Vortex Identification and Visualization for Complex Ship and Ocean Engineering Flows

Weiwen Zhao

State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University

The 3rd Symposium on Computational Marine Hydrodynamics Dec. 13, 2019, Shanghai, China
Outline

• Motivation

• Overview of methods
 • Vorticity
 • Methods based on velocity gradient decomposition

• Applications
 • Propeller open water test
 • JBC hull drag simulation
 • Vortex-induced motion of a semi-submersible

• Summary
Motivation

- Marine hydrodynamic involves with high-Re flow and complex geometries
- These flows include complex and numerous vortex structures
Outline

• Motivation

• Overview of methods
 • Vorticity
 • Methods based on velocity gradient decomposition

• Applications
 • Propeller open water test
 • JBC hull drag simulation
 • Vortex-induced motion of a semi-submersible

• Summary
Overview of methods

1. Vorticity

Defined as the curl of velocity $\omega = \nabla \times \mathbf{u}$

- Cannot distinguish between swirling motions and shearing motions
Overview of methods

2. Methods based on velocity gradient decomposition

\[D = S + \Omega \]

Velocity gradient tensor

\[D = \nabla u \]

Symmetric, strain rate tensor

\[S = \frac{1}{2} (\nabla u + \nabla u^T) \]

Skew-symmetric, vorticity tensor

\[\Omega = \frac{1}{2} (\nabla u - \nabla u^T) \]

Characteristic equation:

\[\lambda^3 + P \lambda^2 + Q \lambda + R = 0 \]

First invariant

\[P = -\text{tr}(D) \]

Second invariant

\[Q = \frac{1}{2} (\text{tr}(D)^2 - \text{tr}(D^2)) \]

Third invariant

\[P = -\text{det}(D) \]
Overview of methods

2. Methods based on velocity gradient decomposition

- Q-criterion: second invariant of velocity gradient tensor

\[
Q = \frac{1}{2} \left(tr(D)^2 - tr(D^2) \right) = \frac{1}{2} \left(\|\Omega\|^2 - \|S\|^2 \right)
\]

Defines a vortex as a “connected fluid region with a positive second invariant of \(\nabla u\)”

\[Q > 0\]
Overview of methods

2. Methods based on velocity gradient decomposition

- λ_2-criterion: second eigenvalue of $A = \Omega^2 + S^2$

Defines a vortex as a "a connected region with two negative eigenvalues of $\Omega^2 + S^2$"

$\lambda_2 < 0$

Vortex of wind turbine
Overview of methods

2. Methods based on velocity gradient decomposition

- **New Omega** (Liu et al., 2016):

 \[\Omega = \frac{b}{a + b + \varepsilon} \]

 Where,

 \[a = \text{tr}(S^T S) \]
 \[b = \text{tr}(\Omega^T \Omega) \]
 \[\varepsilon = 0.000001(b - a)_{\text{max}} \]

 - Connected regions where \(\Omega > 0.5 \) are identified as vortex
 - Normalized between 0 and 1, recommend value for iso-surface: 0.52

Overview of methods

2. Methods based on velocity gradient decomposition

Rortex/Liutex (Liu et al., 2018):

First, get the direction of Rortex/Liutex vector. Transfer velocity gradient to a local frame XYZ in which the new Z axis coincident with rotation axis

\[\nabla U = Q \nabla u Q^T = \begin{bmatrix} \frac{\partial U_X}{\partial X} & \frac{\partial U_X}{\partial Y} & 0 \\ \frac{\partial U_Y}{\partial X} & \frac{\partial U_Y}{\partial Y} & 0 \\ \frac{\partial U_Z}{\partial X} & \frac{\partial U_Z}{\partial Y} & \frac{\partial U_Z}{\partial Z} \end{bmatrix} \]

Overview of methods

2. Methods based on velocity gradient decomposition

Rortex/Liutex (cont.)(Liu et al., 2018):

Then, obtain the strength (magnitude) of Rortex/Liutex vector

\[R = \begin{cases}
2(\beta - \alpha), & \alpha^2 - \beta^2 < 0 \text{ and } \beta > 0 \\
2(\beta + \alpha), & \alpha^2 - \beta^2 < 0 \text{ and } \beta < 0 \\
0, & \alpha^2 - \beta^2 \geq 0
\end{cases} \]

Where,

\[\alpha = \frac{1}{2} \sqrt{\left(\frac{\partial U_Y}{\partial Y} - \frac{\partial U_X}{\partial X} \right)^2 + \left(\frac{\partial U_Y}{\partial X} + \frac{\partial U_X}{\partial Y} \right)^2} \]

\[\beta = \frac{1}{2} \left(\frac{\partial U_Y}{\partial X} - \frac{\partial U_X}{\partial Y} \right) \]

