefly below to give a general
idea of the flow field. It is worth emphasizing here that the CFD
results in the current study only serve as the training dataset in
the machine-learning processes; therefore, detailed discussions of
the CFD results will be omitted for the sake of brevity. More
details of the FANS simulations of riser VIV can be found in
previous papers (Huang et al., 2011; Ye and Chen, 2019). The
vortex shedding along the vertical direction of the riser is shown
in Fig. 5.

It should be noted that although three-dimensional CFD cal-
culations are performed, only one selected slice of the complete
domain is used in the machine-learning process. By doing this,
we arbitrarily assume that the lateral motions, i.e., streamwise and
crossflow, can be predicted by the flow information or the lateral
motions of the riser solely at the same vertical location, ignoring
the effects of the information at neighboring vertical locations.
This simplification is well enough for the scope of the current
study in which the goal is to compare the performance of differ-
ent ANN structures. The vortex generation and shedding of the
riser at a selected vertical slice, i.e., 1/4 riser length from the top
end, is shown in Fig. 6.

PREDICTION OF VIV BY ANNs

As mentioned earlier, only one slice of the computational
domain is used in the machine learning processes. Figure 7 illus-
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Fig. 6 Vortex shedding of the riser at a given vertical location

Fig. 7 Selected spatial monitoring points

trates the monitoring points at which the flow quantities, specif-
ically x-vorticities, are recorded during the CFD simulations.
Three columns of points are used. The first column of points
is positioned at 1.2D downstream of the riser, and the points
are spaced 1D from each other; the second and third columns
are respectively 1.2D and 2.4D further downstream of the first
column.

A search of optimal hyperparameters used in the training pro-
cesses, e.g., the batch sizes, number of epochs, activation func-
tions, and number of cells used in each of the hidden layers, are
performed according to their performances and training efficiency,
i.e., cost of each ANN structure. Then, we use hyperparameters
as similar as possible for each training of the different ANNs.
Unless otherwise mentioned, a three-layer structure with 128 cells
in each layer is defined for the hidden layers of the ANNs in
this work. The complete dataset consists of 30,000 time instances
(time steps), and the ANNs are trained by utilizing the first 75%
of the time series data, while the last 25% is reserved for testing
purposes. The activation function is set to be “tanh” for the MLP
networks and to “tanh” and “sigmoid” for the LSTM networks.
The “Adam” algorithm is adopted as the optimizer with a learn-
ing rate of 0.001 to train the ANNs, and the mean-square error
(MSE) is selected as the loss function to be minimized in the
training processes. For each training, 500 epochs are performed.

All training is performed by using the machine-learning package,
Keras, with TensorFlow as its backend.

MLP-1: Mapping from Flow Information to Riser Motions

First, the general-purpose of an ANN structure, i.e., an MLP,
is adopted in the prediction of VIV motions of the riser, and the
results obtained by an MLP will also serve as a benchmark for
comparison. In the training of MLP networks, the temporal depen-
dence of different time instances is omitted, meaning that each of
the 30,000 time steps is an individual snapshot that can be viewed
as a separate input. Under this framework, the MLP networks are
used to establish a mapping relation between the x-vorticity of the
nine monitoring points and the lateral displacements of the riser
at the selected vertical location by using the information at one
time step exclusively. This mapping relation can be described by
the following equation:

MLP(flow'") = riser' 9)

Figure 8 shows the change of the loss functions in the training
process of the MLP networks for the streamwise (y) and crossflow
(z) motions. It can be seen that the loss function drops quickly
during the first 100 epochs but starts to show an asymptotic behav-
ior with oscillations. This observation implies that the MLP net-
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Fig. 10 Accuracy of NN-predicted (MLP-1) displacements in
streamwise and crossflow directions

work has approached a potential optimal set of weights while still
having some extent of difference in different training batches.

