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A B S T R A C T   

In this paper, the improved moving particle semi-implicit (IMPS) method is further developed into a multiphase 
method by introducing various multiphase models. Then, the developed multiphase MPS method is applied to a 
variety of 2-D/3-D simulations of interfacial flows, including Rayleigh-Taylor instability, bubble rising, dam- 
break flow, and internal solitary waves. The fair agreements between the results of MPS and other reference 
results demonstrate that the present multiphase MPS method is stable and accurate enough to capture the 
interface with a large deformation in different flow problems. The phenomenon of air entrapment induced by the 
dam-break flow is well reproduced in the multiphase simulation and its influence on impact pressure is discussed 
in detail. The internal solitary waves with different amplitudes are numerically generated and the wave heights 
show a good agreement with experimental data even after a long-distance propagation, indicating that the 
numerical diffusion of the present multiphase MPS method is relatively low and the energy conservation can be 
ensured.   

1. Introduction 

In ocean engineering, there exist many interfacial flows phenomena, 
that is, flow fields with different fluids are separated by sharp interfaces, 
such as the bubbly flow (e.g., Chen et al., 2019; Abbaszadeh et al., 
2020), interfacial wave (e.g., Grisouard et al., 2011; Zou et al., 2020), 
underwater explosion (e.g., Klaseboer et al., 2005; Wang et al., 2020), 
etc. Given the complexity and high cost of experimental research, 
Computational Fluid Dynamics (CFD) has gradually become an impor-
tant numerical tool for interfacial flows, especially with the rapid 
development of computer technology in the last decades. In order to 
better reproduce the violent hydrodynamic phenomena appearing in the 
interfacial flows and capture the complex interfaces accurately, a variety 
of multiphase methods have been developed and applied (e.g., Ketab-
dari et al., 2008; Wan et al., 2010; Marsooli and Wu, 2014; Sampath and 
Zabaras, 2015; Lyu et al., 2017; Zhang et al., 2021c). However, most of 
multiphase methods are based on the mesh-based theory, such as Vol-
ume Of Fluid (VOF), Level Set (LS), Front Tracking (FT), etc., in which 
the discretization of fluid domain is implemented in the Eulerian mesh 
system. After a relatively long period of development, the theoretical 
basis of mesh-based methods has been quite mature and is widely fol-
lowed by most of commercial software. However, complicated 
interface-capturing algorithms need to be carried out to trace the 

interfaces in the mesh-based method, which would bring additional 
calculation errors. Especially, when the interfacial flows become violent 
and cause the large deformation of phase interface, the accuracy of 
interface-capturing algorithms encounters great challenges. 

In recent decades, the mesh-free method, also known as particle 
method, was proposed as the next generation of CFD method. Different 
from the mesh-based method, the fluid domain in the mesh-free method 
is discretized by a set of space particles, which carrys physical quantities, 
such as mass, velocity, pressure, etc., and can freely move in a 
Lagrangian coordinate system. According to the distribution of particles, 
the shape of free surface can be conveniently obtained without special 
interface-capturing algorithms. Therefore, the mesh-free method is 
suitable to simulate the violent flows with large deformations of free 
surface in ocean engineering, such as sloshing flow (Gotoh et al., 2014; 
Zhang et al., 2020, 2021b), dam-break flow (Crespo et al., 2008; Zhang 
and Wan, 2011), water entry problem (Cheng et al., 2020; Khayyer and 
Gotoh, 2016), wave-body interaction (Zhang and Wan, 2017; Rao and 
Wan, 2018; Di et al., 2021; Quartier et al., 2021), fluid-structure inter-
action (Gotoh et al., 2021; Zhang et al., 2021a), granular flow (Bhat and 
Pahar, 2021; Xie et al., 2021) and so on. Review on developments of 
mesh-free method can be further referred in Gotoh and Khayyer (2016, 
2018), as well as recently by Luo et al. (2021). In addition, benefitting 
from the use of substantial derivative in governing equations, numerical 
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diffusion induced by the discretization of convection term is eliminated 
in the mesh-free method. 

There are two common mesh-free methods, including the smoothed 
particle hydrodynamics (SPH, Gingold and Monaghan, 1977; Lucy, 
1977) method and the moving particle semi-implicit (MPS, Koshizuka 
and Oka, 1996) method. The basic principles of these two methods are 
exactly the same, such as the Lagrangian description of flow field, dis-
cretization of fluid domain by particles, and the particle interaction 
weighted by kernel function. The main difference is that the SPH method 
adopts an explicit algorithm based on the Equation of State (EoS), while 
a semi-implicit algorithm is employed in MPS method and the pressure 
field is calculated by solving the Poisson Pressure Equation (PPE). Thus, 

the MPS method fully guarantees the incompressible of the fluid, while 
the fluid simulated by SPH is allowed a slight compressibility. However, 
the above difference is becoming less obvious with the developments of 
incompressible smoothed particle hydrodynamics (ISPH, Shao and Lo, 
2003; Lee et al., 2008; Gotoh et al., 2014) method and weakly 
compressible moving particle semi-implicit (WC-MPS, Jandaghian and 
Shakibaeinia, 2020; Shakibaeinia and Jin, 2010; Altomare et al., 2021) 
method. Later after, the difference between MPS and SPH mainly cor-
responds to their incorporated differential operator models, which is 
caused by the different considerations and derivations of inter-particle 
interaction. 

When initially proposed by Koshizuka and Oka (1996), the MPS 

Fig. 1. Flowchart of multiphase MPS method with GPU acceleration technique.  
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method is mainly applied to single-phase simulation and suffers from 
unphysical pressure oscillations. If the multiphase method is directly 
developed on the basis of the original MPS method, the pressure oscil-
lation would cause the inaccuracy of particle motion and unphysical 

penetration between different phases. Besides, the calculation efficiency 
of MPS method is relatively low due to the high computational cost on 
searching of neighbor particle and solving of PPE, which seems to be 
impossible to deal with the more complicated calculation process and 

Fig. 2. Schematic diagram of multiphase Poiseuille flow in a 3-D circular tube.  

Fig. 3. Comparison of velocity profiles with different inter-particle viscosities for M = 4.  

Fig. 4. Comparison of velocity profiles for M = 2, 4, 8, with the harmonic mean inter-particle viscosity.  
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Fig. 5. MPS snapshots of multiphase Poiseuille flows with different viscosity ratios at t = 0 s, 2 s, 4 s, 6 s, 8 s, and 10 s, respectively.  
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the sharp increase of particle number in the multiphase simulation. 
Therefore, most of the existing MPS studies simplified the fluid system to 
a single-phase model, in which the air region is assumed to be a vacuum 
and the effect of air phase is directly ignored. With this simplification, 
the single-phase MPS method becomes applicable for some interfacial 
flows, and in some cases, yields good agreement with the results of ex-
periments. However, the accuracy of single-phase MPS simulations de-
creases with the increase of flow intensity. As can been observed in some 
experiments (Hu and Sueyoshi, 2010; Lobovský et al., 2014), a massive 
amount of air is trapped by backward plunging breaker in the violent 
dam-break flow and has significant influence on the shape of interface, 
which cannot be considered by using the single-phase MPS method. 
Moreover, the MPS method becomes completely unavailable for the 
multiphase problems with all fluids non-negligible, such as interface 
instability flow, bubbly flow, internal wave flow, etc. 