Finally, Rortex/Liutex vector is defined as: \(\mathbf{R} = R \mathbf{r} \)

Overview of methods

2. Methods based on velocity gradient decomposition

- Normalized Rortex/Liutex (Dong et al., 2019):

\[
\tilde{\Omega}_R = \frac{\beta^2}{\beta^2 + \alpha^2 + \varepsilon}
\]

Where,

\[
\alpha = \frac{1}{2} \sqrt{\left(\frac{\partial U_Y}{\partial Y} - \frac{\partial U_X}{\partial X}\right)^2 + \left(\frac{\partial U_Y}{\partial X} + \frac{\partial U_X}{\partial Y}\right)^2}
\]

\[
\beta = \frac{1}{2} \left(\frac{\partial U_Y}{\partial X} - \frac{\partial U_X}{\partial Y}\right)
\]

- \(\varepsilon\) is a small number to avoid divided by zero

Overview of methods

2. Methods based on velocity gradient decomposition

➤ (Modified) Normalized Rortex/Liutex (Liu and Liu, 2019):

\[
\tilde{\Omega}_R = \frac{\beta^2}{\beta^2 + \alpha^2 + \lambda_{cr}^2 + \frac{1}{2} \lambda_r^2 + \varepsilon}
\]

Where,

➤ \(\lambda_r \) is the real eigenvalue of velocity gradient tensor

➤ \(\lambda_{cr} \) is the real part of conjugate complex eigenvalue of velocity gradient tensor

➤ \(\varepsilon \) is a small number to avoid divided by zero

Outline

• Motivation

• Overview of methods
 • Vorticity
 • Methods based on velocity gradient decomposition

• Applications
 • Propeller open water test
 • JBC hull drag simulation
 • Vortex-induced motion of a semi-submersible

• Summary
1. Propeller open water test

- ONRT propeller from Tokyo2015 CFD workshop
- $k - \omega$ SST turbulence model
- Dynamic overset grid (1.13 million in total)
- Single-run for all advance ratios
Applications

1. Propeller open water test

$Q = 5$

$Q = 100$

$Q = 500$

$Q = 1000$
Applications

1. Propeller open water test

\[\lambda_2 = -5 \]

\[\lambda_2 = -100 \]

\[\lambda_2 = -500 \]

\[\lambda_2 = -1000 \]
Applications

1. Propeller open water test

\[\tilde{\Omega}_R = 0.52 \]

\[\tilde{\Omega}_R = 0.54 \]

\[\tilde{\Omega}_R = 0.56 \]

\[\tilde{\Omega}_R = 0.58 \]
2. JBC hull drag simulation

- JBC model from Tokyo2015 CFD workshop
- $k - \omega$ SST DDES turbulence model
- Stationary mesh (19.8 million)

Ref: https://t2015.nmri.go.jp/jbc.html
2. JBC hull drag simulation

\[Q = 5 \]

\[Q = 50 \]
Applications

2. JBC hull drag simulation

\[\tilde{\Omega}_R = 0.52 \]

\[\tilde{\Omega}_R = 0.60 \]
Applications

2. JBC hull drag simulation

\[Q = 10 \]

\[\tilde{\Omega}_R = 0.52 \]
Applications

3. Vortex-induced motion of semi-submersible

- Paired-Column Semi-submersible
- $k - \omega$ SST DDES turbulence model
- Dynamic overset mesh (2.53 million)
3. Vortex-induced motion of semi-submersible

\[Q = 1 \]

\[\tilde{\Omega}_R = 0.52 \]
3. Vortex-induced motion of semi-submersible

\[Q = 1 \]

\[\tilde{\Omega}_R = 0.52 \]
3. Vortex-induced motion of semi-submersible
Summary

- Various kinds of vortex identification (VI) methods have been applied to complex ship and ocean engineering flows.
- Vorticity cannot distinguish between swirling and shearing motions, thus cannot represent vortex.
- Traditional eigenvalue-based VI methods (such as Q and lambda2) cannot distinguish shearing motions from rotation and the vortex structures depend on the threshold value.
- The (modified) normalized Rortex/Liutex VI method simplifies the VI procedures in the following aspects:
 - Normalized, threshold for iso-surface is always \(~0.52\)
 - Identified vortex excludes shearing motions and shear boundary from vorticity.
 - Capture strong and weak vorticities simultaneously.
Future work

- Apply Rortex/Liutex to more marine hydrodynamic problems
- Determination of vortex core center lines

Thank you!