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Abstract: Fluid-Structure Interaction (FSI) caused by fluid 
impacting onto a flexible structure commonly occurs in naval 
architecture and ocean engineering. Research on the problem of 
wave-structure interaction is important to ensure the safety of 
offshore structures. This paper presents the Moving Particle 
Semi-implicit and Finite Element Coupled Method (MPS-FEM) to 
simulate FSI problems. The Moving Particle Semi-implicit (MPS) 
method is used to calculate the fluid domain, while the Finite 
Element Method (FEM) is used to address the structure domain. 
The scheme for the coupling of MPS and FEM is introduced first. 
Then, numerical validation and convergent study are performed to 
verify the accuracy of the solver for solitary wave generation and 
FSI problems. The interaction between the solitary wave and an 
elastic structure is investigated by using the MPS-FEM coupled 
method. 
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1 Introduction1 

The solitary wave is a type of peculiar wave with its 
profile located above the surface. It is typically used to 
simulate the tsunami wave, storm-induced wave, or other 
extreme sea conditions. The solitary wave impacting onto a 
structure usually leads to the deformation of or even damage 
to offshore structures such as floating production storage 
and offloading and liquefied natural gas carriers (Sriram and 
Ma, 2012). The interaction between the solitary wave and a 
structure needs to be investigated to prevent the operation of 
facilities from being affected. However, conducting 
numerical research on the interaction between the solitary 
wave and an elastic structure is difficult due to challenges in 
predicting the instantaneous impact load of the solitary wave 
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and the deformation of the structure. In this paper, we will 
address the challenging FSI problem by using numerical 
approaches. 

Many numerical methods have been developed to solve 
the Fluid-Structure Interaction (FSI) problems. The coupling 
strategies for FSI problems are primarily classified into 
partitioned (or weak) and monolithic (or strong) approaches. 
In the monolithic approach, a single system of equations that 
consider both fluid and structure domains is established. The 
main advantage of the monolithic approach is the stability of 
the solution process. However, the equation is difficult to 
form without any modifications for complex engineering 
problems and much more expensive to solve (Longatte et al., 
2009). Particle Finite Element Method (PFEM) (Idelsohn, 
2008) and space-time FEM (Walhorn et al., 2005; Aliabadi 
and Tezduyar, 1993) are two typical FSI computational 
methods based on the monolithic approach. By contrast, the 
partitioned approach divides the computational field into 
fluid and structure parts, the governing equations of which 
are solved separately. Interfacial conditions are imposed 
explicitly by exchanging the information between fluid and 
structure solutions. Given the modularity of the partitioned 
approach, it takes advantage of the already mature 
computation codes for fluid or structure analysis, which 
have been validated by solving complicated problems. The 
main challenge for the partitioned approach is to coordinate 
disciplinary algorithms to ensure the accuracy and efficiency 
of the FSI solution (Hou, 2012). 

Currently, most numerical analyses for FSI problems are 
based on the grid system. Further effort is needed for FSI 
analysis when using mesh-based methods such as finite 
volume method and finite difference method, which involve 
tracing the surface of the fluid (Hirt and Nichols, 1981; 
Stanley and Fedkiw, 2003), information exchange between 
the structure and fluid domains, and updating the distorted 
meshes. Various mesh-morphing algorithms for FSI analysis 
are proposed to address these problems (el Moctar et al., 
2017). The difficulties brought about by mesh can be 
eliminated when a Lagrangian description method is 
adopted. 

