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ABSTRACT 
The paper explores Kriging-based surrogate model 

combined with Weighted Expected Improvement approach and 
for the ship hull form optimization. The training dataset of the 
Kriging-based surrogate model is obtained by sampling the 
design space (Design of Experiments, DOE) and performing 
expensive high-fidelity computations on the selected points. 
Expected Improvement (EI) is used as a criterion to select one 
additional sample point in each iteration. The Weighted 
Expected Improvement (WEI) is derived from EI by adding a 
tunable parameter which can adjust the weights on exploration 
and exploitation in the Efficient Global Optimization(EGO).  

The proposed method selects more than one new sample 
point by changing the weight parameter for each optimization 
iteration, thus it can be performed by parallel computation or 
multi-computer runs which improves the computational 
efficiency distinctly. This makes it possible not only to improve 
the accuracy of the surrogate model, but also to explore the 
global optimum much more quickly. The present method is 
applied to mathematical test function and a ship hull form 
optimization design in order to find the optimal hull form with 
best resistance performance in calm water in different speeds.  

The result shows that the criterion of WEI can be applied 
in EGO for optimization design and can be easily extended to 
other hull form optimization design problems based on 
computational fluid dynamics. 

KEYWORDS 
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INTRODUCTION 

In the process of ship design, hull form design is of vital 
importance. The design level of ship hull form has a great 
influence on its hydrodynamic performances and economic 
efficiency of the ship. In recent years, with the vigorous 
development of computer technology and the continuous 
improvement of the calculation theory, the Simulation-Based-
Design (SBD) technology is becoming possible. It is a new 
design method which integrates hull form transformation 
method, optimization technology and numerical calculation 
module. The technique uses geometric reconstruction method 
to transform and express hull form, and then predicts the 
hydrodynamic performance of each hull form scheme with 
computational fluid dynamic methods. Finally, the optimal hull 
satisfying the constraint condition is obtained by the 
optimization algorithm. In order to greatly save the high 
computational cost, one alternative method is to construct a 
relatively simple surrogate model instead of the complicated 
numerical analysis of a large number of sample points in order 
to find the relationship, which is often with strong nonlinearity, 
between the design variables (input) and the objective functions 
(output). The surrogate model expresses the relationship 
between the design variables and the objective functions using 
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a stochastic Gaussian process. The model requires very little 
time to evaluate the objective function. The most widely used 
surrogate model are the polynomial-based model, the response 
surface model, the Kriging model. 

The Kriging model can predict the value of the unknown 
point using stochastic processes (1), and it has gained 
popularity for the ship hull form optimization design. However, 
it is possible to miss the global optimum in the searching space 
if we only rely on the prediction value of the Kriging model 
because the model includes uncertainty at each point unless the 
sample points that have been used to construct the Kriging 
model. For robust exploration of the global optimum point, 
both the prediction value and its uncertainty should be 
considered at the same time. This concept is expressed in the 
criterion expected improvement (EI). EI includes the 
probability of a point being optimum in the design space. By 
the selection of the best EI point as the additional sample point, 
improvement of the model and robust exploration of the global 
optimum can be achieved at the same time, which is called 
Efficient Global Optimization (EGO) (2). 

The statistical framework of Kriging provides an estimator 
of the variance of the Kriging interpolator. Using this potential 
error, different metrics have been proposed to adaptively 
change the sample points in the design space such that the 
deterministic optimum of an unconstrained problem can be 
found efficiently. Expected Improvement (EI) has been shown 
to be sound statistical infill sampling criteria. By constructing 
an initial model using a suitable DoE (3) and then 
implementing EI, Jones et al. showed that the deterministic 
global optimum of an unconstrained problem can be found 
using relatively few expensive simulations and used the term 
Efficient Global Optimization to refer to this method (2). The 
EI algorithm distributes the weights equally between the two 
terms and can be seen as a fixed compromise between 
exploration and exploitation. In order to study the effect of 
different weights, the Weighted Expected Improvement(WEI) 
(2) was derived from EI by adding a tunable weighting 
parameter. In this article, EGO method that WEI is applied in 
will be applied to the ship hull form optimization design of 
KRISO Container Ship. 