In order to improve the accuracy and stability of MPS method, 
scholars have made a lot of optimizations on the numerical schemes of 
MPS in recent years (e.g., Khayyer and Gotoh, 2009a, 2010; Tanaka and 
Masunaga, 2010; Khayyer and Gotoh, 2011; Lee et al., 2011). Especially, 
an improved moving particle semi-implicit (IMPS, Zhang and Wan, 
2017) has been proposed, which includes four improved schemes: first, 
kernel function without singularity (Zhang and Wan, 2012); second, 
momentum conservative gradient model (Tanaka and Masunaga, 2010); 
third, mixed source term for PPE (Tanaka and Masunaga, 2010); and 
fourth, highly precise free surface detection approach (Zhang and Wan, 
2012). The comparison with the original MPS method (Zhang and Wan, 
2017) shows that the pressure field simulated by IMPS method is smooth 
and stable, without unphysical pressure oscillation observed. Further-
more, the computational efficiency of IMPS method is also improved 

through the development and application of a series of acceleration 
techniques. In terms of software acceleration techniques, 
multi-resolution particle technique (Tang et al., 2016a) and overlapping 
particle technique (Tang et al., 2016b) are developed respectively, in 
which the local encryption is adopted instead of global encryption, 
reducing the total number of particles required to achieve the same 
accuracy. In terms of hardware acceleration techniques, GPU (Graphics 
Processing Unit) technique is employed (Chen and Wan, 2019a, 2019b), 
which is suitable for large-scale parallel computing due to the multi-core 
architecture of GPU device. 

With the improvement of accuracy, stability and efficiency, the 
preconditions for extending the MPS method to multiphase flows are 
available. In recent years, some multiphase models have been gradually 
proposed and introduced into MPS. For example, Shakibaeinia and Jin 
(2012) introduced the density smoothing scheme into their WC-MPS 
method to solve the discontinuity of pressure on phase interface, with 
which the multiphase flows with low density ratios are simulated. 
Khayyer and Gotoh (2013) replaced the zero-order density smoothing 
scheme with a first-order density smoothing scheme, with which the 
sharpness of density variations across the interface is better maintained 
and the multiphase flows with high density ratios can be accurately 
simulated. Through the locally weighted average of interaction accel-
eration between particles, Duan et al. (2017) proposed a stable multi-
phase MPS method capable to fully guarantee the continuities of 
acceleration and velocity fields. Shimizu et al. (2018) developed an 
MPS-based particle method for multiphase flows characterized by high 
density ratios, by incorporating the concept of Space Potential Particles 
(SPP). To avoid the unphysical penetration in interfacial flows, the 
Optimized Particle Shifting (OPS) method developed by Khayyer et al. 

Fig. 6. Schematic diagram of 2-D Rayleigh-Taylor instability.  
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(2017a) for free-surface flows is further extended to the multiphase 
flows to stabilize the interface (Khayyer et al., 2019). The surface ten-
sion models for MPS method are respectively proposed by Nomura et al. 
(2001) and Duan et al. (2015), which are crucially important for the 
interface capturing in the problems dominated by surface tension force. 

In this paper, we aim to develop the IMPS method into a multiphase 
method, and to explore the advantages of MPS method in the simulation 
of interfacial flow. To achieve this goal, a series of widely validated 
multiphase models are introduced into IMPS method, such as the multi- 
density model, multi-viscosity model, continuous acceleration model, 
contoured continuum surface force (CCSF) model, etc., which would be 
presented in detail together with the basic concept of IMPS method in 
Section 2 and Section 3. Meanwhile, the GPU acceleration technique 
would be included in the developed multiphase MPS method to deal 
with the huge computational cost. Benefitting from the high stability 
and accuracy of IMPS method and the improvement by the multiphase 
models, the developed multiphase MPS method is successfully applied to 
a wide variety of 2-D/3-D interfacial flows in Section 4, including 
Rayleigh-Taylor instability, bubble rising, dam-break flow, and internal 
solitary waves. The simulation results are compared with other nu-
merical and experimental results, through which the capacity of the 
present multiphase MPS method to capture complex interface is vali-
dated. The phenomenon of air entrapment induced by dam-break flow is 
also well reproduced and its influence on impact pressure is discussed in 
detail. Moreover, the energy conservation of the multiphase MPS 

method is further tested by the simulation of internal solitary waves with 
a long-distance propagation. 

2. Improved MPS method 

2.1. Governing equations 

The governing equations of MPS method consist of equations for the 
conservation of mass and momentum (Koshizuka and Oka, 1996), with 
the following Lagrangian forms: 

Dρ
Dt

= − ρ(∇⋅u) (1)  

ρ Du
Dt

= − ∇P + FV + FB + FS (2)  

where ρ, u, and P represent the density, velocity, and pressure of the 
particles, respectively, and FV, FB, and FS denote the viscous force, body 
force, and surface tension forces, respectively. Note that, the surface 
tension force FS is usually ignored in the single-phase IMPS simulation. 

2.2. Kernel function 

There are various forms of interactions between neighboring parti-
cles in the MPS method, and the kernel function is used as a weight 
function to measure the strength of interactions. In the IMPS method, 

Fig. 7. Simulations results of Rayleigh-Taylor instability obtained by multiphase MPS method at t(λ/g)− 1/2 
= 1.1, 2.2, 3.3, and 4.4, from left to right.  
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the improved kernel function suggested by Zhang and Wan (2012) is 
used: 

W

⎛

⎝rij, re

⎞

⎠ =

⎧
⎨

⎩

re

0.85rij + 0.15re
− 1 (0 ≤ r < re

)

0 (re ≤ r)
(3)  

where rij and re represent the distance between particles and the largest 
radius of particle interaction, respectively. As the distance between 
particles decreases, the value of kernel function increases, resulting in 
the stronger particle interactions, and vice versa. When the particle 
distance is higher than a certain threshold, the kernel function becomes 
zero and the interaction disappears. The improved kernel function 

obtains a finite value when the distance becomes zero, thus the problem 
of singularity in the original kernel function (Koshizuka and Oka, 1996) 
can be avoided. 

2.3. Particle interaction models 

Models of particle interaction (Koshizuka and Oka, 1996) are used to 
discretize the differential operators in the governing equations, 
including the gradient model, divergence model, and Laplacian model, 
defined as: 

< ∇ϕ>i =
D
n0

∑

j∕=i

ϕj − ϕi
⃒
⃒rj − ri|

2

(

rj − ri

)

⋅W(rij, re

)

(4) 

Fig. 8. Shape of phase interface in Rayleigh-Taylor instability captured by different methods at t(λ/g)− 1/2 = 4.4.  
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< ∇Φ>i =
D
n0

∑

j∕=i

(
Φj − Φi

)

⃒
⃒rj − ri|

2

(
rj − ri

)
⋅W(rij, re

)

(5)  < ∇2ϕ>i =
2D
n0λ

∑

j∕=i

(
ϕj − ϕi

)
⋅W(rij, re

)
(6)  

Fig. 9. Time evolution of maximum interfacial displacement in Rayleigh-Taylor instability.  

Fig. 10. Schematic diagram of 3-D Rayleigh-Taylor instability with different initial disturbances.  
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where ϕ is an arbitrary scalar function, Ф is an arbitrary vector, D is the 
number of spatial dimensions, n0 is the particle number density with the 
initial arrangement, calculated as: 

< n>i =
∑

j∕=i
W(rij, re

)
(7)  

and λ is a parameter to keep the increase in variance equal to that in the 
analytical solution. It is calculated as: 

λ =

∑
j∕=iW(rij, re

)
⋅
⃒
⃒
⃒rj − ri|

2

∑
j∕=iW(rij, re

) (8)  

2.4. Pressure gradient model 

When the gradient model given in Eq. (4) is applied to calculate the 
pressure gradient force, the conservation of linear and angular momenta 
cannot be fully satisfied, and the significant tensile instability (Koshi-
zuka et al., 1998) may be caused. To overcome this, modifications and 
corrections are made by Khayyer and Gotoh (2008), and the first mo-
mentum conservative gradient model for MPS is proposed. In the IMPS 
method, the following conservative form proposed by Tanaka and 

Masunaga (2010) is used: 

< ∇P>i =
D
n0

∑

j∕=i

(
Pj + Pi

)
(
rj − ri

)

⃒
⃒rj − ri|

2⋅W(rij, re

)

(9) 

With the above model, the pure repulsive force between particles can 
be guaranteed, thus the problem of tensile instability is solved. 