Among the Lagrangian description methods, the 
Smoothed Particle Hydrodynamics (SPH) method (Lucy, 
1977) and Moving Particle Semi-implicit (MPS) method 
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(Koshizuka, 1996) are two representative particle-based 
methods for hydrodynamics in which the computational 
field is discretized as numerous moving particles. These 
methods can be especially effective while studying problems 
characterized by large displacements of the fluid-structure 
interface and rapidly moving fluid surface. In this type of 
problem, the fluid-structure interface and flow surface can 
be easily obtained without any specific treatments by the 
particle-based method. The MPS method uses a Lagrangian 
description to model fluid particles whose movement is 
computed from the interaction forces between particles 
(Chen et al., 2007). This approach removes difficulties in 
the treatment of the convective terms. Furthermore, mesh is 
not needed since MPS is a particle-based method. Numerous 
studies have been conducted on wave-structure interaction 
problems based on particle methods. For example, Altomare 
et al. (2015) employed the SPH method to study the 
wave-induced force on coastal structures and obtained 
reliable results through comparisons of experimental and 
semi-empirical results. Liang et al. (2017) investigated the 
solitary wave interaction with a movable seawall on the 
basis of incompressible SPH. Zhang and Wan (2017) 
simulated the interaction between waves and a free-rolling 
body using MPS method. The obtained Response Amplitude 
Operators (RAO) for roll motions are in agreement with 
experimental data. 

The main objective of this study is to apply the 
MPS-FEM coupled method to investigate the interaction 
between the solitary wave and an elastic structure. The MPS 
method is used to calculate the fluid domain, whereas the 
FEM method is adopted for the structure domain. The 
coupled method combines the advantages of the individual 
methods and can thus achieve efficient and robust results. 
These two methods are coupled in a partitioned approach. 
This paper is organized as follows: The numerical schemes 
of MPS and FEM are introduced first, and the coupling 
strategy for the two methods is presented. Subsequently, a 
benchmark case of dam-break flow interacting with an 
elastic gate is studied to verify the capability of the proposed 
solver in solving FSI problems. Then, a convergence study 
for the wave-structure interaction problem is conducted to 
find the appropriate particle spacing. Finally, the proposed 
MPS-FEM coupled method is applied to the simulation of 
the solitary wave interacting with an elastic structure. 

2 Numerical methods 

In this paper, the fluid domain is calculated by our 
in-house particle solver MLParticle-SJTU on the basis of the 
improved MPS method. The original MPS method suffers 
from many problems, such as pressure oscillation, energy 
non- conservation, computational instability, and low 
precision. To address these problems, a number of 
enhancements were proposed (Khayyer et al., 2008; Kondo 
and Koshizuka, 2011; Khayyer and Gotoh, 2013). The 
improvements for the original MPS employed in the 

proposed solver were elaborated in our previous papers 
(Zhang and Wan, 2011; Zhang et al., 2014; Tang and Wan, 
2015). The solver has been proven to be valid in the 
simulation of surface flow (Tang et al., 2016a, 2016b), such 
as dam-break, sloshing, water-entry, and wave-body 
interaction (Zhang et al., 2016). In this section, the 
mathematical equations of MPS and FEM, together with 
numerical solitary wave generation, are introduced. The 
coupling strategy for MPS and FEM is then described. 

2.1 Fluid solver based on MPS 
The governing equations for viscous incompressible fluid 

contain continuity equation and a Navier–Stokes equation: 
0 V =                   (1) 
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where ρ is the fluid density, P is the pressure, V is the 
velocity vector, g is the gravitational acceleration, and ν is 
the kinematic viscosity. In the particle method, governing 
equations are transformed to equations of the particle 
interactions. The particle interaction models are based on the 
kernel function. This paper adopts a modified kernel 
function (Zhang and Wan, 2012). 
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where | |j ir  r r is the distance between particle i and j, and 

re is the radius of effect. 
In the MPS method, the models of particle interaction 

involve the gradient, divergence, and Laplacian models. 
They are written as 
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where D  is the dimension number, r is the position vector, 

and 0n  is the initial density of the particle number and 
defined as 

 j ii
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As noted previously, the MPS method is used to simulate 
the incompressible flow. To ensure the incompressibility of 
the fluid, a semi-implicit algorithm is adopted, and pressure 
fields are obtained by solving the pressure Poisson equation. 
In this work, we employ a mixed source term method 
combined with a velocity divergence-free condition and a 
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constant particle number density, as proposed by Tanaka 
(Tanaka and Masunaga, 2010) and rewritten as (Lee et al., 
2011) 
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where ∆t is the calculation time step, k and k+1 indicate the 
physical quantity in the kth and (k+1)th time steps, and γ is 
the weight of the particle number density term in the 
right-hand side of Eq. (9) and is assigned a value between 0 
and 1. In this paper, γ =0.01 is selected for all numerical 
experiments. 