THEORY OF KRIGING MODEL AND WEI 
As a kind of regression model, Kriging model (4) is able to 

exploit the spatial correlation of data in order to predict the 
shape of the objective function based only on limited 
information. Kriging exploits the spatial correlation of data in 
order to build interpolation; therefore, the correlation function 
is a critical element. This model combines a global model and a 
local component: 

( ) ( ) ( )y f z= +x x x              (1) 
where ( )y x is the unknown real function, ( )f x is a known 
approximation function, and ( )z x is the realization of a 

stochastic process with mean zero, variance 2σ , and non-zero 
covariance. With ( )f x and ( )z x , the Kriging model can be 
built to represent the relationship between the input variables 
and output variables. 
The Kriging predictor is given by: 

( )1ˆ ˆˆ ( )Ty β β−= + −r x R y f          (2) 

where ŷ is an sn -dimensional vector that contains the sample 

values of the response; f is a column vector of length sn  that 

is filled with ones when f is taken as a constant; ( )Tr x is the 

correlation vector of length sn between an untried x and the 

sampled data points ( ) ( ) ( ){ }1 2, , , snx x x and is expressed as:  

 

 ( )( ) ( )( ) ( )( )1 2( ) , , , , , , s
T

nT R R R =  r x x x x x x x   (3) 

 
Additionally, the Gaussian correlation function is 

employed in this work: 

( ) 2

1
, exp

dvn
i j i j

k k k
k

R x x x xθ
=

 
= − − 

 
       (4) 

In equation (2), β̂  is estimated using equation (5): 

( ) 11 1ˆ T Tβ
−− −= f R f f R y              (5) 

The estimate of the variance 2σ̂ , between the underlying 

global model β̂  and y  is estimated using equation (6): 

( ) ( )2 1ˆ ˆˆ
T

snσ β β− = − −  
y f R y f        (6) 

where ( )f x is assumed to be the constant β̂  . The maximum 

likelihood estimates for the kθ in equation (4) used to fit a 
Kriging model are obtained by solving equation (7): 
 

( ) ( )2

0
ˆmax ln ln 2

k
k sn

θ
θ σ

>
 Φ = − + R     (7) 

 
where both 2σ̂  and R  are functions of kθ . While any value 

for the kθ create an interpolative Kriging model, the “best” 
Kriging model is found by solving the k-dimensional 
unconstrained, nonlinear, optimization problem given by 
equation (7). 
The accuracy of the prediction value largely depends on the 
distance from sample points. Intuitively speaking, the closer 
point x  to the sample point, the more accurate is the 
prediction ŷ . This intuition is expressed as 

2 Copyright © 2018 ASME



 

( ) ( )21
2 2 1

1ˆ T
Ts σ

−
−

−

 −
 = − +
 
 

1 1R r
x 1 r R r

1 R 1
      (8) 

where ( )2s x  is the mean squared error of the predictor and it 
indicates the uncertainty at the estimation point. The root mean 

squared error (RSME) is expressed as 2 ( )s s= x . 
Since the Kriging model treats the target function as a 

Gaussian process, the value of an unknown point x  can be 
regarded as a random value ( )y x  of Gaussian distribution 

with mean ( )ŷ x and variance 2 ( )s x . Then the improvement 

of this point beyond the best observed value minf  is also a 
random value (2): 

( )min( ) max ( ),0I y y= −x x            (9) 
The expected improvement criterion calculates the mathematic 
expectation of the improvement value, and can be derived in 
closed form 

( )( ) ( )( ) ( ) ( ) ( )( ) ( )min min minˆ ˆ ˆ( )EI f y f y s s f y sφ   = − Φ − + −   x x x x x x x   

(10) 
Where minf  is the minimum value among sn  sampled 

values. Φ  and φ  are the standard distribution and normal 
density, respectively. 