Afterward, the trained MLP networks are used to predict the
streamwise and crossflow displacements of the riser, as shown
respectively in Figs. 9a and 9b. The red points are the NN-
predicted riser displacements on the training dataset. It can be
observed that the prediction by the NNs on the training dataset
matches the CFD result well in general; however, large discrepan-
cies in the prediction at some time steps can still be identified in
Fig. 9a. For prediction of the trained NNs on the testing dataset,
as shown in green in the two figures, we see that the prediction
of the crossflow displacement is much better than the prediction
of streamwise displacement. However, this is expected since the
crossflow displacement of the riser shows a mainly sinusoidal
pattern with a mean value around 0, while the streamwise dis-
placement is much more complicated. Moreover, the streamwise
displacement of the riser can be seen as a superposition of small-
scale vibrations and a large-scale motion of the riser, making it
challenging for the NN to be effectively trained.

Despite the aforementioned difficulties and some noticeable
spikes, as shown in Fig. 9a, the NN-predicted streamwise dis-
placement of the riser is acceptably reasonable. The large-scale
displacement trend as well as the small-scale vibrations have been
captured successfully, although discrepancies between the predic-
tion and the CFD data can still be identified.

Figures 10a and 10b respectively show the overall accuracy for
prediction of the trained MLP networks for the streamwise and
crossflow displacements of the riser. It can be seen that both of the
MLP networks reach high accuracies on the training dataset with
an R? score of nearly 1. For performance on the test datasets, the
crossflow prediction maintains high accuracy while the accuracy
of the predicted streamwise displacement is relatively lower.

MLP-2: Inclusion of Implicit Gradient Information

In the present study, we attempt to improve the performance
and interpretability of the NNs by including more expert knowl-
edge rather than increasing the complexity of the NNs as reported
in most of the related studies.

Based on the results of MLP-1, improvements of the NNs are
proposed by adding more information to either their output or
input while keeping their structures unchanged.

The first attempt is to add gradient information of the label
into the output. Specifically, instead of outputting the riser motion
only at one instance in each sample, we simultaneously output the
riser motion at three consecutive time instances. In this way, we
include the riser information of two neighboring temporal points,
i.e., the time derivatives of the central point are taken into account
implicitly.
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Fig. 12 Predictions of the riser VIV motion by MLP-2

For illustration purposes, the mapping relation from the input
to the output of MLP-2 can be written as Eq. 10:

MLP(flow') = riser'1:51F1 (10)

and the training history of MLP-2 is shown in Fig. 11. It can be
observed that the losses for both y and z displacements are lower
than those in MLP-1. This may imply that a better mapping rela-
tion was found by the NNs after adding the gradient information
to the output.
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After the training is completed, the obtained NN is used to
predict the riser motion by feeding into required inputs. Compar-
ing with MLP-1, it can be seen that fewer spikes in the stream-
wise displacement are found, and the overall prediction accuracy
of the streamwise displacement is significantly raised from 0.767
to 0.852. However, the improvement is not obvious in general,
and prediction in the testing dataset is challenging.

Figure 13 shows the overall accuracy for prediction of the
trained MLP networks. A significant improvement in the pre-
diction of streamwise displacement is observed. Owing to the
inherent periodicity of crossflow motion, which enhances its pre-
dictability, MLP-2 attains prediction accuracy commensurate with
MLP-1.

MLP-3: Further Inclusion of Explicit Time Labels

Next, based on the results of MLP-2, we attempt to further
improve the performance of the NNs by including the time labels
in the input features. Specifically, for each of the samples, the
mapping relation can now be written as the following:

MLP(flow', t) = riser'~151+1 (11)

The training histories of MLP-3 are shown in Fig. 14. It can be
seen clearly that the training of the crossflow displacement is able
to reach a significantly lower loss level. This is understandable
due to the strong periodic behavior in the crossflow vibration of
the riser.

Figures 15 and 16 show the NN-predicted riser motion and
the prediction accuracy, respectively. In general, a similar perfor-
mance is found compared with MLP-2.

LSTM-1: A Pure Time-series Analysis

Instead of treating the current task as a mapping from flow-
field variables to riser motion, the same task can also be treated
as a time-series problem. Specifically, we predict the riser motion
by using the time history of the motion.