2.2 Structure solver based on FEM 
According to FEM theory, the spatially discretized 

structural dynamic equations, which govern the motion of 
structural nodes, can be expressed as (Iura and Atluri, 1995) 
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where M, C, K are the mass matrix, the Rayleigh damping 
matrix, and the stiffness matrix of the structure, respectively. 
F is the external force vector that acts on the structure and 
varies with computational time. y is the displacement vector 

of the structure. 1  and 2  are coefficients related with 

the natural frequency and the damping ratios of the 
structure.  

According to Newmark (1959), the structural nodal 
displacement at t=t+∆t can be solved with the help of 
Taylor’s expansions of velocity and displacement 
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where β and γ are important parameters of the Newmark 
method and are selected as β=0.25, γ=0.5 for all simulations 
in this paper. From Eqs. (12) and (13), we can obtain the 

expressions of tty   and tty   in the form of tty  , 

ty , and ty  (Hsiao et al., 1999) 
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where 70 ~ aa  are the parameters related to β, γ, and t . 

After combined with Eq. (14) and (15), Eq. (10) can be 
transformed into Eq. (17) as below 
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K  and F  are the so-called effective stiffness matrix 
and effective force vector in the constructed Eq. (17), 

respectively. Then, the displacement tty   that 

corresponds to the next time step can be obtained by solving 
Eq. (17). Finally, the accelerations and velocities at the next 
time step are updated by using Eqs. (14) and (15). The 

tty  , tty   and tty   are herein updated from ty , ty , 

and ty . 

2.3 Coupling strategy for MPS-FEM coupled method 
In this study, the partitioned coupling between MPS and 

the FEM method is implemented. The time step sizes for 
structure and fluid analyses are ∆ts and ∆tf, respectively. 
Here ∆ts is k multiples of ∆tf, where k is an integer. k is set to 
1, which indicates that the time steps for the structure and 
fluid analyses are the same. The interaction procedure can 
be summarized as follows: 

1) The fluid field is calculated k times based on the MPS 
method. The pressure of the fluid wall boundary particle is 
calculated as follows: 

1
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where n ip   is the pressure of the fluid particle on the wall 

boundary at the instant ft i t  , and 1np   is the average 

pressure of the fluid particle within st . 

2) The values of structural nodal position ty , velocity 

ty , and acceleration ty  are determined based on the 

results at the previous time step. 
3) The external force vector 

st tF  of the structural 

boundary particles is calculated by multiplying the average 

pressure 1np   and the influential area, which equals the 

square of the initial particle spacing dp. 
2

1  
st t np dpF            (21) 

4) The new values of structural nodal displacements and 
velocities are calculated based on the Newmark method 
described in the previous section. 

5) The velocity and position of the structural boundary 
particles and fluid particles are updated. 

2.4 Numerical generation of solitary wave 
In theory, a solitary wave consists of a single crest of 

infinite length. According to potential flow theory, the 
profile of the solitary wave can be expressed as follows 
(Boussinesq, 1872; Korteweg and De Vries, 1895): 

2sech ( ( ))H k x ct               (22) 

33 / 4k H d               (23) 

( )c g H d                (24) 

where H is the wave height, d is the water depth, x is the 
horizontal coordinate, c is the wave speed, g is the 
acceleration of gravity, and t is the time. 