It is easy for us to get the simple following expressions: 

0, 0
ˆ

EI EI
y s

∂ ∂< <
∂ ∂

             (11) 

It turns out that EI is monotonic in ŷ  and in s  . Thus, we 
see that the EI is larger the lower is ŷ  and the higher is s  . By 
selecting the maximum EI point as additional sample point, 
robust exploration of the global optimum and improvement of 
the model can be achieved simultaneously. The beauty of the 
expected improvement function can be seen from Eq. (10) that 
it gives an elegant balance between local search and global 
search. The first term of Eq. (10), including Gaussian density, 
favors “exploitation”—searching the most promising regions 
(high confidence); while the second term, containing the 
Gaussian distribution, prefers “exploration”—searching the 
regions that have high uncertainty. The EGO algorithm chooses 
the point with the highest EI value to update the Kriging model 
and the EI function. After that the next candidate point can be 
selected based on the updated EI function.  

The traditional EGO algorithm above has two main 
problems. Firstly, the traditional EGO algorithm can’t get the 
second updating point without evaluating the first updating 
point because the EI function needs be updated by the first 
updating point. As a result, the traditional EGO algorithm can 
only evaluate the designs sequentially, not in a parallel way, 
which is a real waste of time, especially in the applications of 
high time-costing CFD-based hull form optimizations. 

Secondly, it has been found (5) that in some practical cases 
exploration performs dramatically better in terms of finding the 
global optimum, whereas exploitation often causes the Kriging 
model to stop around a local minimum. The termination criteria 
used by the Kriging model are often based on finding 
repeatedly the same sampling point within prescribed tolerance, 
thus balancing exploration and exploitation is vital. The EI 
algorithm distributes the weights equally between the two 
terms and can be seen as a fixed compromise between 
exploration and exploitation. In order to tackle the problem, the 
Weighted Expected Improvement (WEI) (2) was derived from 
EI by adding a tunable weighting parameter. Through a set of 
experiments, it was shown that by changing the value of the 
tunable parameter the efficiency of finding the global minimum 
can be affected. 

( )( ) ( )( )
( ) ( ) ( )( )

( )
min min

min

ˆ ˆ
ˆ( , ) (1 )

f y f y
WEI f y s

s s
ω ω ω φ

   − −
= − Φ + −   

      

x x
x x x

x x
   

(12) 
By changing the tunable weighting parameter [ ]0,1ω ∈ ,we 
can add new sample points in a parallel way, thus we can find a 
minimum closer to the real minimum of the objective function 
more quickly and ensure that the Kriging model has high 
fidelity. 

MATHEMATICAL APPLICATION 
A typical test problem is used for the experiment so that 

we do not need to worry the computational time. It is described 
below: 

Six-hump camel-back function (Six-hump) with n = 2(6): 

  2 4 6 2 421 1( , ) 4 4 4
10 3

f x y x x x xy y y= − + + − +   (13) 

where [ ] [ ]( , ) 2, 2 2, 2x y ∈ − × − . 
Its graph is shown in Figure 1. 

 
FIGURE.1 GRAPH OF SIXHUMP FUNCTION(2-DIM) 
 
The OLHS technique is used to generate sample points in 

the design space to construct the Kriging model.  
Method 1: If we use a small number of sample points to 

construct the Kriging model, then the graph will be like Figure 
2. 
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FIGURE.2 GRAPH OF SIXHUMP FUNCTION WITH 30 

SAMPLE POINTS 
 
Method 2:If we use a small number of sample points and 

take WEI into consideration to add new points in 
parallel( { }0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9ω ∈ ) to 
construct the Kriging model, then the graph will be like Figure 
2. 