2.5. Semi-implicit algorithm 

To maintain the incompressibility of fluid, a semi-implicit algorithm 
is used in the MPS method, in which each time step is divided into the 
first prediction step and the second correction step. As mentioned above, 
this is also the main difference between MPS and SPH for a long time. In 
the prediction step, the temporal velocity field is explicitly updated 
according to the viscous force, gravitational force, and possible surface 
tension force. In the correction step, the PPE is solved to obtain the 
pressure field, through which the velocities and locations of particles are 
finally updated to the next time step. In the IMPS method, the PPE with a 
mixed source term is used, which is proposed by Tanaka and Masunaga 
(2010) and rewritten by Lee et al. (2011): 

Fig. 11. Evolutions of phase interface in 3-D Rayleigh-Taylor instability with the convex (top) or concave (bottom) initial disturbance at t = 0 s, 0.3 s, 0.5 s, 0.7 s, 0.9 
s, 1.1 s. 
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< ∇2Pk+1>i = (1 − γ)
ρ
Δt

∇⋅u∗
i − γ

ρ
Δt2

< nk>i − n0

n0 (10)  

where γ is a blending parameter less than 1, ui* is the temporal velocity, 
and <nk>i is the particle number density at the kth time step. As Tanaka 
and Masunaga (2010) indicated, the mixed source term is in fact a 
combination of the divergence-free incompressible condition and the 
incompressible condition for particle number density, which is favorable 
for the suppression of pressure oscillations. According to the numerical 
tests about the value of γ by Lee et al. (2011), error of the numerical 
pressure can be reduced while γ = 0.01 which is also used in present 
paper. In fact, there are already some algorithms that can avoid tuning 
parameter, such as the ECS scheme of Khayyer and Gotoh (2011) with 
dynamic coefficients as functions of instantaneous flow field, which are 
hopefully applied in our future work. 

2.6. Boundary conditions 

With regard to the free surface, a Dirichlet boundary condition of 
zero pressure is imposed to the free surface particles. To accurately 
identify all free surface particles, the IMPS method employs s a highly 
precise approach (Zhang and Wan, 2012), in which a vector is defined to 
quantitatively assess the asymmetry of particle distribution: 

Fi =
D
n0

∑

j∕=i

(
ri − rj

)

⃒
⃒ri − rj

⃒
⃒
⋅W(rij, re

)

(11) 

For free surface particles, all neighboring particles are located on the 
liquid side. Therefore, the high asymmetry and low particle number 
density are considered as the main two criteria in this approach, and 
particles satisfying the following conditions are judged to be free surface 
particles: 

Fig. 12. Cross-sectional views of phase interface in 3-D Rayleigh-Taylor instability with the convex initial disturbance at three vertical planes, x = − 0.25, x = 0, and 
x = y. 
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< n>i < β1n0 or
(
<n>i > β1n0 and < n>i < β2n0 and |F|i > α|F0

⃒
⃒
)

(12)  

where α = 0.9, β1 = 0.8, and β2 = 0.97. The above detection approach 
follows the basic principle of the so-called ASA (Assessment of free- 
surface on the basis of nearly Symmetric Arrangement of non-free- 
surface particles) scheme, which was initially developed and applied 
to SPH method (Khayyer and Gotoh, 2009b; Khayyer et al., 2009). 

3. Multiphase MPS method 

3.1. Improved density smoothing scheme 

For interfacial flows, the density field is mathematically discontin-
uous at the phase interface. To overcome the numerical instability 
induced by this discontinuity, an improved density smoothing scheme is 
employed by our multiphase MPS method. Firstly, a transition region is 
defined in the vicinity of the phase interface. Then, the spatially 
weighted average density of particles inside the transition region is 
calculated using the following formula: 

< ρ>i =
ρiWself +

∑
j∈I ρjW(rij, re

)

Wself +
∑

j∈IW(rij, re

) (13)  

where I includes the target particle i and all its neighboring particles, 
and Wself is a weight function used to magnify the influence of the target 
particle itself so that the smoothed density field is closer to the real 
density field. The principle of this improvement is similar with the first- 
order smoothing scheme proposed by Khayyer and Gotoh (2013). 
Compared with the original scheme (Shakibaeinia and Jin, 2012) pro-
posed for problems with low density ratios, the improved scheme can 
better maintain the sharpness of the variation in density, thus some flow 
characteristics associated with the high density ratios can be captured 
more accurately. 

3.2. Inter-particle viscosity model 

There exists also a discontinuity of viscosity field at the phase 
interface, which would significantly affect the calculation accuracy of 
viscous force between particles inside the transition region. To deal with 
this, the inter-particle viscosity model (Shakibaeinia and Jin, 2012) is 
employed in the present multiphase MPS method. Specially, when 

Fig. 13. Phase fields in 3-D Rayleigh-Taylor instability with the convex (top) or concave (bottom) initial disturbance at t = 0 s, 0.5 s, 1 s, 1.5 s, 5 s, 30 s.  
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particles belonging to different phases interact with each other, the 
inter-particle viscosity would be applied to substitute the viscosity of 
real particles during the calculation of viscous forces. The value of 
inter-particle viscosity is obtained by averaging the viscosities of a pair 
of interacting particles: 

μij =
[
(μθ

i + μθ
j )/2

]1/θ
(14)  

where μij represents the inter-particle viscosity, μi and μj represent the 
dynamic viscosities of particles i and j, respectively, and θ is a parameter 
determining the averaging method. For θ = 1, the arithmetic mean is 
used. For θ = − 1, the harmonic mean is used. Recommended by Sha-
kibaeinia and Jin (2012), the harmonic mean of the inter-particle vis-
cosity is used in the present multiphase MPS method, with which the 
viscosity term in the doverning equations turns into the following form: 

FV = μ∇2u =
2D
n0λ

∑

j∕=i

2μiμj

μi + μj

(

uj − ui

)

⋅W(rij, re

)

(15)  

3.3. PPE with inter-particle density 

In the transition region, the pressure field is likely to suffer from an 
enormous change owing to the rapid variation of density field. There-

fore, an unphysically large pressure gradient may be generated and 
causes the interface particles to move violently, especially for lighter 
particles, which reduces the numerical stability finally. To maintain the 
smoothness of pressure field, the PPE with inter-particle density (Duan 
et al., 2017) is used in the present multiphase MPS method. Using it, the 
left-hand side of the PPE is discretized as: 

<
1
ρij
∇2Pk+1>i =

2D
n0λ

∑

j∕=i

1
ρij

(
Pk+1

j − Pk+1
i

)
⋅W(rij, re

)

(16)  

where ρij is the inter-particle density with a definition similar to μij in Eq. 
(14), but the arithmetic mean is used here according to numerical tests 
by Duan et al. (2017), written as: 

ρij =
ρi + ρj

2
(17)  

3.4. Modified pressure gradient model for high density ratios 

When calculated according to the gradient model of single-phase 
MPS method, such as Eq. (4) or Eq. (9), the pressure gradient forces 
between a pair of interacting particles possess the same value. However, 
the consistency of forces would cause a significant discrepancy for the 
accelerations of particles with different densities. Specially, owing to the 
high density ratio, the acceleration of the lighter particles may be greatly 

Fig. 14. Schematic diagram of 3-D multi-mode Rayleigh-Taylor instability.  
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Fig. 15. Evolution of phase interface in 3-D multi-mode Rayleigh-Taylor instability.  
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overestimated compared with that of the heavier particles, resulting in 
the discontinuity of acceleration field and numerical instability. In the 
present multiphase MPS method, the modified pressure gradient model 
(Duan et al., 2017) for high density ratios is introduced to obtain a 
continue and stable acceleration field:  

where P′

i,min represents the minimal pressure among the same-phase 
neighboring particles of particles i. The first term on the right-hand 
side of Eq. (18) is a modified form of the original pressure gradient 
model, in which the inter-particle density is introduced to maintain the 
consistency of particle accelerations. The second term is actually a 
vector with the same direction as the vector defined in Eq. (11), pointing 
from the denser particle region to the relatively dilute particles region. 
Therefore, it can be regarded as a particle-stabilizing term (PST), which 
is favorable for the uniform distribution of particles through the exertion 
of an artificial force. 