In this paper, the solitary wave is generated by a 
piston-type wavemaker; its motion was described by Goring 
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(1978). The speed of the wavemaker is 
2
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Thus, the position of the wavemaker at time t can be 
expressed as 

( ) tanh( ( ))
H

X t k ct X
kd

            (26) 

The stroke length is calculated by the difference value 
between the wavemaker position at t    and t    

16

3

Hd
S                  (27) 

The wave period is approximately 

2
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H
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After one wave period, the wavemaker reaches its 
maximum position and then becomes still. 

3 Numerical validations 

To check the convergence and accuracy of the calculated 
results, a benchmark case (Antoci et al., 2007) of a dam- 
break flow interacting with an elastic gate is investigated in 
this section. As shown in Fig. 1, a two-dimensional tank is 
filled by a water column with the depth of 0.14 m and width 
of 0.1 m. An elastic gate is installed at the lower part of the 
left wall of the tank. The upper end of the gate is 
consolidated, while the lower end is free to deform.  
 

 
Fig. 1  Schematic view of a dam-break with elastic gate 

 
3.1 Convergence study 

To investigate the effects of particle spacing and element 
length on the numerical results, the convergence study is 
conducted. The calculation parameters are shown in Table 1. 
According to Euler–Bernoulli beam theory, the natural 
frequency of the elastic gate is calculated to be 8.27 Hz. The 

damping coefficients 1  and 2  are set to 0 and 0.025 in 

this case, respectively.  
For the proposed MPS-FEM coupled method, the element 

nodes overlap the ghost particles in the boundary, thereby 
indicating that the element length for structure analysis 
equals the particle spacing for fluid analysis. Three different 
spatial resolutions (0.000 5, 0.001, 0.002 m), whose 
configurations are listed in Table 2, are employed to check 
the convergence of the numerical results. The calculation 
time step is set based on the Courant–Friedrichs–Lewy 
(CFL) stability condition. 

max

max

u

dpC
t


                  (29) 

where ∆t is the time step, umax is the maximum instantaneous 
velocity of particles, dp is the initial particle spacing, and 
Cmax is the upper bound of the Courant number, which is set 
to 0.1 in this study. 

A comparison of the displacement history on the endpoint 
of elastic gate with different spatial resolutions is shown in 
Fig. 2. A similar tendency can be observed that the 
displacements in both horizontal and vertical directions 
reach the maximum at 0.167 s and then decrease slowly 
after the peak. The displacement histories of the fine (Case 1) 
and medium-resolution (Case 2) cases show good agreement, 
whereas the coarse-resolution case (Case 3) shows an 
evident discrepancy. The peak values of the displacement 
history are listed in Table 3 to present the convergence of the 
simulations quantitatively. Table 3 shows that the maximum 
displacements stabilized despite a minimal relative 
difference. Thus, the obtained result in this section is 
convergent with respect to the spatial resolution. 

 

 
Fig. 2  Displacement history on the endpoint of the gate 

 
3.2 Results and discussion 

To validate the accuracy of the proposed solver, numerical 
results of the benchmark case are compared with 
experimental results at the same instants with an interval of 
0.08 s. Snapshots of the deformation of the elastic gate and 
elevation of the free surface are shown in Fig. 3. The elastic 
gate starts to bend because of hydrostatic pressure. Then, a 
clearance exists between the gate and bottom through which 
the fluid could flow. The displacement at the endpoint of the 
gate continues to increase and reaches its maximum. An 
evident decrease in flow velocity could be observed after 0.2 
s. In addition, the profiles of the deformed baffle and the 
free surface coincide with those of the experimental results 
(Antoci et al., 2007). 

Time histories of horizontal and vertical displacements at 
the endpoint of the gate are shown in Fig. 4. The horizontal 
displacement agrees well with the experimental result, 
whereas the numerical simulation overestimates the vertical 
displacement slightly (6%) around the maximum. The 
comparison between the numerical results and the 
experiment data shows that the displacement of gate is well 
reproduced by the proposed MPS-FEM coupled method. 
This finding indicates that the proposed solver can solve FSI 
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problems with free surface. 