 
FIGURE. 3 GRAPH OF SIXHUMP FUNCTION WITH 30+18 

SAMPLE POINTS 
What’s more, in addition to the evaluation of fidelity of 

the Kriging model, the cross validations for the models are 
performed and the results are shown in Figure 4 and 5. In the 
cross validation, each sample point is evaluated from the 
surrogate model that is constructed by the other sample points. 
It can be observed from Figure 5 that the calculated objective 
function values by Eq. (13) (fcal) and estimated objective 
function values(fest) given by the surrogate model show a 
better agreement than Figure 4. 

 
 (A)METHOD 1         (B)METHOD 2 

FIGURE.4 CROSS VALIDATIONS OF KRIGING MODEL BY 
METHOD 1 AND 2 

If you don’t use EGO method, you have to generate a 
large number of sample points to insure the accuracy of the 
Kriging model. 

METHODS OF HULL FORM OPTIMIZATION DESIGN 
Hull form optimization is a comprehensive technology 

with many links. It can be mainly divided into three parts: the 

deformation and expression of the hull form, the solution and 
evaluation of hydrodynamic performance, and the search and 
filter of the optimization algorithm.  

 
FIGURE.5 FRAMEWORK DIAGRAM OF OPTSHIP-SJTU 

 
The OPTShip-SJTU solver is a self-developed tool based on 
C++ language for the ship hull form optimization, which has 
obtained national software copyright. It integrates with a hull 
surface modification module, a hydrodynamic performance 
evaluation module, a surrogate module and an optimization 
module, which can achieve the ship hull form optimization 
design automatically. The framework of OPTSHIP-SJTU can 
be seen in Figure 5. 
1.Ship form transformation module—FFD method 

Ship hull form transformation module is a bridge 
connecting ship performance evaluation module and 
optimization module. When the optimization module selects a 
new series of variables for the design, ship transformation 
module needs to make rapid response to the certain set of 
optimization design variables and send them to the ship 
hydrodynamic performance evaluation module, evaluation 
results will further affect the optimization module of design. 
The free surface deformation method FFD is a free mesh 
deformation method proposed by Sederberg and Parry (7)(8) in 
1986. It has been widely used in various fields including hull 
geometry reconstruction and other transportation tools. The 
basic idea is as follows. 

Firstly, a local coordinate system is constructed in a cube 
containing the object to be deformed. O '-STU constructs a 
local coordinate system, as shown in Fig. 1. 

 
FIGURE.6 LOCAL COORDINATE SYSTEM OF FFD 

METHOD 
 
Here, O is the origin of the local coordinate system, S, T, and U 
are axes vectors along three axes in the local coordinate system. 
It is obvious, such as the coordinates of X in Descartes O-XYZ, 
in a local coordinate system for (s, t, U), we have: 
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0 s t u= + + +X X S T U                (14) 
where X0 is the origin of the local coordinate system, and s, t, 
and u can be obtained as: 

s t u× × ×= = =
× ⋅ × ⋅ × ⋅

0 0 0X- X X- X X- X（ ） （ ） （ ）
， ，

T U S U S T
T U S S U T S T U

                                                    (15) 
Obviously, the values of s, t, and u are between 0 and 1. 

In cuboid structure, the control points , ,i j kQ , can be easily 
got by the following expression and can be seen as yellow dots 
in Figure 6. 

, , 'i j k
i j k
l m n

= + + +Q O S T U           (16) 

where 0,1, , ; 0,1, , ; 0,1, , .i l j m j n= = =     
Therefore, any point X in the framework of Descartes 

coordinates can be controlled by the control points for: 

0 0 0
( ) ( ) ( )

l m n

i l j m k n i j k
i j k

s t u B s B t B u
= = =

= ( ) , , , , ,X , , Q   

                      (17) 
where B represents for the Bernstein polynomial basis function: 

( ),
!( ) (1 )

! !
i n i

i n
nB u u u

i n i
−= −

−
          (18) 

