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High-fidelity computational fluid dynamics (CFD) simulations provide critical predictive accuracy in marine and
ocean engineering design; however, their substantial computational expense often renders direct optimization
infeasible. To alleviate this limitation, surrogate models approximate expensive objective functions from a finite
set of observations, thereby enabling more tractable design exploration and optimization. Our objective is to
build a novel, general-purpose multi-fidelity surrogate modeling approach that integrates seamlessly into a
Bayesian optimization framework and remains robust under sparse high-fidelity data. We propose an adaptive
gated multi-fidelity neural network (AGMF-Net), which incorporates three specialized expert subnetworks—-
linear, nonlinear, and residual—combined through a deep Mixture-of-Experts gating network that dynamically
adjusts their contributions based on the input. To improve predictive uncertainty estimation, we ensemble
multiple independently initialized AGMF-Net instances and use the resulting variance to guide sampling de-
cisions. We embed this surrogate into a Bayesian optimization workflow driven by the logarithmic expected
improvement acquisition function, which balances exploration and exploitation while maintaining numerical
stability. We evaluated the proposed method against co-Kriging and the multi-fidelity neural network baseline on
benchmark functions. AGMF-Net achieved higher initial predictive accuracy, rapidly converged to global optima,
and maintained lower mean absolute relative error during optimization iterations. Finally, we applied the
framework to a hydrofoil design optimization. The model successfully identified a subtle camber modification
that improved the lift-to-drag ratio by 41.6 % compared to the baseline geometry, demonstrating that AGMF-Net
can accelerate CFD-driven hydrodynamic design scenarios that combine sparse high-fidelity data with cheaper
simulations. These results highlight the potential of adaptive gating and ensemble uncertainty quantification to
accelerate design exploration and improve solution quality when only limited high-fidelity evaluations are
feasible.

1. Introduction enable practitioners to explore design spaces and assess system perfor-

mance with dramatically fewer expensive evaluations (Forrester et al.,

High-fidelity CFD simulations have become indispensable in ocean
and marine engineering, where designers must resolve turbulent and
multi-scale flow phenomena around hulls, propellers, and hydrofoils.
Although CFD delivers reliable hydrodynamic prediction, its high
computational cost restricts direct use in iterative design optimization.
In response, data-efficient surrogate models have emerged as a critical
tool for accelerating high-cost simulation-based design loops. By
providing fast approximations of expensive simulators, surrogates
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2008; Peherstorfer et al., 2018a)

This efficiency is particularly important in Bayesian optimization
(BO), which iteratively uses a probabilistic surrogate to balance explo-
ration and exploitation of a black-box objective (Shahriari et al., 2015;
Jones et al., 1998). BO relies on a probabilistic surrogate (commonly a
Gaussian Process in classical approaches) to predict outcomes and
quantify uncertainty, guiding the selection of new experiments via
acquisition functions. Integrating cheaper, lower fidelity simulations or
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models into this process— a concept known as multi-fidelity Bayesian
optimization (MFBO)—can further reduce the overall optimization cost
by allowing occasional queries of fast, approximate information sources
in lieu of expensive high-fidelity ones (Peherstorfer et al., 2018a). In
recent years, MFBO frameworks have demonstrated substantial
speed-ups in applications ranging from materials discovery (Sabanza
etal., 2024; Fare et al., 2022) to aerospace design (Mukhopadhaya et al.,
2020) by optimally allocating resources across fidelity levels. These
advances underscore the importance of developing surrogate modeling
techniques that are not only accurate and data-efficient, but also capable
of leveraging multiple fidelities and providing reliable uncertainty es-
timates to drive decision-making.

Multi-fidelity surrogate modeling has accordingly become a vibrant
research area, aiming to fuse information from inexpensive low-fidelity
(LF) sources and sparse high-fidelity (HF) data to build improved pre-
dictive models. Early approaches in this domain were largely based on
Gaussian process regression; the seminal co-kriging framework of Ken-
nedy and O’Hagan (2000) (Kennedy and O’Hagan, 2000) introduced a
hierarchical GP model to correct LF predictions using HF data. Such
GP-based multi-fidelity surrogates (and their extensions) can provide
principled uncertainty quantification and have shown success in various
engineering problems (Le et al., 2014; Ciarlatani and Gorlé, 2025;
Novais et al., 2024). However, Gaussian process (GP) models face lim-
itations when dealing with high-dimensional inputs or highly nonlinear
system responses, often suffering the curse of dimensionality and loss of
accuracy in complex scenarios (Williams and Rasmussen, 2006). For
instance, studies have noted that classical multi-fidelity GP tends to
degrade in performance on large-scale nonlinear problems (Perdikaris
et al., 2017). This has motivated a shift toward deep learning methods,
which can learn rich representations and handle large data with complex
patterns (Raissi et al., 2019). Recent deep multi-fidelity surrogates
exploit neural networks to capture correlations across fidelity levels and
improve scalability (Perdikaris et al., 2017). Recurrent architectures
such as Long Short-Term Memory (LSTM) networks have been used to
automatically detect cross-fidelity features and achieve accurate
multi-fidelity regression (Conti et al., 2023). Likewise, advanced con-
volutional neural nets (Halder et al., 2022) and neural operators (Li
et al., 2020; Lu et al., 2021) have been explored to learn mappings be-
tween coarse and fine solution fields in physics problems.