3.5. Surface tension model 

The surface tension effects are helpful to keep the phase interface 
clear by preventing nonphysical penetrations between phases. In the 
present multiphase MPS method, the continuum surface force (CSF) 
model proposed by Brackbill et al. (1992) is followed, in which the 
surface tension force is converted into a body force, calculated as: 

FS = − σκ∇C (19)  

where σ is the coefficient of surface tension, κ is the curvature of the 
interface, and ∇C is the gradient of the artificially defined color func-
tion. To maintain the continuity of accelerations, the density-weighted 
color function (Zhang et al., 2015) is employed: 

Cij = {

0 if particles i and j belong to the same phase
2ρi

ρi + ρj
if particles i and j belong to different phases

(20) 

To gain the interface curvature κ, an analytical method proposed in 
the contoured continuum surface force (CCSF) model (Duan et al., 2015) 
is adopted here. The main idea is to approximate the phase interface by 
the contours of the smoothed color function. In the first step, the 
smoothed color function f at an arbitrary location (x, y) is obtain by the 
spatially weighted averaging of the original color function: 

f (x, y) =

∑
j∕=iCjG(rij, rs

)

∑
j∕=iG(rij, rs

) , G(rij, rs) =
9

πrs
2 exp

(

−
9rij

2

rs
2

)

(21) 

Then, the local contour passing through particle i is obtained by a 
Taylor series expansion: 

fx,i(x − xi) + fy,i(y − yi) +
1
2
fxx,i(x − xi)

2 + fxy,i(x − xi)(y − yi) +
1
2
fyy,i(y − yi)

2

= 0
(22) 

Fig. 16. Schematic diagram of 2-D/3-D bubble rising.  
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where the subscripts x and y represent partial derivatives with respect to 
x and y, respectively. 

Finally, the curvature of the interface at particle i can be analytically 
calculated as: 

κi =
y′′

(
1 + y′

i

)3/2 =
2fx,i fy,i fxy,i − f 2

x,i fyy,i − f 2
y,i fxx,i

(
f 2

x,i + f 2
y,i

)3/2 (23)  

3.6. Multiphase particle collision model 

The uniform distribution of particles is very important for the sta-
bility of MPS simulations. However, due to the randomness of particles 
motion, the particle distribution is difficult to maintain an ideal state 
throughout the numerical simulation and nonphysical penetrations may 
occur when too small particle spacing appears. In order to correct the 
particle distance, the multiphase collision model (Shakibaeinia and Jin, 
2012) is introduced into the present multiphase MPS method, which 
assumes the occurrence of particle collisions once the particle distance is 
lower than a certain threshold. Based on the collision theory of two 
spheres with different masses, the velocities of particles after collision 
are updated as: 

u′

i = ui −
1
ρi
(1 + ε)

ρiρj

ρi + ρj
un

ij (24)  

u′

j = uj +
1
ρj
(1 + ε)

ρiρj

ρi + ρj
un

ij (25)  

where un
ij is the normal relative velocity of particles i and j, u′

i and u′

j are 
the velocity vectors after collision, respectively, and ε represents the 
collision ratio which is equal to 0.5, as suggested by Shakibaeinia and 
Jin (2012). 

3.7. Compressible-incompressible model 

In some violent flows, the compression of air phase is likely to be 
induced by the strong impact of waves on walls of the tank. To reproduce 
this process, the compressible-incompressible model is applied in the 
present multiphase MPS method, which consider the water and air 
phases to be incompressible and compressible, respectively. Similar with 
the treatments of Khayyer and Gotoh (2016) and Duan et al. (2017), a 
compressibility term derived from the equation of state (EoS) is included 
into the PPE source term of the air particles: 

< ∇2Pk+1>i = (1 − γ)
ρ
Δt

∇⋅u∗
i − γ

ρ
Δt2

< nk>i − n0

n0 +
1

Δt2C2
s
Pi

k+1

(26)  

where Cs is the physical speed of sound, same as that in Khayyer and 
Gotoh (2016). An extra benefit of the above scheme is that the 
compressibility term would be moved to the left-hand side of Eq. (26) 

Fig. 17. Simulation results of bubble rising obtained by multiphase MPS method at t = 0 s, 1 s, 2 s, 3 s, from left to right.  
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while solving the PPE, which increases the values of diagonal elements 
of the coefficient matrix and improves the stability of the calculated 
pressure field (Tanaka and Masunaga, 2010). Note that, the 
compressible-incompressible model is activated only when the air phase 
becomes necessary to be considered, corresponding to the dam-break 
flow simulation in the subsequent application research. 

3.8. GPU acceleration technique 

Due to its multi-core architecture, GPU (Graphics Processing Unit) is 
quite suitable for high-performance parallel computing, and has been 
widely applied in large-scale simulations (Crespo et al., 2011; Zhao 
et al., 2017; Chow et al., 2018). As to MPS method, the GPU acceleration 
technique has been applied in the single-phase flows (Hori et al., 2011; 
Zhu et al., 2011; Xie et al., 2020), but there have been few studies on 
GPU applications in the multiphase MPS simulation. 

In this paper, the GPU acceleration technique developed in IMPS 
method (Chen and Wan, 2019a and 2019b) is further extended and 

introduced into the present multiphase MPS method. Fig. 1 shows the 
flowchart of multiphase MPS method with GPU acceleration technique. 
As can be seen, both CPU and GPU are utilized but with different tasks. 
The CPU works as a host part to deal with logical works, environment 
configuration, instructions for setting parallelism and communicating 
data between CPU and GPU, while The GPU works as a device part 
responsible for all the parallel computing. Due to the simultaneous so-
lution of different phase, the calculation process of multiphase MPS keep 
consistent with that of IMPS method, except for the addition of 
multi-phase models. Thus, the speedup of GPU for multiphase simula-
tion can be considered as the same as that in single-phase simulation. 

4. Numerical simulations 

4.1. 3-D multiphase poiseuille flow 

In the present multiphase MPS method, the inter-particle viscosity 
model is used to calculate the viscous force between particles of different 

Fig. 18. Comparison of 2-D bubble shapes obtained by different methods, t = 3 s.  

Fig. 19. Quantitative results obtained by multiphase MPS method in 2-D bubble rising and comparison with benchmark results and other numerical results.  
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phases. For the purpose of verification, the 2-D multiphase Poiseuille 
flow between two parallel plates has been simulated in some studies 
(Shakibaeinia and Jin, 2012; Duan et al., 2017). However, the 3-D 
verification is still absent. Considering that a variety of 3-D applica-
tion researches would be involved in this paper, the multiphase Pois-
euille flow in a 3-D circular tube is firstly studied in this section to 
further validate the capacity of inter-particles viscosity model in 3-D 
situations. 