It can be seen from Eq. (17) and (18) that the initial hull 
mesh is the linear function of all the control points. After setting 
up the relation between the geometry and the frame of the ship, 
we will take the position of some control nodes as the design 
optimization variables, and then achieve the goal of ship type 
transformation through the deformation of the control frame. 
Suppose that the local coordinates of the X in the original 
control framework are (s, t, u), and that the control points 

, ,i j kQ  are changed to obtain new control nodes ', ', 'i j kQ' , and 

then the point X will move to point ffdX :  

0 0 0
( ) ( )

l m n

ffd i l j m k n i j k
i j k

B s B t B u
= = =

′= ( ) , , , , ,X Q        

 (19) 
By changing the number, direction and size of the control 

points, different new meshes of the hull can be obtained. 
2.Hydrodynamics performance evaluation module —
NMSHIP-SJTU 

Here, we need to evaluate the hydrodynamic performance 
of the wave-making resistance at Fr=0.26 and 0.35. We 
adopted the self-developed NM theory solver NMShip-SJTU 
based on a potential theory, Newmann-Mitchell theory to 
calculate the wave-making resistance. Neumann-Michell theory 
(NM theory) is proposed by Francis Noblesse et al based on the 
Neumann-Kelvin theory (NK theory) (9). NM theory eliminate 
the ship waterline integral item in the NK theory, and the whole 
calculation can be converted to the integral on the wet surface 
of the ship. The theory adopts the coordination linear flow 

model and there’s no need to solve the distribution on the 
boundary of the source but calculate the wave resistance 
through the iteration of velocity potential. Besides, there are a 
lots of research about comparisons of experimental 
measurements of wave drag with numerical predictions 
obtained using the NM theory for the Wigley hull, the Series 60 
and DTMB 5415 model. Zhang et al of our research group, 
self-developed the NMShip -SJTU solver based on NM theory 
and calculated the resistance of catamaran, including the 
resistance of Delft catamaran and Series 60 catamaran in 
different demihull spacings (10). The results showed that the 
calculation results are in good agreement with experimental 
measurements. Wu et al succeed to optimize hull form of 
Wigley with the best wave resistance performance evaluated by 
NM theory (11). Yang and Huang presented that the sum of the 
ITTC friction resistance and the NM theory wave resistance 
could be expected to yield realistic practical estimates, which 
could be useful for routine applications to design and ship hull 
form optimization of a broad range of displacement ships (12). 
The computation of the steady flow around a moving ship 
based on NM theory is efficient and robust due to the 
succinctness of this theory, and Kim et al pointed that the wave 
resistance predicted by NM theory is in fairly good agreement 
with experimental measurements (13). Using NM theory can 
quickly complete the resistance performance forecast on 
personal computers. Xinwang Liu and Decheng Wan regarded 
the quadramaran as the research object and successfully 
calculated the wave-making resistance by NMShip-SJTU 
solver(14). 
3.Optimization module—MOGA-II 

At the stage of computing optimization, we first select 
20 sample points in the sample points in the design space by 
Optimal Latin Hypercube Sampling method (OLHS) design, 
and use the Kriging model instead of huge numerical 
calculation to make quick evaluation. Finally, the multi-
objective genetic algorithm MOGA-II is selected as the 
optimization method, and after 300×200 individual evolutions, 
the ideal optimization scheme is obtained. MOGA-II, a multi-
objective genetic algorithm, is implemented in many hull form 
optimization cases.  

APPLICATION OF SHIP OPTIMIZATION DESIGN OF 
KCS 
1.Objective functions 

The optimal calculation in this paper takes the KCS as the 
parent ship, which has the ship main dimensions of L=7.3577m, 
B=1.03m, D=0.346m. There are 2 objective functions shown 
below. We hope the smaller of the two objective functions, the 
better, that is 

        
{ }
{ }

1

2

min , 0.26

min , 0.35
obj w

obj w

f C Fr

f C Fr

= =

= =
 

2.Design variables 

5 Copyright © 2018 ASME



 

Optimization variables are used to control the free 
variation of the ship form in the design space. Ship 
transformation method in this paper is FFD method, involving 
two lattices (shown in Figure 7) at the bulbous bow and stern 
parts. Red points are movable while green points are fixed. 