Notably, Meng and Karniadakis (2020) (Meng and Karniadakis,
2020) proposed a composite neural network that couples subnetworks
across fidelity levels to model both linear and nonlinear correlations.
Their architecture integrates a low-fidelity encoder with two
higher-fidelity branches—one linear, one nonlinear—capturing
multi-scale relationships in a unified model. This concept of decom-
posing fidelity interactions has inspired further advances in deep
multi-fidelity learning. For instance, Lu et al. (2020) (Lu et al., 2020)
introduced a residual-learning framework for inferring material prop-
erties from indentation data, where the neural network explicitly
learned the discrepancy between a low-fidelity analytical solution and
high-fidelity finite element simulations. Building on such ideas, Zhan
et al. (2024) (Zhan et al., 2024) proposed Ada2MF, a dual-adaptive
multi-fidelity model for turbulent wake flow prediction. By integrating
residual learning with learnable gating and adaptive loss weighting,
Ada2MF improved robustness and mitigated negative transfer in re-
gimes with limited high-fidelity data. In parallel, attention-based stra-
tegies have also emerged. Cheng et al. (2024) (Cheng et al., 2025)
developed MF-Net, an architecture that uses self-attention to fuse
multi-source low-fidelity features with sparse high-fidelity data in an
end-to-end manner. Their model achieved state-of-the-art accuracy in a
welding mechanics case study. Taken together, these developments
highlight a clear trend: robust multi-fidelity models increasingly rely on
mechanisms that adaptively gate, weight, or attend to each fidelity
level—leveraging correlations while guarding against misleading
signals.

Despite progress, two major challenges remain: (1) negative transfer
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due to naively mixing inconsistent fidelity sources, and (2) the lack of
adaptive architectures that generalize across domains. Addressing these,
Zhan et al. (2024) proposed Ada2MF, a dual-adaptive network
combining an Adaptive Multi-fidelity (AMF) module and Adaptive Fast
Weighting (AFW). AMF blends three experts—linear, nonlinear, and
residual— via learnable weights, while AFW adjusts loss contributions
from each fidelity dynamically.

This line of research connects with the Mixture of Experts (MoE)
paradigm (Jacobs et al., 1991), where a gating network selects among
expert sub-models. Modern MoE approaches, such as sparsely-gated
models (Shazeer et al., 2017), scale this idea to billions of parameters
with minimal computational cost. Applying this gating philosophy to
surrogate modeling promises robustness by emphasizing trustworthy
experts depending on the input.

Another key component in BO is uncertainty quantification (UQ).
While Gaussian processes offer built-in UQ, they lack scalability.
Bayesian neural networks (BNNs) (Neal, 2012) provide a principled
alternative but are difficult to train. Lakshminarayanan et al. (2017)
proposed deep ensembles as a practical and competitive method for UQ,
outperforming many BNNs in calibration and robustness.

In multi-fidelity contexts, uncertainty-aware surrogates remain
scarce. Some researchers extended BNNs to multi-fidelity modeling
(Meng et al., 2021), but training complexity remains a bottleneck. Thus,
integrating scalable UQ into expressive multi-fidelity architectures is a
critical research frontier.

Surrogate modeling in hydrodynamics and fluid mechanics further
motivates our work. Optimizing hydrofoils, propellers, and marine
structures requires resolving turbulent, multi-scale physics—often
needing unsteady Reynolds-averaged Navier-Stokes (URANS) simula-
tions (Li et al., 2023; Bonfiglio et al., 2018). Recent works have com-
bined XFOIL with CFD for multi-fidelity optimization of airfoils (Aye
et al., 2023), but most rely on traditional co-kriging or basic neural nets,
lacking adaptive fusion or robust UQ.

To address these gaps, we propose AGMF-Net, an Adaptive Gated
Multi-Fidelity neural network. AGMF-Net builds on Ada2MF (Zhan
et al, 2024) and enhances it in two ways: (1) using a deep
Mixture-of-Experts (DMoE) gating sub-network to assign context-aware
weights to three specialized experts (linear, nonlinear, residual), and (2)
employing deep ensembles for uncertainty-aware predictions. This re-
sults in a surrogate that is accurate, general, and robust to fidelity
inconsistency.

The objective of this study is to develop a novel, general-purpose
multi-fidelity surrogate model integrated within a Bayesian optimiza-
tion framework that can accurately predict expensive functions using
limited high-fidelity observations.

This study introduces AGMF-Net, a novel surrogate architecture that
integrates deep gated expert fusion with ensemble-based uncertainty
quantification, enabling accurate and robust multi-fidelity learning
under limited high-fidelity data. We incorporate AGMF-Net into a
Bayesian optimization loop and evaluate its effectiveness on challenging
mathematical benchmark functions. To demonstrate its practical utility,
we then apply it to a realistic hydrofoil optimization problem that re-
quires expensive URANS simulations.