4 Numerical simulations for solitary wave- 
structure interaction 

Wave-structure interaction is numerically investigated in 
this section. The solitary wave is generated by a piston-type 
wavemaker in a numerical wave flume. Fig. 5 shows the 
geometric setup of the numerical wave flume, which is the 
same as that presented by Betsy (2014). The wave height 
(amplitude) of the solitary wave is set to 0.034 3 m, and the 
water depth is 0.114 m. The interactions between the solitary 
wave with a rigid plate and that with a flexible plate are 
simulated. The effects of the structure’s flexibility on flow 
are primarily investigated. 

4.1 Numerical conditions and convergence study 
A convergence study is performed to explore the 

convergence of the FSI simulation with respect to the spatial 
resolution. Three different spatial resolutions (0.004, 0.002, 
and 0.001 m), whose configurations are listed in Table 4, are 
considered in the simulations. The computational parameters 
in the simulations are shown in the fluid part of Table 5. The 
wave-elevation gauge H1 is set at a distance of 0.61 m from 
the piston. 

Numerical pressure contours (Case 2) at different instants 
are shown in Fig. 6, from which the propagation of the 
solitary wave can be observed. The solitary wave forms at 
1.5 s and reaches the right end of the fume at 3.5 s. Then, the 
wave reflects back to the upstream soon after impacting on 
the wall. The pressure field is fairly smooth, and no evident 
decay for the wave height is observed during propagation. 

Fig. 7 shows a comparison of the wave-elevation history 
at H1 point with different spatial resolutions and the 
experimental result. The convergent result can be obtained 
for Cases 2 and 3. However, the maximum wave elevation 
for Case 1 is evidently higher (7.3%) than the desired value. 
Moreover, the steepness of the curve for the 
coarse-resolution case after the peak is relatively smaller 
than the other two cases. The differences between the result 

of the medium and fine-resolution cases are almost 
negligible. Furthermore, the numerical wave elevation 
(medium, dp = 0.002 m) and the experiment result (Betsy, 
2014) show good agreement, thereby indicating that a 
particle spacing of 0.002 m can achieve the desired solitary 
wave. 

Then, the interaction between solitary wave and a flexible 
plate is investigated by using the in-house solver with the 
expansion of the MLParticle-SJTU solver based on the 
MPS-FEM coupled method. The geometric setup and the 
computational parameters (Cases 4–6) are the same as in 
previous cases (Cases 1–3). However, the wall on the right 
end of the flume is replaced by a simply supported elastic 
structure with a consolidated bottom. The computational 
parameters for the fluid and structure calculations are shown 
in Table 5. The natural frequency of the elastic structure is 
11.3 Hz according to the Euler–Bernoulli beam theory. The 
element type employed in the structural calculation is a 
two-node planar beam element. The displacement of the 
structure in the middle point is recorded during the 
calculation. Four pressure gauges (P1, P2, P3, and P4) are 
set on the structure to record the pressure history. Their 
vertical distances from the bottom are 0.140, 0.120, 0.114, 
and 0.09 m, respectively.  

To verify the convergence of the simulations, the results 
with different particle spacings are compared in Figs. 8 and 
9. The displacement history (on the middle point) and 
pressure history (on P4 point) show good agreement. Their 
peak values and the relative errors with respect to the fine 
spatial resolution (Case 6) are listed in Table 6. For the 
medium spatial resolution (Case 5), the relative errors for 
the maximum pressure and displacement are 2.5% and 1.7% 
respectively, which indicates that the FSI simulation results 
are convergent. 

The hardware that was used for the simulations includes 
an Intel Core i7-4790 processor @ 3.60 GHz with 8 threads 
and 16 GB of memory. The time consumed on each case is 
shown in Fig. 10. The consumed time increases dramatically 
with the refinement of the particle and the element.