Four optimization design variables X1, Y1, Z1, Y2 are 
summed up. The first 3 variables control the change of the 
bulbous bow surface in three directions: x, y and z. The last 
variable controls the change of the stern surface of the ship in 
the y direction. In order to ensure that the ship is within a 
reasonable range, the range of the variables is specified in 
Table 1. 

 
TABLE 1: THE RANGE OF THE 5 VARIABLES 
 

Variables Min Max 

Lattice-1 
X1 -0.01 0.01 
Y1 -0.005 0.005 
Z1 -0.0015 0.0015 

Lattice-2 Y2 -0.007 0.007 
 

     
(A)BOW-X DIRECTION      (B) BOW-Y DIRECTION 

     
(C) BOW-Z DIRECTION     (D) STERN-Y DIRECTION 

 
FIGURE.7 SCHEMATIC DIAGRAM OF FFD METHOD 

APPLICATION (LATTICE AND LAYOUT OF CONTROL 
POINTS) 

 
3.Optimization results and analysis 

Method 1: We firstly use the optimization of OLHS 
method to generate 60 sample points, they are uniformly 
distributed in the design space; then we set Kriging 
approximation model to do the optimization calculation. We 
select the multi-objective genetic algorithm NSGA- II as the 
optimization method, and calculate the 300×200 individuals to 
get the optimization results.  

Each of the solutions in the resulting Pareto solution is a 
potential "optimal solution", and the difference between them is 
the trade-off between the two objective functions. The 
optimization results are shown in Figure 8. For ease of analysis, 
we choose 3 schemes from the Pareto solution set, and mark 
them as Case-1, Case-2 and Case-3 in the diagram. The 

optimization results corresponding to the initial hull are shown 
in Table 2. 

 
FIGURE.8 PARETO FRONT OF METHOD 1 

 
 

TABLE.2 OPTIMIZATION RESULTS CORRESPONDING TO 
THE INITIAL HULL 

 

  Cw 
(Fr=0.26)

Cw 
(Fr=0.35)

Initial 0.001211 0.002076 

Case-1  0.001049 0.001888 

Decrease percent -13.39% -9.02% 

Case-2 0.001065 0.001899 

Decrease percent -12.04% -8.52% 

Case-3 0.001087 0.001913 

Decrease percent -10.29% -7.86% 
 
Method 2: We firstly use the optimization of OLHS 

method to generate 20 sample points, they are uniformly 
distributed in the design space; then we set Kriging 
approximation model to do the optimization calculation, this era 
is called ‘era0’.In era 1,we add 4 new sample points according 
to the maximum 4 of WEIs(each Kriging model take 2)when 
different { }0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9ω ∈  are taken. 
Other eras can be done like ‘era1’.We select the multi-objective 
genetic algorithm NSGA- II as the optimization method, and 
calculate the 300×200 individuals to get the optimization 
results. The Pareto fronts of each era can be seen in Figure 9. In 
Figure 9, ‘era5’ has 40 sample points and the ‘norm’ means the 
Pareto front of Method 1. 
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FIGURE.9 PARETO FRONTS OF METHOD 2 

 
We can see that with the increase of the number of era, the 

Pareto front firstly has the trend of the lower-left movement, 
but then has the trend of upper-right movement, and the Pareto 
fronts of ‘era4’ and ‘era5’ seem to be very close. Note that the 
value coordinates with 0.001 as the unit. We can also see that 
although the Kriging model in Method 1 has high fidelity, it 
cannot find the real minimum cause the minimum value is 
obtained near the boundary, and the traditional Kriging model 
can’t ensure high accuracy near the boundary. Fortunately, the 
EGO method considering WEI can help solve it cause it’s 
feasible to add new sample points in order to find the minimum 
of the objective functions. Taking the computational cost into 
consideration, we suspend the calculation in ‘era5’, and choose 
3 schemes from the Pareto front, and mark them as Case-4, 
Case-5 and Case-6 in the diagram. 