2. Methods

This section centers on the proposed Adaptive Gating Multi-Fidelity
Network (AGMF-Net) and its assessment. We direct readers to the Ap-
pendix for comprehensive methodological background: the Bayesian
optimization procedure—including the numerically stable formulation
of logarithmic Expected Improvement (logEI)—the benchmark surro-
gate models (Kriging, MLP, co-Kriging, MFNN), and the evaluation
metrics (RMSE, r2, MARE). In Section 2.1, we develop the AGMF-Net
architecture and training objective. In Section 2.2, we evaluate AGMF-
Net on benchmark functions, specifying design domains, initialization,
acquisition optimization, and the reporting procedure. In Section 2.3,
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Fig. 1. Architecture of adaptive gated multi-fidelity neural network
(AGMF-Net).

we perform a hydrofoil optimization with coupled URANS-XFOIL
fidelities, and we describe the simulation configuration and assess-
ment workflow.

2.1. Adaptive gating multi-fidelity neural network (AGMF-Net)

The proposed adaptive gating multi-fidelity neural network (AGMF-
Net) aims to construct a generalized multi-fidelity surrogate model
capable of accurately approximating complex functions from limited
data. This framework builds upon the nonlinear correlation learning
strategy of Meng and Karniadakis (2020) and the residual learning
approach introduced by Lu et al. (2020) to improve predictive fidelity.
Additionally, AGMF-Net addresses the need to effectively map design
variables to response quantities in practical engineering settings.

To this end, the architecture adopts the additive formulation of
Ada2MF (Zhan et al., 2024), expressed as:

f(X,fi(X)) = tanh(a1) Fy (X, f1(X)) + tanh(az) Fu(X, f1(X))
+ tanh(a3) Fres(X), (@)

where F, F,;, and F,¢ represent the linear, nonlinear, and residual sub-
networks, respectively. Scalar gating parameters a; € R control the
contribution of each component.

In Ada2MF, the adaptive multi-fidelity (AMF) module combines the
linear, nonlinear, and residual subnetworks using tanh(e;) global co-
efficients that do not depend on (X,f;(X)). Such input-invariant weights
can be sub-optimal when correlation between the low-fidelity signal f;
and the high-fidelity target f varies across the domain. Moreover,
tanh( -) is unnormalized and permits negative coefficients, which can
introduce subtractive combinations and sensitivity in poorly constrained
regions; saturation near +1 can also slow learning. We therefore replace
the global coefficients with input-dependent, normalized weights

w(X) = softmax(W(X, f;(X))) 2
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and define the predictor as

FXfu(X)) =wi (X)F(X, (X)) +wa (X)Fu (X, f1 (X)) + ws(X)Fres(X).  (3)

Each summand corresponds to a distinct expert subnetwork. Fig. 1
depicts the architecture. We quantify predictive uncertainty by aggre-
gating multiple independently initialized instances (deep ensembles), as
in our MLP and MFNN baselines. The softmax gating yields non-negative
weights that sum to one. This deep mixture-of-experts gate provides
context-aware routing (up-weighting the linear/nonlinear experts
where f; aligns with f, and shifting mass to the residual expert where f; is
biased), and ensures each prediction is a convex combination of expert
outputs. In practice this tends to improve robustness (no sign-flipped
cancellations), interpretability (weights directly indicate each expert’s
local contribution), and smoother uncertainty aggregation when used
with ensembles.

We trained AGMF-Net with paired low- and high-fidelity data. For
each minibatch, we evaluated the three expert subnetworks on (X, f; (X))

and obtained the prediction;‘(X, f1(X)) and the input-dependent mixture
weights w(X) as defined in Equation (2). To guide learning, we
decomposed the objective into three complementary Mean Squared
Error (MSE) terms measured against the high-fidelity targets:

Zu = MSE(f(X,£.(X)).f(X)), (42)
J)LH = MSE(FZ(vaL (X)) +Fnl(X7fL (X))vf(x))7 (4b)
Lk := MSE(Fpes(X),f(X) — f1(X)), (4¢0)

g trained the full mixture to match f. ;g aligned the experts that
consume (X,f; (X)) with the high-fidelity signal so the model could
exploit informative low-fidelity structure. s taught the residual expert
to correct the discrepancy f(X) — fi(X), which supported robust bias
correction when the low-fidelity model was inaccurate.

We then formed a single scalar objective via Adaptive Fast Weighting
(AFW) (Zhan et al., 2024):

= Z WI((task)Jkl’W’((task) _ softmax(u) cR® 5)
ke{H.LHR}

Where u € R® are unconstrained logits. After each gradient step on .7,
we updated u using the relative log-improvements of the component
losses to reallocate emphasis toward slower-improving terms and away
from faster-improving ones.

_ L T
/0 = (log 7% log 2 log 23, A/ =70 — D) D) = 0

- [diag (W)Y yltask) () (w(\ask)(r))T] A )

with step size # > 0. This schedule balanced the three learning signals
automatically. When the low-fidelity model aligned with the high-
fidelity target in a region, /1y typically decreased rapidly and AFW
reduced its weight, while  received less emphasis. When the low-
fidelity model was biased, /1y improved slowly and AFW reweighted
toward /g, prompting the residual expert to explain the discrepancy. In
this way, AFW mitigated negative transfer from low-fidelity to high-
fidelity learning by down-weighting misleading supervision and up-
weighting corrective signals.