 

Table 1  Parameters for computation 

Item Parameters Value 

Structure 

Cross area/m2 0.005 
Elastic modulus/MPa 10.0 

Damping coefficient α1 0 
Damping coefficient α2 0.025 

Fluid 
Water density/(kg·m−3) 1 000 

Kinematic viscosity/(m2·s−1) 1×10−6 
Gravitational acceleration/(m·s−2) 9.81 

 
Table 2  Configurations for cases 

Case No. Particle spacing/m Particle number Element length/m Element number Time step/s 

1 0.000 5 55 720 0.000 5 158 0.000 02 

2 0.001 13 860 0.001 78 0.000 05 

3 0.002 3 430 0.002 39 0.000 1 
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Table 4  Configurations for cases 

Cases 
Plate 

condition 
Particle spacing/m Particle number

Element 
length/m 

Element number Time step/s

1 Rigid 0.004 17 472 - - 0.000 2

2 Rigid 0.002 71 193 - - 0.000 1

3 Rigid 0.001 284 886 - - 0.000 05

4 Elastic 0.004 17 472 0.004 55 0.000 2

5 Elastic 0.002 71 193 0.002 110 0.000 1

6 Elastic 0.001 284 886 0.001 220 0.000 05

Table 5  Parameters for computation 

Item Parameters Value 

Structure 

Cross area/m2 0.004 
Elastic modulus/MPa 50.0 

Damping coefficient α1 0 
Damping coefficient α2 0.025 

Fluid 
Water density/(kg·m−3) 1 000 

Kinematic viscosity/(m2·s−1) 1×10−6 
Gravitational acceleration/(m·s−2) 9.81 

 

 
Fig. 4  Horizontal and vertical displacements of the free 

end of the gate 

 
 
 

 
 

Fig. 5  Geometric setup of the numerical wave flume 
 

Table 3  Peak value in the displacement history 

Case No. Disp. in Hor./m Relative difference/% Disp. in Ver./m Relative difference/%

1 0.041 77 - 0.021 41 - 

2 0.042 45 1.6 0.020 84 −2.6 

3 0.045 16 8.1 0.018 94 −11.5 

(a) t=0.04 s                (b) t=0.12 s                  (c) t=0.20 s                   (d) t=0.28 s 

Fig. 3  Snapshots of deformation and free surface (top: experiment from Antoci et al. (2007); bottom: present result in Case 2)
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Fig. 6  Propagation of the solitary wave in the flume (Case 2) 

 
Fig. 7  Comparison of wave-elevation history at H1 (dot: 

Case 1; dash: Case 2; solid: Case 3; square: Betsy 
(2014)) 

 
Fig. 8  Comparison of displacement history on the 

midpoint of the plate (dot: Case 4; dash: Case 5; 
solid: Case 6) 

 
Fig. 9  Pressure history on P4 point (coarse: Case 4; 

medium: Case 5; fine: Case 6) 

 
Fig. 10  Time consumed on the FSI simulations (coarse: 

Case 4; medium: Case 5; fine: Case 6) 
 

 

Table 6  Comparison of results of the FSI simulations 

Case No. Max. Dis./m Relative difference/% Max. pres./Pa Relative difference/% 

4 0.009 75 5.7 623.3 6.6 

5 0.010 16 1.7 650.9 2.5 

6 0.010 34 - 667.4 - 

 
4.2 Results and discussion 

The results of the aforementioned numerical simulation 
(Case 5) are discussed in this subsection. The effects of the 
structural flexibility on the interaction are mainly 
investigated. As shown in Fig. 8, the structure slightly bends 
and stabilizes (∆x=0.003 5 m) quickly at the beginning 
because of the hydrostatic pressure acting onto the structure. 
Then, at 3 s, the structure begins to be impacted by the 
solitary wave, and the solitary wave propagates to the right 
end of the flume. At 3.6 s, the displacement on structure 

reaches the maximum (∆x=0.01 m) and drops to the 
previous level soon after the slight oscillation owing to the 
structure damping.  