The numerical model is shown in Fig. 2. Two immiscible fluids are 
filled in a 3-D circular tube with the length L = 2 m and the diameter D =
1 m. The fluid of phase II is located in the center of the tube with a 
diameter of 0.5 m, and the other regions are the fluid of phase I. The 
densities of both fluids are 2 kg/m3. The dynamic viscosity of phase I is 
fixed to 0.1 Pa.s, while that of phase II changes from 0.1 Pa.s to 0.0125 
Pa.s, corresponding the viscosity ratio M changing from 1 to 8. The fluids 
are driven by a pressure gradient ΔP/L = − 0.5, with the gravity and 
surface tension force ignored. The left and right ends of the tube are set 
as periodic boundary, and the radial wall is imposed the no-slip 
boundary condition. The analytical velocity field can be calculated by: 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(r) =
1
2

dp
dx

1
μ1

(
r2 − R1
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1
2

dp
dx

(
1
μ1

r2 −
1
μ2

R1
2
)

+
1
2

dp
dx

(
1
μ2

−
1
μ1

)

R2
20 <r ≤ R2

(27)  

where R1 and R2 are the radiuses of the circular tube and the inner fluid, 
respectively, and r is the radius at the position of the target particle. 

Fig. 3 compares the velocity profiles calculated by multiphase MPS 
method and the analytical solutions with different inter-particle vis-
cosities for M = 4. As it can be seen, the best agreement is obtained with 
the harmonic mean of viscosities while the maximum velocity at the 
tube center is slightly underestimated with the arithmetic mean of vis-
cosities, similar with the conclusion of 2-D tests (Shakibaeinia and Jin, 
2012). In addition, when adopting μij=μj or μij=μj, the velocity profile 
would be greatly overestimated or underestimated compared with the 
analytical result. 

Fig. 4 presents the velocity profiles with different viscosity ratios 
obtained by using the harmonic mean of viscosities, from which a fair 
good agreement between the numerical and analytical results is 
observed. Moreover, the MPS snapshots of multiphase Poiseuille flows 

Fig. 20. Time evolution of the 3-D bubble shape simulated by multiphase MPS method.  
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are shown in Fig. 5. Being consistent with actual physical phenomena, 
the motions of two fluids become obviously differentiated as the vis-
cosity ratio increases. In summary, it can be considered that the present 
multiphase MPS method is able to realize the accurate calculation of 
viscous force in both 2-D and 3-D cases by using the inter-particle vis-
cosity with the form of harmonic mean. 

4.2. 2-D/3-D rayleigh-taylor instability 

Rayleigh-Taylor instability (RTI) is an extensively observed fingering 
instability in which a heavier fluid is accelerated toward a lighter fluid 
under the gravity effects. In this section, the RTI problem shown in Fig. 6 
would be simulated by the present multiphase MPS method, which is 
also studied by Shakibaeinia and Jin (2012). Two immiscible fluids with 
different densities are placed in a rectangular container with the 
dimension of 0.5 m (width) × 1 m (height). The heavier fluid is located 
at the upper layer with the density ρh = 3000 kg/m3, while the lighter 

fluid is located at the lower layer with the density ρl = 1000 kg/m3. The 
kinematic viscosities of both fluids are 0.01 m2/s and the surface tension 
coefficient is 0.1 N/m. The gravity acceleration is set to be g = 10 m/s2 

and points downwards. No-slip condition is imposed to all walls. In 
order to trigger the occurrence of RTI, an initial cosinoidal disturbance 
with the amplitude η = 0.025 m and the wave-length λ = 0.5 m is 
imposed on the initial interface. To test the convergence of the present 
method, three different particle distances are respectively adopted, 
including dp = 0.002 m, 0.003 m, and 0.004 m (Fig. 7). 

Fig. 2 shows the snapshots of Rayleigh-Taylor instability at several 
typical instants simulated by multiphase MPS method with dp = 0.002 
m. As it can be observed, the complex interface is clearly captured, and 
the calculated velocity and pressure field keep smooth. With the 
continuous invading of the lower fluid into the upper fluid, the initially 
slight disturbance grows fast and a bubble-shape interface is formed at 
(λ/g)− 1/2 = 2.2. Then, the interface deforms into a mush-room shape at t 
(λ/g)− 1/2 = 3.3 and becomes more complicated at t(λ/g)− 1/2 = 4.4. From 

Fig. 21. Shapes of 3-D bubble captured by different methods.  

Fig. 22. Quantitative results obtained by multiphase MPS method in 3-D bubble rising and comparison with benchmark results and other numerical results.  
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the y-velocity field, it can be seen that the lighter and heavier fluids 
move with an opposite y-velocity under the action of initial disturbance 
and gravity, and with the development of RTI, the fluid movement is 
gradually accelerated, leading to the formation of multiple vortex 
structures. Meanwhile, due to the increase of mixing degree of two 
fluids, the pressure gradient with the depth is reduced near the interface. 

Fig. 8 and Fig. 9 present the shape of phase interface in RTI at t 
(λ/g)− 1/2 = 4.4 and the time evolution of maximum interfacial 
displacement, respectively, which are compared with the MPS and VOF 
results provided by Shakibaeinia and Jin (2012). It can be noted that the 
main characteristics of the interface captured by different methods show 
a good agreement, and the result of the present multiphase MPS method 
is closer to the VOF result. Some local differences may be caused by the 
different values of surface tension coefficient, which is not given in 
literature. Similarly, the maximum interfacial displacement calculated 
by different methods is in good agreement, and the penetration depth 
between fluids shows an exponential growth in the early stage, a linear 
growth in the middle stage, and a gradual deceleration in the later stage. 
In addition, the simulation results with different particle distance are 
consistent, verifying the convergence of the proposed method. 

In order to verify the performance of multiphase MPS method in 3-D 
interfacial flows, the 3-D RTI problem shown in Fig. 10 is further 
simulated. The geometric size of the 3-D container is 0.5 m × 0.5 m × 2 
m (length × width × height), and the densities of the upper and lower 
fluids are 3000 kg/m3 and 1000 kg/m3, respectively. The viscosity of 
both fluids is 8 × 10− 3 Pa.s and the gravity acceleration is g = 9.8 m/s2. 
All tank walls are set as free-slip boundary. The particle distance is 0.01 
m, thus the total number of particles reached to 845,397. The initial 
shape of interface is given as: 

y = ±(0.05cos(4πx)+ 0.05cos(4πx)) (28) 

Where the symbols (+) or (-) correspond to the convex or concave 
disturbance, respectively. 

Fig. 11 shows the evolutions of phase interface in the 3-D RTI 
problems. As it can be observed, before t = 0.5 s, the upward and 
downward deformations of the interfaces caused by different distur-
bances are similar, and the shape of interface is relatively not compli-
cated. However, when the mushroom structure appears at t = 0.5 s, the 
interface deformations in two cases become slightly different. Specially, 
the mushroom structure is inclined to a cap shape in the convex case, 

while it shows a spherical shape in the concave case. Moreover, the 
penetration rate between the upper and lower fluids is faster in the 
concave case, thus the interface is able to firstly impacts on the lower 
wall at t = 1.1 s. 

Fig. 12 shows the cross-sectional views of phase interface in the 3-D 
RTI problem with a convex initial disturbance at three vertical planes, 
including x = − 0.25, x = 0, and x = y. As it can be seen, the interface 
shapes in the x = − 0.25 and x = 0 planes are similar with the results of 
above 2-D RTI simulation. However, the interface shape in the x = y 
plane becomes quite different where the two-layer roll-up phenomenon 
can be observed. In general, the results are in qualitative agreement with 
the mesh-based computations of Li et al. (1996), He et al. (1999), and 
Lee and Kim (2013). 

Benefitting from the high stability of IMPS method, the developed 
multiphase MPS method is able to reproduce the long-term evolution of 
3-D RTI and the simulation results are shown in Fig. 13. After the contact 
between the phase interface and the upper or lower wall, the two fluids 
are mixed violently. Subsequently, the fluid particles began to move 
under the action of buoyancy and finally at t = 30 s, the flow field 
reached a completely stable state that the heavier fluid is all located in 
the lower layer while the lighter fluid is all located in the upper layer. 
The successful simulation of the long-term evolution process shows that 
the present multiphase MPS method is not only capable for capturing the 
phase interface deforming from a simple state to a complex state, but 
also can be applied to the opposite process, without numerical insta-
bility induced by the violent mixing of different fluid particles. 