The input-dependent softmax gate w(X) at prediction time com-
plemented AFW during training. The gate produced non-negative
mixture weights that summed to one, which favored stable convex
combinations of experts rather than subtractive cancellations and
worked well with our deep-ensemble uncertainty estimates. We trained
multiple independently initialized instances and aggregated them as a
deep ensemble to quantify predictive uncertainty, following best prac-
tice for uncertainty-aware neural surrogates. We standardized inputs
and targets before training and de-standardized predictions for report-
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Table 1
Hyperparameters used in the Bayesian Optimization of the Forrester Function.
Surrogate Model MLP MFNN Ada2MF AGMF-Net
Activation Function Mish Mish Mish Mish
(except F;) (except F) (except F)
Optimizer AdamW AdamW AdamW AdamW
Learning Rate 1.00 x 1.00 x 107> 1.00 x 107 1.00 x 1073
1072
Number of Epochs 4000 4000 4000 10000
Number of 30 30 30 30
Ensemble Models
Number of Neurons (5,5,5,5,5) F (-) F (-) F (-)
in Hidden Layers Fy Fy Fy
(5,5,5,5,5) (5,5,5,5,5) (5,5,5,5,5)
Fres Fres
(5,5,5,5,5) (5,5,5,5,5)
w1

Table 2
Hyperparameters used in the Bayesian Optimization of the Branin Function.
Surrogate MFNN Ada2MF AGMF-Net
Model
Activation Mish (except F) Mish (except F;) Mish (except F)
Function
Optimizer AdamW AdamWw AdamW
Learning Rate 1.00 x 1073 1.00 x 1073 1.00 x 1073
Number of 6000 6000 10000
Epochs
Number of 10 10 10
Ensemble
Models
Number of F () F () F (—)
Neurons in Fy Fy F, (10,10,10,10,10)
Hidden (10,10,10,10,10) (10,10,10,10,10) Frs (10,10,10,10,10)
Layers Fres w(2)
(10,10,10,10,10)
Table 3

Hyperparameters used in the Bayesian Optimization of the Hartmann-3D
Function.

Surrogate MFNN Ada2MF AGMF-Net

Model

Activation Mish (except F;) Mish (except F;) Mish (except F;)
Function

Optimizer AdamW AdamW AdamW

Learning Rate 1.00 x 1073 1.00 x 1073 1.00 x 1073

Number of 10000 10000 12000
Epochs

Number of 10 10 10
Ensemble
Models

Number of F (-) F () F (5
Neurons in Fy Fy F, (15,15,15,15,15)
Hidden (15,15,15,15,15) (15,15,15,15,15) Fres (15,15,15,15,15)
Layers Fres w3

(15,15,15,15,15)
ing.

In practice, we observed that Adaptive Fast Weighting (AFW) makes
the optimization objective time-varying early in training because the
task-weight logits u evolve based on relative log-loss improvements. This
adaptive reweighting slowed—but stabilized—convergence compared
with a single MSE objective. To reach a steady weighting regime and
avoid premature bias toward any one component loss, we allocated a
larger epoch budget to AGMF-Net than to the other surrogates in every
test problem (see the hyperparameters in Tables 1-3). Empirically, the
composite loss - stabilized later than a standard MSE loss and benefited
from the extended training schedule.
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Fig. 2. Modified Branin Function via Dong et al. (Dong et al., 2015).

2.2. Benchmark function experiments

2.2.1. Forrester function

The Forrester function served as a single-variable benchmark to
assess surrogate model performance. Forrester et al. (2008) originally
proposed the function over the domain x € [0,1], defined as:

f(x) = (6x — 2)* sin(12x — 4), %)

fi) = 5fx) + 100~ 0.5) 5. ®

Equation (7) represents the high-fidelity target, while Equation (8)
introduces a biased low-fidelity approximation. The function contains a
global minimum at x =~ 0.75725 and a local minimum at x =~ 0.14259,
which challenge surrogate models to capture nonconvex behavior.

This study applied all six surrogate models described in Subsection
2.1 and Appendix to approximate the function. Table 1 reports the
hyperparameters used for neural network-based models. The experi-
ment initialized with three evenly spaced samples from the domain [0,1].
The Bayesian Optimization procedure, outlined in Appendix A,
continued until one of the models predicted the global minimum with a
MARE below 5 %.

We assessed predictive performance by computing RMSE and r? over
200 evenly distributed test points within the design space. To evaluate
the surrogate’s accuracy at the optimum, we determined MARE by
comparing predictions with the known global minimum point.

2.2.2. Modified Branin Function

To extend the evaluation to two dimensions, the modified Branin
function was selected. The design space (xi,x;) € [0,1]> was trans-
formed into the original Branin domain using:

u :15x1 — 5,112 = 15X2. (9)

The high-fidelity Branin function was normalized and defined as:

1 51u 5u; _\° 10
f(ul,uz)—mgs{(uz— a2 +T—6> +(10—§)cos(u1)—44.81 .