We can finally see the cross validation of the eras in order 
to ensure their fidelity. 

 

  
(A)CV OF CW1 IN ‘ERA0’   (B) CV OF CW2 IN ‘ERA0’ 

  
(C) CV OF CW1 IN ‘ERA5’  (D) CV OF CW2 IN ‘ERA5’ 

 
FIGURE.10 CV OF METHOD 2 IN DIFFERENT ERAS 

 
 

TABLE.3 VARIANCES OF METHOD 2 IN DIFFERENT 
ERAS  

era sample points
variance 

Cw1 Cw2 
0 20 1.05E-08 6.00E-09 
1 20+4 6.27E-09 3.79E-09 
2 20+8 4.27E-09 2.88E-09 
3 20+12 7.11E-09 5.81E-09 
4 20+16 6.75E-09 5.44E-09 
5 20+20 5.77E-09 5.09E-09 

 
 

TABLE.4 OPTIMIZATION RESULTS CORRESPONDING TO 
THE INITIAL HULL IN METHOD 2 

 

  Cw 
(Fr=0.26)

Cw 
(Fr=0.35)

Initial 0.001211 0.002076 

Case-4  0.001028 0.001894 

Decrease percent -15.10% -8.75% 

Case-5 0.001009 0.001846 

Decrease percent -16.73% -11.05% 

Case-6 0.001012 0.001841 

Decrease percent -16.50% -11.29% 
 
Take Case-5 as an example for further analysis. 

FIGURE.11 HULL LINE COMPARISONS OF CASE-5 IN 
METHOD 2 
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FIGURE.12 PRESSURE DISTRIBUTIONS OF INITIAL SHIP  

 
From Figure 11, the bulbous of the optimal hull is thinner 

and higher than the initial one in order to decrease the ship 
wave, and stern parts of the optimal hull is a little fatter than the 
initial one. From Figure 12-13, the bulbous of the optimal hull 
has smaller high pressure and low pressure regions, which 
mean the lower wave-making resistance. From Figure 14, the 
free surface elevations of the optimal hull are smaller, 
especially in Fr=0.26, which also mean the lower wave-making 
resistances. 

  
FIGURE.13 PRESSURE DISTRIBUTIONS OF OPTIMAL 

SHIP OF CASE-5 

From Figure 11, the bulbous of the optimal hull is thinner 
and higher than the initial one in order to decrease the ship 
wave, and stern parts of the optimal hull is a little fatter than the 
initial one. From Figure 12-13, the bulbous of the optimal hull 
has smaller high pressure and low pressure regions, which 
mean the lower wave-making resistance. 

  
FIGURE.14 COMPARISONS OF FREE SURFACE 

ELEVATIONS OF INITIAL SHIP AND OPTIMAL SHIP OF 
CASE-5  

 
From Figure 14, the free surface elevations of the optimal 

hull are smaller, especially in Fr=0.26, which also mean the 

lower wave-making resistances. 

CONCLUSIONS 
This paper presents a Kriging-based global optimization 

method efficient global optimization(EGO) considering WEI, 
which is different from the traditional optimization method. By 
this method, not only the accuracy of surrogate model is 
ensured but also we can find the real minimum objective 
functions. The method is successfully applied to the test 
functions and ship hull form optimization design. In future, it 
can be used to the ship hull form optimization via high-fidelity 
CFD methods, which will save much more cost, and can also 
improve the comprehensive hydrodynamic performance of ship 
hull form. 
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