In the last part of this section, the multiphase MPS method is applied 
to simulate the multi-mode 3-D RTI problem shown in Fig. 14. The 
physical properties of fluids and the initial shape of interface keep 
identical with the above single-mode 3-D RTI problem with a convex 
disturbance, but the calculation domain is expanded to 1 m × 1 m × 2 m 
(length × width × height). Therefore, the total number of particles in 
this case increases to about 2.72 million. Fig. 15 shows the evolution of 
phase interface obtained by the multiphase MPS method. Although the 
interface becomes quite complex in this case, it still can be accurately 
captured and the long-time evolution process is well reproduced, vali-
dating the applicability of the present method in the numerical simu-
lation of large-scale 3-D interfacial flows. 

Fig. 23. Schematic diagram of 2-D dam-break flow.  
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4.3. 2-D/3-D bubble rising 

Bubbly flow is one of the most widely existed interfacial flow phe-
nomena in nature. In this section, the 2-D/3-D single bubble rising are 
studied by using the multiphase MPS method. The initial configurations 
keep identical with the 2-D benchmark study of Hysing et al. (2008) and 
the 3-D benchmark study of Adelsberger et al. (2014), as shown in 
Fig. 16. In 2-D case, a circular bubble with the diameter d = 0.5 m is 
initially centered at (0.5, 0.5) in a 1 × 2 rectangular container. No-slip 
boundary condition is imposed on the top and bottom walls, while the 
free-slip boundary condition is imposed on the vertical sidewalls. In 3-D 
case, a sphere bubble with the diameter d = 0.5 m is initially centered at 
(0.5, 0.5, 0.5) in the 1 × 1 × 2 cuboid container and all tank walls are set 
as no-slip boundary. The same physical property of fluids is adopted in 
2-D and 3-D cases, being consistent with the “case 1′′ of the benchmark 

study, in which both the density and viscosity ratios are 10:1. The 
Reynolds number (Re) representing the ratio of inertial to viscous effects 
is equal to 35, and the Bond number (Bo, also known as Eotvos number) 
representing the ratio of gravitational forces to surface tension effects is 
equal to 10. 

Fig. 17 presents the simulation results of bubble rising obtained by 
multiphase MPS method at several typical instants. Due to its density 
difference with the surrounding liquid, the bubble rises rapidly from its 
initial position under the action of buoyancy, and the interface suffers 
from large deformation in the rising process. Especially, the interface at 
the bottom of the bubble turns into a flat shape, and is slightly convex at 
t = 2 s. Then, the bubble gradually recovers to a circular shape due to the 
surface tension effects, and at the end of simulation, i.e., t = 3 s, the 
bubble locates in an elliptical shape. In general, the complex interface is 
well captured by the multiphase MPS method, and the calculated 

Fig. 24. Snapshots of dam-break flow (left: IMPS method; right: multiphase MPS method).  
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velocity field and pressure field keep quite smooth. 
Fig. 18 compares the final bubble shape at t = 3 s predicted by 

multiphase MPS method with the benchmark results, from which a good 
agreement is observed. To further analyze the motion characteristics of 
bubble, Fig. 19 shows the calculated center of mass and rise velocity of 
the bubble in the rising process. It can be seen that the velocity of bubble 
increases rapidly in the early stage, and a peak velocity is observed at t 
= 1 s due to the resistance force of the surrounding fluid. Subsequently, 
the bubble velocity begins to decrease and finally reached a stable value. 
The results of multiphase MPS method are in good agreement with the 
benchmark results, and the fluctuations of bubble velocity observed in 
some other particle methods are effectively avoided, verifying the high 
stability of the present method. 

Fig. 20 shows the time evolution of the 3-D bubble shape simulated 

by multiphase MPS method. As it can be seen, the bubble gradually 
becomes ellipsoid in the rising process, but its deformation is smaller 
than that of the 2-D rising bubble studied above. After t = 2.0 s, the 
bubble shape keeps almost stable. In Fig. 21, the shapes of 3-D bubble 
obtained at several typical time instants are compared with the bench-
mark results by three different mesh-based solvers, including DROPS, 
NaSt3D and OpenFOAM (Adelsberger et al., 2014), which shows a good 
agreement. 

From the comparison in Fig. 22, it can be seen that the center of mass 
calculated by the present multiphase MPS method keeps consistent with 
the benchmark results. Different from the 2-D case, the rise velocity of 3- 
D bubble did not decrease significantly after the peak value, but quickly 
reached a stable state. Both the developed method in this paper and the 
other two multiphase MPS methods proposed by Duan et al. (2017) 

Fig. 25. Time evolutions of water heights at different locations.  
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obtain similar results with the benchmark results. There are some slight 
differences observed. However, considering that even the three 
mesh-based methods in benchmark study show different results, the 
accuracy of present work can be regarded as acceptable. 

4.4. 2-D/3-D dam-break flow 

Dam-break flow is accompanied by strong impact and nonlinear 
evolution of water-air interface, such as the overturning and breaking of 

Fig. 26. Time history of impact pressures on the right wall predicted by different methods.  

Fig. 27. Pressure fields corresponding to the second pressure peak and the collapse process. (left: IMPS method; right: multiphase MPS method).  
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waves, which is quite suitable for the application of MPS method. In this 
section, the multi-phase MPS method would be firstly employed to 
simulate the 2-D dam-break problem shown in Fig. 23. At the initial 
moment, the water occupies an area of 0.6 m (width) × 0.3 m (height) 
on the lower-left corner of the rectangular container, with the remaining 
parts filled with air. The real viscosities of water and air are adopted, and 
the densities of water and air are 1000 kg/m3 and 1.29 kg/m3, respec-
tively, thus the density ratio is more than 800 in this case. 

Fig. 24 shows the snapshots of dam-break flows simulated by IMPS 
and multiphase MPS methods, respectively. In general, the typical hy-
drodynamic phenomena induced by dam-break flow can be captured by 
both methods, including the strong impact, wave breaking and water jet, 
etc. However, some discrepancies are generated due to the different 
treatments of air phase. Firstly, the water splashing is more significant in 
the single-phase simulation. The reason is that the air region is regarded 
as a vacuum by IMPS method, resulting in less resistance for fluid 

Fig. 28. Time evolutions of dimensionless pressure and volume of the air cavity. (V0 - cavity volume at initial state).  

Fig. 29. Shape and pressure of the air cavity.  
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particles to escape from the free surface. Meanwhile, the surface tension 
effects considered only by the multiphase MPS method also provide 
additional energy for the fluid particles to remain inside the water body. 

Another difference appears after the backward plunging water front 
impacts the free surface. Due to the cushion effect of air, the height of 
water jet in the multiphase simulation is much lower than that in the 
single-phase simulation, which keeps consistent with the SPH results of 
Colagrossi and Landrini (2003). Meanwhile, a mass of air is trapped and 
formed an air cavity. Due to the neglection of air phase, the shape of 
cavity in the single-phase simulation is completely dependent on the 
movement of water phase, thus increases rapidly from t(g/H)1/2 = 6.29 
to 7.43. In the multiphase simulation, the deformation of cavity would 
be limited by the compressibility of the entrapped air particles, hence 
the change of cavity volume is relatively smaller. 