10)

Following the multi-fidelity structure proposed by Dong et al.
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Fig. 3. Hartmann-3D high-fidelity objective visualized with semi-transparent
isosurfaces (marching-cubes at 10/25/40/60/80th percentiles); black markers
denote the 30 initial optimal Latin hypercube samples in [0, 1]

Table 4

Design space and flow conditions for NACA 66; — 012 hydrofoil optimization.
Parameter Value Unit
Design domain (c) [0, 0.04] % chord
Angle of attack 3 degrees
Flow speed 9.45 m/s
Reynolds number 8.93 x 10°
Kinematic viscosity 8.87 x 1077 m?/s
Water density 997 kg/m*

Mach number 6.33 x 1072

Fig. 4. NACA 66; — 012 via Kermeen (Kermeen and Plesset, 1956) with CST
resampling coordinates.

(2015), the low-fidelity function incorporated a quadratic bias:

fulur, uz) =f(ur,u2) +20(0.9 + uy)* — 50. an

The Branin function contained three global minima in the (u;,uy)
space, approximately located at:

(—3.1950, 12.275), (9.4248, 2.475), (3=, 2.475).

Under the normalization in Equation (9), these minima corresponded
to:

(x1,X2) ~ (0.1239,0.8183), (0.5428,0.1517), (0.9617, 0.1650).

Fig. 2 shows the resulting function landscape. This experiment
applied four multi-fidelity surrogate models—co-Kriging, MFNN,
Ada2MF and AGMF-Net—as described in Subsection 2.1 and Appendix
Table 2 lists the corresponding neural network hyperparameters. The
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Fig. 5. CFD simulation domain.

[0,1]> domain was initially sampled using 16 points generated via
optimal Latin hypercube sampling (Franco, 2008). Bayesian Optimiza-
tion followed the procedure in Appendix A and terminated once any
model achieved a minimum with a MARE below 5 %.

We evaluated predictive performance by computing RMSE and r?
over 40,000 evenly distributed grid sampling test points within the
design domain. To assess local accuracy at the optima, we calculated
MARE by comparing predictions with the known values at the three
global minimum points.

2.2.3. Hartmann-3D
We used the conventional Hartmann-3D as the high-fidelity target on

0,13

fo— - exp(zﬂi,-(xjaj)z), a2
i1 =1

with
0.3689 0.1170 0.2673 3 10 30
0.4699 0.4387 0.7470 0.1 10 35
a={1.0,1.2,3.0,3.2},P= b=
0.1091 0.8732 0.5547 3 10 30
0.0381 0.5743 0.8828 0.1 10 35
(13)

Following Toal’s adjustable construction (Toal, 2015), we defined
the low-fidelity function as

==Y a exp< (- ptarn) ) a4

And we fixed the correlation parameter at a = 0.5.

Fig. 3 renders the high-fidelity Hartmann-3D landscape as a set of
percentile isosurfaces, revealing multiple separated basins and sharp
ridges that indicate strong non convexity and anisotropy.

The optimization and evaluation procedure matched section 2.2.1
and 2.2.2. We initialized [0,1]® with 30 points from an optimal Latin
hypercube. For evaluation, we computed RMSE and r2 on a dense grid of
40% = 64,000 test points. Neural-network hyperparameters for MFNN,
Ada2MF, and AGMF-Net appear in Table 3.

2.3. Hydrofoil optimization

Following the benchmark evaluations of AGMF-Net, we applied the
model to a real-world engineering problem: optimizing the lift-to-drag
ratio (C./Cp) of a hydrofoil. The initial geometry was based on the
NACA 66; — 012 profile provided by Kermeen (Kermeen and Plesset,
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Fig. 6. Mesh boundary layer at trailing edge.

1956). The optimization involved a single design variable—the
maximum camber coefficient located at 42 % of the chord length.
Optimization was conducted within a non-cavitating regime, under the
flow conditions and design domain summarized in Table 4.

The digitized coordinates of NACA 66; — 012 provided by Kermeen
(Kermeen and Plesset, 1956) lacked sufficient resolution for both CFD
and XFOIL analysis. To address this limitation, we reconstructed a
high-resolution geometry using the class-shape transformation (CST)
method (Kulfan, 2008) with a sixth-order Bernstein polynomial. We
scaled the airfoil to a unit chord length to simplify numerical treatment
(Fig. 4).

We computed the high-fidelity objective function by solving the
incompressible, unsteady Reynolds-averaged Navier-Stokes (URANS)
equations using a finite volume method:

Continuity equation : V-u =0 (16a)
. ou 1
Momentum equation : Fr V-(u@u)= — ;Vp + V[ (v+v)Vul.
(16b)

We modeled transition using the SST-y — Re, transition model
(Langtry and Menter, 2009), a correlation-based extension of the SST
k-w turbulence model. This framework introduces two additional
transport equations for intermittency (y) and the transition
momentum-thickness Reynolds number (Rey), enabling accurate pre-
diction of laminar-turbulent transition. The model is particularly suit-
able for simulating the hydrodynamic performance of airfoils and
hydrofoils, where the location of the transition and separation points has
a decisive influence on lift and drag. The governing equations are
expressed as:

d(p k)
Jat

+V-(puk)=V-[(u+ocp)VK|+P = pko (17a)
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Fig. 7. The ratio of lift and drag coefficients time domain.