First, in LSTM-1, we apply a pure time-series analysis by using
the information exclusively from the motion history of the riser
itself without any information from the flow field, which can be
written as

LSTM (riser"™”) = riser' (12)
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More specifically, the time sequence of the riser displacements
within the time steps of 1 to 50 is fed into the LSTM network
to infer the riser displacements at the 51st time step. For the
sake of brevity, the above description is referred to as 1-50 to
predict 51; 2-51 to predict 52; 3-52 to predict 53, etc. We expect
that this strategy of training the NN to predict riser VIV motions
would be extremely challenging, if not impossible, due to the
fact that the VIV motion of the riser is a highly nonlinear, fluid-
structure interaction (FST) problem, and the determination of the
riser displacements acquires information from the flow field as
well.

To prepare the training dataset, the first 75% of the time his-
tories of the streamwise and crossflow displacements are broken
down into multiple sub-sequences, each consisting of (a memory
of) 50 consecutive time steps, and the target of prediction is the
next coming time step. Although not presented here in detail, a
hyper-parameter search of the memory size is performed, and the
final memory size of 50 is a compromise between accuracy and
training cost. The training history of LSTM-1 is shown in Fig. 17.

The trained LSTM-1 networks are then used to predict the
streamwise and crossflow displacements of the riser, as shown in
Figs. 18a and 18b, respectively. Different from the previous NN,
in the current time series prediction, the predictions on the test-
ing dataset are generated by the LSTM network one time step by
one time step. For example, we use the first 22,500 time steps to
form the training dataset, the 22,501st time step is generated by
using time steps from 22,450 to 22,500. Then, the NN-predicted
22,501st time step is used to generate the 22,502nd time step; the
NN-predicted 22,502nd time step is then added to the time series
to generate the 22,503rd time step, and so on.

As can be observed in Figs. 18a and 18b, in terms of the
training dataset, either prediction of the streamwise or the cross-
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Fig. 18 Predictions of the riser VIV motion by LSTM-1

flow displacement matches the CFD data well. However, for the
testing data range, obvious discrepancies are observed, especially
for the streamwise prediction. As mentioned earlier, the stream-
wise motion of the riser at a given vertical location can be seen
as a superposition of large-scale motions and small-scale vibra-
tions. It seems that from Fig. 18a, only the small-scale vibrations
of the riser in the streamwise direction are captured (partially)
while the large-scale motion of the riser is missing entirely. For
the crossflow prediction, a much better performance of the LSTM
network can be seen. However, closer inspection reveals that the
amplitudes of the crossflow vibration are not, or at least not obvi-
ously, changing with time. This argument is more prominent when
compared to the previous NN predictions, as shown in Fig. 9a,
Fig. 12a, and Fig. 15a.

Furthermore, a phase difference can be identified in the pre-
dicted crossflow displacement. As shown in Fig. 19a, the green
circles are the predicted crossflow displacement with lighter col-
ors representing later time steps. It can be seen that the prediction
accuracy is high at the beginning and decreases over time.

LSTM-2: Mapping from Flow Information to Riser Motion
by Using Flow Histories

Another LSTM network specifically designed for time-series
predictions is implemented for the same task to account for the
sequential information, i.e., memory, of the flow field. Specifi-
cally, by not only using the data to train the networks at the cur-
rent time step exclusively, we also use the 50 consecutive time
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Fig. 19 Accuracy of NN-predicted (LSTM-1) displacements in
streamwise and crossflow directions
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steps of the flow data at the nine monitoring points to infer the
lateral displacements of the riser at the 50th time step. That is to
say, besides the flow data at the current time step, the memories,
i.e., the time histories, of those spatial points are also leveraged
in the training processes.