The pressure time history on the gauges is shown in Fig. 11. 
The figure also shows the corresponding results for a rigid 
structure with the same spatial resolution (Case 2). 
According to the pressure history on the P3 point, the 
duration of the wave impact is approximately 1 s, which 
indicates that slamming did not occur in the present 
simulation. The maximum pressure on the rigid structure 
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appears at 3.5 s and is much greater than that on the elastic 
structure. However, the maximum pressure appears at 3.6 s 
for the elastic structure. This slight time discrepancy could 
be due to the flexibility of the elastic structure. Moreover, 
the pressure oscillates for the rigid structure, whereas the 
pressure is steady for the elastic structure because the energy 
is partially absorbed by the elastic structure and the flow 
field is relatively stable.  

Comparative snapshots are presented in Fig. 12 to show 
the structural deformation of the elastic structure. At t=3.0 s, 
the wave propagates near the right end of the flume, and the 
elastic structure begins to be affected. As the wave crest 
approaches the wall, the surrounding water surface elevates 
evidently, and the deformation of the structure increases 
accordingly. Then, at t=3.6 s, the wave crest reaches the 

wall and impacts onto the elastic structure. The surface rises 
rapidly, and the deformation of the structure reaches the 
maximum. For the elastic structure, the water level near the 
wall is slightly lower than that for the rigid structure because 
the deformation of the structure provides extra space for the 
water. The surface and deformation return to the previous 
level as the wave reflects upstream.  

During the interaction, no wave breaking or curling 
occurs on the surface, thereby possibly resulting in air 
entrapment. Thus, the effects of air phase can be ignored in 
this study. According to the research of Khayyer and Gotoh 
(2015) based on the multi-phase flow model, the cushioning 
effects of the air trapped between the structure and the fluid 
would noticeably reduce the impact pressure.

 

 
(a) P1 

 

(b) P2 

 
      (c) P3 

 
(d) P4 

Fig. 11  Pressure history on P1–P4 (solid: Case 2; dash: Case 5) 

 

(a) t=3.0 s 

 
(b) t=3.3 s 
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(c) t=3.6 s 

 
(d) t=3.9 s 

 
(e) t=4.2 s 

Fig. 12  Snapshots of structural deformation and flow field (left: Case 2; right: Case 5) 

5 Conclusions 

In this paper, the MPS-FEM coupled method is 
introduced to investigate the interaction between the solitary 
wave and an elastic structure. Theories of MPS and FEM, 
together with the coupled strategy, are introduced. In the 
numerical simulation, the benchmark case of dam-break 
flow interacting with an elastic gate is studied first. The 
time-dependent displacements of the free end of the gate, 
together with the free surface, are in good agreement with 
experimental data. This finding indicates that the proposed 
MPS-FEM coupled method efficiently solves FSI problems 
with free surface. 

Subsequently, the FSI problem of the solitary wave 
interacting with an elastic structure is studied by using the 
MPS-FEM coupled method. A convergent study with respect 
to particle spacing is conducted. Results show that a particle 
spacing of 0.002 m can generate the desired solitary wave. 
In addition, the displacement and pressure history in the FSI 
simulations with different spatial resolutions are compared 
qualitatively and quantitatively. Convergent results are 
observed. 

Finally, the effects of structural flexibility on the 
wave-structure interaction are investigated. The maximum 
pressure occurs at 3.5 s for the rigid case and occurs 0.1 s 
later for the flexible case. The water level near the wall is 
slightly lower in the elastic structure than in the rigid 
structure because the deformation of the structure provides 
extra space for the water. By comparing the results of case 

with rigid and elastic structure, it can be seen that the 
pressure on the elastic structure is much lower than that on 
the rigid structure. In other words, the flexibility of the 
structure relieves the impacting load of the solitary wave. 
Thus, the MPS-FEM coupled method can be applied to FSI 
problems with waves. 
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