Table 6

Hyperparameters used in Bayesian Optimization of the Hydrofoil Problem.

Surrogate Model XFOIL Coupled XFOIL and CFD
Activation Function Mish Mish (except F;)
Optimizer AdamW Adamw
Learning Rate 1.00 x 1073 1.00 x 1072
Number of Epochs 4000 4000
Number of Ensemble Models 10 10
Number of Neurons in Hidden (5,5,5,5,5) F (-)
Layers Fu (5,5,5,5,5) Fres
(5,5,5,5,5)
w(Q)
p w P,
PELAT - puw) =T w) Vol +a L pp o?
t
Vk-Va
+2p(17F1)0'w2 (17b)
ap
0 v puy)=p,—E+ 9| (us’e) vy 170
ot o,
d(p Re
%+V~ (p uRey) =Pre, — Ege, +V~[<u+g—‘) VReg] 17d)
0

We used the pimpleFoam solver in OpenFOAM® v2412, which im-

plements the PIMPLE algorithm (Weller et al., 1998). To accelerate
convergence, we enabled local time stepping (LTS) (Jeanmasson et al.,
2018). We selected pimpleFoam over simpleFoam due to stability ad-
vantages under the specified flow regime.

We generated a C-type mesh containing 4,662,000 hexahedral cells

Table 5
Boundary and initial conditions for each transported field in the OpenFOAM® simulation.
Field Inlet Outlet Airfoil Initial field
Pressure (m?/s%) freestreamPressure freestreamPressure  zeroGradient uniform 0
=0 =0
Velocity U (m/s) freestreamVelocity freestreamVelocity ~ noSlip uniform (0.790913,
= (0.790913, = (0.790913, 0.04145, 0)
0.04145, 0) 0.04145, 0)
Turbulent viscosity v, (m?/s?) calculated calculated fixedValue 1e-10 (for uniform 1e-10 (for
stability) stability)
Turbulent kinetic energy k (m?/s?) turbulentIntensit yKineticEnergyInl et intensity = zeroGradient fixedValue 1e-10 (for uniform 9.40892e-5
0.01 stability)
Specific dissipation o (s™!) turbulentMixingLe ngthFrequencylnle t zeroGradient fixedValue 181,636 uniform 2.45404e-3
mixingLength =
0.0122474

fixedValue 1
fixedValue 1

Intermittency y
Momentum thickness Reynolds
number Rey,

zeroGradient
zeroGradient

zeroGradient
zeroGradient

uniform 1
uniform 1
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Fig. 8. Comparison of predictive performance and acquisition functions of six surrogate models for Bayesian optimization of the Forrester function.

Table 7
Comparison of surrogate model performance over infill iterations for the Forrester function optimization. The best performance in each row is highlighted in bold.
Metric Infill Iteration Kriging MLP co-Kriging MFNN Ada2MF AGMF-Net
RMSE 0 44.7229 38.9339 8.6760 13.6389 24.8582 10.8987
1 43.5161 36.5703 0.8620 2.7143 26.7417 2.9163
r? 0 0.2069 0.2552 0.7822 0.7154 0.4586 0.8393
1 0.1892 0.2433 0.9711 0.9326 0.3962 0.8919
MARE 0 2.4417 2.2814 1.0777 1.3832 1.7932 1.1554
1 2.4463 2.2538 0.0974 0.0395 1.8896 0.0308

(Fig. 5) and partitioned it into 168 subdomains using the Scotch
decomposition method (Pellegrini and Roman, 1996). The simulations
were executed on the high-performance computing facilities at the
Computational Marine Hydrodynamics Laboratory (CMHL). To fully
resolve the boundary layer without resorting to wall functions, we set
the first cell height to 1.25 x 10~* m, yielding y* ~ 1 (Fig. 6). The
boundary conditions for all transported fields are summarized in
Table 5. We applied second-order upwind schemes (Van Leer, 1979) and
continued simulations until the C;,/Cp ratio stabilized (Fig. 7).

To construct the low-fidelity model, we employed XFOIL 6.99, using

viscous analysis for discrete design points. XFOIL is an interactive 2-D
airfoil analysis/design program that solves an inviscid potential flow
with a high-order panel method and couples it to an integral boundary-
layer solver with transition modeling, enabling rapid prediction of lift,
drag, and moment polars at subsonic Reynolds numbers (Drela, 1989)
(Drela and Youngren, 2001). We validated both fidelity levels against
experimental data for the initial design. Three high-fidelity design points
were sampled uniformly across the design domain and evaluated using
CFD.

To support the multi-fidelity model, we trained a single-fidelity
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Fig. 9. Decomposition of Ada2MF and AGMF-Net on the Forrester function with increasing numbers of training samples. The upper panels illustrate the model
predictions and the corresponding decomposed components, while the lower panels show the weight space that governs their combination across the domain.
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Table 8
Comparison of Ada2MF and AGMF-Net on the Forrester function under different
training sample sizes.