LSTM (flow"*") = riser' (13)

Figure 20 shows the histories of the loss functions in the training
of the NNs. It can be observed that the loss functions reached a
lower level and remained smoother compared to those of the MLP
networks.
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The trained LSTM networks are then used to predict the
streamwise and crossflow displacements of the riser, as shown
in Fig. 21a and Fig. 21b, respectively. Again, the overall perfor-
mance of the network trained for the crossflow motion is better
than one trained for streamwise motion. Furthermore, by compar-
ing Fig. 9a with Fig. 21a, obvious improvements in the predic-
tion are identified: 1) there are no abrupt spikes in Fig. 21a as
presented in Fig. 9a; 2) the overall amplitude of the small-scale
oscillations predicted by the LSTM network is smaller than that
predicted by the MLP network, which matches the original CFD
data better. For the crossflow displacement, again, the network
reproduces the vibration well, as discussed earlier.

Figures 22a and 22b show the overall prediction accuracy of
the trained LSTM networks for the streamwise and crossflow
displacements of the riser, respectively. Both LSTM networks
reached high accuracies on the training dataset with an R? score
of almost 1. For the performance on the test datasets, the accuracy
of the streamwise displacement is relatively lower than that of the
crossflow, but a non-negligible improvement of the R? score is
achieved compared with the one obtained from the MLP network,
i.e., from 0.767 to 0.837.

COMPARISON OF NEURAL NETWORK
STRUCTURES

Figure 23 shows the comparison of R? scores of different NN
predictions. It can be seen that for all five NNs, the predictions
of crossflow motion of the riser reaches higher accuracies than
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Fig. 23 Comparison of R? scores of different NN predictions on
the testing dataset

the predictions of the streamwise motion using the same type
of NN. It can also be observed that MLP-3 reaches the highest
prediction accuracy in the streamwise displacement by including
both the label gradients and time labels. In addition, the exclusion
of flow field information, labeled as LSTM-1, negatively impacts
the accuracy of the prediction, demonstrating that the prediction
of riser VIV can hardly be achieved by performing a pure time
series prediction of the riser motion. This is expected due to the
physical sophistication of riser VIV, as discussed earlier.

CONCLUSIONS

In this study, a total of five different NN architectures or train-
ing strategies have been applied to the predictions of riser VIV
motions, i.e., the streamwise and the crossflow displacements. The
original VIV data used in the machine-learning training processes
have been generated by CFD simulations using overset grids
under an LES framework. The time histories of the x-vorticity at
selected points in the flow field as well as the time histories of the
riser lateral displacements have been recorded for the following
training processes. The five different training strategies have then
been adopted to train the NN to predict the riser VIV motions at
the current time step as follows:

e MLP-1: to infer the riser motions by using exclusively the
flow field information at the current time instance

e MLP-2: to add implicit gradient information to MLP-1 by
simultaneously outputting riser displacements at three consecutive
time instances

e MLP-3: to add explicit time labels to the input of MLP-2

* LSTM-1: to infer the riser motions by using exclusively the
time sequences of the riser displacements

e LSTM-2: to infer the riser motions by using time histories of
flow information

According to the results, the following conclusions can be
drawn:

* Predictions of the crossflow displacement of the riser gener-
ally reach higher accuracy than the streamwise displacement.

¢ Inclusion of the label gradients, i.e., MLP-2 and MLP-3, sig-
nificantly improves prediction performance of the NNs.

¢ Predictions of riser VIV using NNs can barely be, if at all,
achieved by performing a pure time series prediction of the riser
motion itself due to the intrinsic nature of riser VIV problems.

It is also important to note that while statistical techniques
could be used to improve the accuracy of streamwise displace-
ment predictions, such as ignoring the initial stage or manually
amplifying vibration amplitudes to simplify neural network train-
ing, we found that these adjustments cannot be made without first
analyzing the data curves. Therefore, to provide a clearer and
more straightforward evaluation of the capabilities of different
NN architectures and training strategies, we chose not to employ
such statistical tricks in this study. Further studies are also rec-
ommended to account for the three-dimensional flow information
and to integrate flow and riser time sequences, i.e., to integrate
spatial and temporal information of the flow field and the riser, in
the training of NNs.
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