Fig. 25 presents the time evolution of water heights at locations of x/ 
H = 0.825 and x/H = 1.653 from the right wall, respectively. In general, 
the variation trends obtained by two methods show a good agreement 
with the experimental results (Zhou et al., 1999). However, the 
measuring equipment used in the experiments are sensitive to the 
wetted portion of the wire, thus the height of air cavity is not included 
and the measured water height is lower than the numerical results, 
especially at x/H = 0.825 where the main part of cavity is located. The 
calculation results of single-phase and multiphase methods keep basi-
cally consistent at x/H = 0.825, but the water height at x/H = 1.653 is 
much larger in the single-phase simulation at t(g/H)1/2 ≅ 6.4, caused by 
the more severe water jet phenomenon observed in Fig. 24. 

Fig. 26 shows time history of impact pressures predicted by different 

methods. The pressure probe is located on the right wall and 0.267H 
above the bottom. As it can be seen, the pressure curves obtained by 
both IMPS and multiphase MPS methods show some difference from the 
experimental results. Meanwhile, this difference is also observed in the 
SPH result of Colagrossi and Landrini (2003). In fact, Zhou et al. (1999) 
has reported difficulties to achieve repeatability of the measurements in 
experiment and no conclusive statement can be made. Other than that, 
we should note that all numerical methods are able to give reliable 
predictions of the pressure tendencies. Firstly, the impact of the water 
front against the right wall is accompanied by a sudden pressure rise at t 
(g/H)1/2≅ 2.4, which is well captured by both IMPS and multiphase 
MPS methods. Then, a second pressure peak is induced by the backward 
plunging water front. For this pressure peak, the multiphase MPS result 
is a bit of earlier and larger than the single-phase MPS result, which is 
also identified in the comparison between the single-phase and multi-
phase SPH results. Compared with the multiphase SPH results, the 
present multiphase MPS result suffers from less fluctuations after the 
second pressure peak. The reason is that in the multiphase SPH method, 
both the air phase and water phase are regarded as compressible. 
Therefore, the volume of water phase fluctuates with the air phase 
during the impacting process, leading to the pressure oscillation. In the 
present multiphase MPS method, the compressible-incompressible 
model is adopted and the water phase is treated as fully incompress-
ible, thus the pressure field is kept stable. 

In the dam-break flow, the air cavity has an important influence on 
the accurate calculation of impact pressure. Fig. 27 shows the pressure 
fields corresponding to the second pressure peak and the collapse 

Fig. 30. Evolution of 3-D dam break flow simulated by multiphase MPS method.  
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process of cavity, respectively. Note that, the air particles are set to be 
transparent. Firstly, it can be seen that in the single-phase simulation, 
the water particles around the air cavity are misjudged as free surface 
particles due to the truncation of the influence domain, and are wrongly 
given zero pressure, resulting in an inaccurate pressure field. Mean-
while, the water particles above the air cavity fall down freely at t(g/H)1/ 

2 = 7.77 due to the lack of particles below. In contrast, this problem can 
be naturally avoided by the multiphase MPS method with the consid-
eration of air particles. Besides, the aggregation of zero-pressure free 
surface particles occurs in the single-phase simulation, while the particle 
distribution keeps uniform in the multiphase simulation because the 
pressures of free surface particles are calculated by solving the PPE. 

From the phase field at t(g/H)1/2 = 6.29, it can be observed that the 

impacting of backward plunging water front on free surface leads to the 
formation of air cavity and the rise of pressure inside the cavity. The 
pressure rise can be quickly felt in a large water region, including the 
corner part where the pressure probe locates. However, the air cavity is 
regarded as a vacuum in the single-phase simulation, thus the impacting 
pressure can only be transferred through the circulatory flow around the 
cavity, resulting in the delay of the second pressure peak observed in 
Fig. 26. At t(g/H)1/2 = 7.77, the impacting process is finished and the air 
cavity start to collapse. Due to the extrusion caused by the falling 
movement of the upper water, the internal pressure of the cavity in-
creases and further transmitted to the pressure probe, inducing another 
peak in the pressure curve obtained by multiphase MPS method. 

In Fig. 28, the time evolutions of dimensionless pressure and volume 

Fig. 31. Phenomenon of air entrapment in 3-D dam-break flow.  
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Fig. 32. Schematic diagram of 2-D internal solitary wave.  

Fig. 33. Generation of internal solitary wave simulated by multiphase MPS method, dp = 0.001 m.  
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of the air cavity are presented. As it can be seen, the air cavity experi-
ences severe pressure and volume oscillations, and the variation trend of 
pressure and volume keeps opposite. In general, the deformation process 
of air cavity can be divided into four regimes. In regime 1, the air cavity 
is formed at t(g/H)1/2 = 5.94 and then continuously compressed due to 
the strong impact, leading to the increase of internal pressure. In regime 
2, the impacting phenomenon becomes less violent at t(g/H)1/2 = 6.29 
and the air cavity begins to expand under the influence of water 
movement. In regime 3, the cavity is compressed again during the 
collapse process, and finally, the air cavity broke up at t(g/H)1/2 = 6.66 
and the trapped air started to escape in regime 4. 

The shape and pressure of the air cavity at several typical time in-
stants are presented in Fig. 29. In general, the evolutional characteristics 

of air cavity in different regimes are accurately captured by the present 
multiphase MPS method. The distribution of water particles keeps uni-
form throughout the entire simulation, while the distribution of air 
particles inside the cavity is able to become dense or sparse with the 
change of cavity volume, through which the effectiveness of the 
compressible-incompressible model employed in this paper can be 
validated. 

In order to analyze the 3-D effects in the dam-break flow, the 
multiphase MPS method is further applied to the 3-D simulation of dam- 
break flow in this section. The 3-D numerical model is basically 
consistent with the 2-D model shown in Fig. 23, but the thickness of 
0.45 m is considered in the third dimension of the container. Hence, the 
total number of particles used in this case reaches up to about two 

Fig. 34. Propagation of internal solitary wave in the middle section of numerical tank, dp = 0.001 m.  

Fig. 35. Interfacial displacements at five wave probes predicted by multiphase MPS method.  
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Fig. 36. Comparison of interfacial displacements between MPS, SPH, and experimental results.  

Fig. 37. Dissipation of internal solitary wave through long-distance propagation.  

Fig. 38. Pressure field of internal solitary wave at t(g/h1)1/2 = 85.  
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million. 
Fig. 30 shows the evolution of 3-D dam-break flow simulated by the 

present multiphase MPS method. Similar with the 2-D results, the typical 
hydrodynamic phenomena in dam-break flows are well reproduced. 
Meanwhile, the formation, deformation and collapse of 3-D air cavity is 
accurately simulated. From the simulation results at t = 4.0 s, it can be 
seen that the flow field gradually recovers to be stable after a long-term 
evolution process and the previously trapped air particles are almost all 
escaped, thus the different fluids reach a completely separated state 
again. Fig. 31 shows the phenomenon of air entrapment in 3-D dam- 
break flow. As it can be observed, when the 3-D air cavity is initially 
formed at t(g/H)1/2 = 6.06, the distribution of air particles inside the 
cavity keeps almost uniform along the thickness direction. However, 
with the continuous development of dam-break flow, the shape of cavity 
becomes quite complex and shows significant 3-D effects. 

4.5. 2-D internal solitary wave 

Internal solitary waves propagating along a density interface have 
been observed at many locations in the stratified oceans. As internal 
solitary waves propagate, they carry considerable momentum and en-
ergy, resulting in significant transient hydrodynamic loading on any 
offshore structures, undersea navigation vehicles and subsurface storage 
facilities that they may encounter. In this section, the generation and 
propagation of a 2-D internal solitary wave are simulated with the 
present multiphase MPS method. For the further comparison and veri-
fication, the selection of numerical model is based on the tank size and 
fluid parameters of the experiment by Kodaira et al. (2016). As 

illustrated in Fig. 32, the computational domain is a rectangle container 
filled with two immiscible fluids. The top layer is a h1 = 0.05 m thick 
silicone oil layer with a density of 0.996 × 103 kg/m3 and the bottom 
layer is a h2 = 0.25 m thick water layer with a density of 0.856 × 103 

kg/m3. A vertically removable sluice gate is mounted at x = 0 m, which 
divided the wave tank into two parts. To generate the internal solitary 
waves, an interfacial displacement h3 is initially set between two sides of 
the sluice gate, thus the free surface on the right side of the gate is 
slightly higher. Five wave probes are arranged at x = 30h1, 50h1, 70h1, 
90h1, 110h1, respectively. 