Metric Training Samples Ada2MF AGMF-Net
RMSE 3 24.8582 10.8987

4 7.7119 3.8214

5 0.9724 0.1455
r? 3 0.4586 0.8393

4 0.7271 0.8128

5 0.9668 0.9943
MARE 3 1.7932 1.1554

4 0.6989 0.4184

5 0.0126 0.0162

surrogate using a multilayer perceptron (MLP) on 100 low-fidelity
samples. We then constructed the AGMF-Net multi-fidelity surrogate
using the hyperparameters listed in Table 6. Two Bayesian optimization
iterations explored the objective landscape, followed by surrogate
optimization. The resulting optimal design was compared against the
baseline.

3. Results and discussion
3.1. Evaluation of surrogate models using the forrester function

Fig. 8a (iteration 0) and Table 7 together show two clear patterns.
First, in this one-dimensional setting, co-Kriging provides the strongest
global fit in terms of RMSE at initialization, reflecting the well-known
strength of Gaussian process co-Kriging for smooth, low-dimensional
functions with an approximately stationary discrepancy. However,
AGMF-Net achieves the highest r?> among all models, indicating a
stronger overall correlation with the true function even with sparse
high-fidelity data. Second, AGMF-Net already ranks among the top
methods at the optimum (low MARE) despite using the same sparse
high-fidelity samples, indicating that its gated fusion and residual
correction focus predictions near the true minimizer from the outset.

After the first infill (Fig. 8b), the divide between “global fit” and
“optimization accuracy at the minimizer” becomes more pronounced.
Co-Kriging continues to deliver the lowest RMSE, confirming that it still
predicts the overall 1D function shape extremely well. In contrast,
AGMF-Net and MFNN reduce the optimal-point error most aggressively,
with AGMF-Net maintaining high correlation and the lowest MARE.
Ada2MF improves more slowly under the same budget; and the single-
fidelity baselines (Kriging, MLP) remain least competitive on all metrics.

The acquisition surfaces in Fig. 8a and b are consistent with these
outcomes. Co-Kriging’s calibrated uncertainty sharpens the full-domain
reconstruction rapidly, while AGMF-Net concentrates Log-EI mass near
the global minimizer early, which accelerates reduction of the error at
the optimum. This contrast explains why co-Kriging leads the table on
RMSE in this problem, yet AGMF-Net satisfies the MARE-based stopping
criterion within a single iteration.

Fig. 9a—c compare Ada2MF and the proposed AGMF-Net on the
Forrester benchmark using three, four, and five evenly spaced obser-
vations. Both models reconstruct the high-fidelity response through
three experts—linear, nonlinear, and residual—combined by adaptive
weights, where Ada2MF employs global coefficients and AGMF-Net in-
troduces input-dependent gating over (X, f;(X)). As shown in Table 8,
AGMF-Net consistently outperforms Ada2MF across all metrics and
sample sizes, achieving lower RMSE and higher 2 for every case. The
only exception is the MARE at five samples, where AGMF-Net is slightly

higher but remains comparable. The improvement is most evident in
the highly nonlinear region (X > 0.85) for the three- and four-sample
cases (Fig. 9a and b), where Ada2MF fails to capture the strong curva-
ture of the true function, whereas AGMF-Net closely tracks the target.
With five samples (Fig. 9c), AGMF-Net reproduces the full function
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profile with near-perfect accuracy, demonstrating superior correlation
adaptivity and representational robustness.

The upper panels show the decomposition of the ensemble-mean
prediction into three ensemble-mean expert curves—linear, nonlinear,
and residual—corresponding to the model’s additive architecture. The
lower panels illustrate the ensemble-mean weights. In Ada2MF, each
ensemble member learns fixed global coefficients tanh(e;) that remain
constant across the domain; thus, the averaged weights appear abso-
lutely flat, directly reflecting their input-invariant nature. In contrast,
AGMF-Net’s softmax-based gating produces input-dependent, positive,
and normalized weights that sum to one, enabling the model to form
convex combinations of the experts and to adapt smoothly to local fi-
delity correlations.

It should also be noted that the linear expert is linear with respect to
the joint input (X.f (X)), not X alone. Because f;,(X) is nonlinear in X, the
corresponding F;(X, f1(X)) curve appears curved when plotted along X,
even though the mapping in the joint input space remains linear.

3.2. Evaluation of surrogate models using the Modified Branin Function

We restrict this comparison to the multi-fidelity surrogates—co-
Kriging, MFNN, Ada2MF, and AGMF-Net—because multi-fidelity
consistently dominated single-fidelity in our Forrester study and in
prior reports (Kandasamy et al., 2017) (Peherstorfer et al., 2018b).
Fig. 10a—e visualizes the predictive fields across four infill iterations, and
Table 9 summarizes RMSE, r?, and MARE. At initialization (Fig. 10a),
AGMF-Net already achieved the lowest global error and highest
explained variance while also yielding the smallest MARE at the
minima, indicating that input-dependent gating with a residual expert
aligned quickly with the biased low-fidelity signal under sparse
high-fidelity data. As additional samples accumulated (Fig. 10b-e),
MFNN drove the strongest reduction in RMSE and r2, reflecting its
emphasis on global fit, whereas AGMF-Net concentrated probability
mass around the true basins and delivered the best optimum-focused
accuracy by the final stage (lowest MARE in Table 9) while maintain-
ing competitive r2. Ada2MF started behind but improved substantially
with more data, becoming globally competitive by the end; however, it
did not match AGMF-Net near the optima. Co-Kriging remained the
weakest of the four throughout this two-dimensional task—its conser-
vative Gaussian-process posterior produced smooth, under-responsive
fields and consistently inferior RMSE, r?, and MARE compared with
the neural network surrogates. Taken together, Figs. 10a—e and Table 9
show AGMF-Net’s principal strength on this problem: rapid alignment
with useful low-fidelity structure at the start and superior localization of
the global minima as the BO loop progressed.