Firstly, the internal solitary wave with h3 = 0.15 m is simulated with 
an initial particles distance of 0.001 m. In Fig. 33, the consecutive 
snapshots during the wave generation process are presented. When the 
sluice gate is removed, the gravity collapse induces an internal dam- 
break flow and the locked lighter fluid on the right side of the gate 
moves forward into the ambient fluid. Meanwhile, the phase interface 
gradually concaves and an internal solitary wave of depression type is 
formed at t(g/h1)1/2 = 29. Then, the internal solitary wave begins to 
propagate to the left and the waveform becomes more symmetrical. In 
addition, several tail waves with smaller amplitudes are generated after 
the main wave. 

Fig. 34 shows the stable propagation process of the internal solitary 
wave in the middle section of numerical tank from t(g/h1)1/2 = 85 to t(g/ 
h1)1/2 = 169. It can be seen that the internal solitary wave is able to 
propagate a quite long distance with the waveform maintained stable. 
There is no obvious decrease of the wave amplitude observed with the 
increase of propagation distance. The wave profile capture by the pre-
sent multiphase MPS method is also clear and nature, demonstrating the 

Fig. 39. x-velocity field and vector distribution of internal solitary wave at t(g/h1)1/2 = 85.  

Fig. 40. Interfacial displacements of internal solitary wave, dp = 0.001 m, h3 = 0.12 m.  
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advantage of the present method in interface capturing. 
Fig. 35 shows the wave heights calculated with different initial 

particle spacings, from which we can concluded that the calculation 
accuracy of wave height is significantly affected by the particle resolu-
tion. When the particle spacing is 0.0025 m, the low resolution causes 
serious numerical diffusion. When the internal solitary wave propagates 

to the farthest measuring point, the wave height is only about half of that 
near the first measuring point. With the decrease of particle spacing, the 
numerical diffusion is greatly reduced. However, the wave height 
reduction caused by numerical diffusion is still obvious when the par-
ticle spacing of 0.002 m or 0.0015 m is adopted. As the particle spacing 
decreases to 0.001 m, the wave heights obtained at different 

Fig. 41. Evolution of internal solitary wave, dp = 0.001 m, h3 = 0.12 m.  

Fig. 42. Interfacial displacements of internal solitary wave, dp = 0.001 m, h3 = 0.09 m.  
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measurement points become close, especially at the middle three mea-
surement points, the wave heights keep almost consistent and the nu-
merical diffusion can be ignored. Note that, the reason for the decrease 
of wave height between the first and second measuring points is that the 
wave profile has not being completely fixed. Due to the limitation of 
computing capacity, the smaller particle spacing is temporarily unable 
to be reached, but the calculation results still show a good convergence 
trend. 

In Fig. 36, the wave heights calculated by multiphase MPS method 
with the initial particle spacing of 0.001 m are compared with the SPH 
(Zheng and Chen, 2019) and experimental (Kodaira et al., 2016) results. 
Both the MPS and SPH results are in good agreement with the experi-
mental results, but the decrease of wave height for the MPS results is 
less. The reason may be that a large artificial viscosity is used in the SPH 
method to stabilize the calculation, which causes more numerical 
diffusion. In the MPS method, the real fluid viscosity can be directly 
adopted with the improvement of stability by the semi-implicit algo-
rithm, thus the profiles of internal solitary wave can be better main-
tained even after a long-distance propagation, as shown in Fig. 37. 

The pressure field during the stable propagation process is given in 
Fig. 38. Overall, the internal solitary wave imposes rather limited in-
fluence on the pressure field, which is close to the pressure field of static 
water. This also indicates that less wave energy is consumed to change 
the potential energy of the fluid system, thus the propagation distance of 
internal solitary wave can be much longer than the surface wave. 

Fig. 39 shows the velocity field and the velocity vector distribution. It 
can be seen that the upper and lower fluids are induced to produce the 
opposite horizontal velocities and generate a violent shear flow, which is 

also one of the main sources of shear flows in the ocean. Meanwhile, the 
fluid moves downward in front of the trough and upward behind the 
trough, generating a vortex flow centered at the lowest point of the 
trough with an anticlockwise direction. 

In order to further verify the accuracy of the present multiphase MPS 
method for the internal solitary waves with smaller amplitudes, the 
initial interfacial displacement h3 is then reduced to 0.12 m and 0.09 m, 
respectively. Fig. 40 and Fig. 41 show the wave height and the evolution 
of internal solitary wave with h3 = 0.12 m. With the decrease of the 
initial interfacial displacement, the wave height is significantly reduced 
compared with the case of h3 = 0.15 m, and the waveform becomes 
relatively flatter. Notwithstanding this, the multiphase MPS results still 
show a good agreement with experimental results. The numerical results 
with h3 = 0.09 m are presented in Fig. 42 and Fig. 43, from which a good 
agreement is observed again, even if the amplitude of internal solitary 
wave further decreases. Moreover, when the internal solitary wave 
propagates over a long distance and finally reaches the end of the nu-
merical tank, the interface simulated by the multiphase MPS method is 
still clear and a regular waveform is maintained. 

5. Conclusions 

Based on the mesh-free MPS theory, this paper carried out two as-
pects of work, including the development of multiphase method and its 
application research on interfacial flows. Firstly, a multiphase MPS 
method with high accuracy and stability is developed from the improved 
moving particle semi-implicit (IMPS) method by introducing various 
multiphase models, and benefitting from the GPU acceleration 

Fig. 43. Evolution of internal solitary wave, dp = 0.001 m, h3 = 0.09 m.  
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technique, the computational efficiency of multiphase MPS method is 
also enhanced, thus capable to large-scale 3-D simulations. 

Then, the developed multiphase MPS method is widely applied to 2- 
D/3-D simulation of interfacial flows, including Rayleigh-Taylor insta-
bility, bubble rising, dam-break flow, and internal solitary waves, ac-
cording to which the following conclusions can be drawn: (1) The fair 
agreements between the results of MPS and other reference results 
demonstrate that through the development of multiphase MPS method, 
the advantage of MPS method in free surface capturing can be further 
extended to track the complex interface in interfacial flows. (2) 
Although the air cavity formed in the dam-break flow is observed in both 
single-phase and multiphase simulations, only the multiphase MPS 
method is able to predict its profile and evolution exactly. Moreover, the 
multiphase MPS method is effective to correct the calculation error of 
pressure field caused by the neglection of air effect in the single-phase 
simulation. 

Future work is necessary focusing on the further improvement of 
numerical schemes and computational efficiency of the multiphase MPS 
method. For example, the simulation of 3-D internal solitary waves is not 
performed in this paper, due to the requirement of a large number of 
particles and the huge computational cost. Besides, although the energy 
conservation of the present method has been verified by the simulation 
of internal solitary waves, more verifications are still needed for the 
stabilizing pressure gradient term as well as the multiphase collision 
model, such as the simulation of multi-fluid oscillating drop conducted 
by Khayyer et al. (2019). We also hope that the energy conservation 
property of the current multiphase MPS method can be further enhanced 
by introducing some higher-order or prominent numerical schemes, 
such as the HS, HL, ECS, DS and GC schemes (Khayyer et al., 2017b). 
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