3.3. Evaluation of surrogate models using the Hartmann-3D function

Table 10 reports the evaluation of the four multi-fidelity surrogates
on the Hartmann-3D benchmark under Bayesian optimization, listing
performance at initialization and after nine infill iterations. Across the
entire sequence, AGMF-Net consistently attains the strongest global fit
and the most accurate estimates at the optimum. By the final iteration, it
achieves the best entries in all three columns of Tables 10 and is the only
model whose accuracy at the predicted optimum meets the 5 %
threshold within the allotted iterations. Ada2MF ranks second overall: it
narrows the gap as more data are acquired and maintains competitive
global approximation quality, but it does not reach the accuracy ach-
ieved by AGMF-Net at the optimum. MFNN continues to improve with
added information yet remains behind the adaptive-gated variants in
both global fidelity and optimal-point accuracy. Co-Kriging performs
worst throughout, indicating that on this three-dimensional landscape
the neural multi-fidelity surrogates—particularly the proposed
adaptive-gated design—offer clear advantages over a Gaussian-process
baseline. These results substantiate the benefit of replacing fixed,
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Fig. 10. Comparison of predictive performance of four multi-fidelity surrogate models for Bayesian optimization of the Branin function.
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Table 9
Comparison of surrogate model performance over infill iterations for the

modified Branin function optimization. The best performance in each row is
highlighted in bold.

Metric Infill Iteration co-Kriging MFNN Ada2MF AGMF-Net
RMSE 0 0.1273 0.1217 0.1705 0.0945
1 0.1294 0.0361 0.1866 0.1489
2 0.1218 0.0159 0.2038 0.1607
3 0.1154 0.0100 0.1470 0.1469
4 0.1137 0.0091 0.0221 0.0684
r? 0 0.8902 0.8930 0.8408 0.9195
1 0.8894 0.9652 0.8224 0.8683
2 0.8961 0.9867 0.8047 0.8697
3 0.9021 0.9901 0.8675 0.8937
4 0.9036 0.9910 0.9786 0.9438
MARE 0 0.2185 0.1714 0.1298 0.1206
1 0.2100 0.2152 0.1366 0.2364
2 0.1736 0.1161 0.1280 0.1446
3 0.1683 0.0685 0.1381 0.0565
4 0.1619 0.0637 0.1206 0.0425
Table 10

Comparison of surrogate model performance over infill iterations for the
Hartmann-3D function optimization. The best performance in each row is
highlighted in bold.

Metric Infill Iteration co-Kriging MFNN Ada2MF AGMF-Net
RMSE 0 0.2288 0.1915 0.1383 0.1797
1 0.2353 0.2577 0.1405 0.1264
2 0.2636 0.2919 0.1439 0.0987
3 0.2476 0.2416 0.1249 0.1023
4 0.2219 0.2215 0.1108 0.0819
5 0.2275 0.2041 0.1156 0.0727
6 0.2063 0.1890 0.0911 0.0558
7 0.2121 0.1732 0.0964 0.0617
8 0.1954 0.1438 0.0827 0.0492
9 0.1886 0.1286 0.0789 0.0461
r? 0 0.7506 0.7850 0.8588 0.8012
1 0.7445 0.7124 0.8549 0.8580
2 0.7228 0.6724 0.8499 0.8925
3 0.7361 0.7165 0.9387 0.9412
4 0.7749 0.7348 0.9552 0.9719
5 0.7622 0.7648 0.9511 0.9780
6 0.7988 0.8135 0.9672 0.9857
7 0.7895 0.8345 0.9620 0.9832
8 0.8123 0.8648 0.9724 0.9876
9 0.8234 0.8850 0.9756 0.9891
MARE 0 0.5049 0.3938 0.5196 0.4198
1 0.5070 0.4408 0.4311 0.3606
2 0.5089 0.4838 0.3403 0.2803
3 0.4971 0.3615 0.2988 0.2011
4 0.4736 0.3052 0.1873 0.1436
5 0.4819 0.3395 0.1154 0.1192
6 0.4523 0.2761 0.0812 0.0749
7 0.4597 0.2494 0.1052 0.0816
8 0.4388 0.2379 0.0816 0.0587
9 0.4215 0.2241 0.0690 0.0419
Table 11

Validation of lift and drag coefficients against experimental data.

Metric Experiment CFD XFOIL CFD Error XFOIL Error
(%) (%)
Ct 0.267 0.272257 0.295 1.97 10.5
Cp 0.0062 0.0073468 0.008 18.5 29.0
Cy/ 43.1 37.0580 36.875 13.9 14.4
Cp
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domain-invariant mixing with the input-dependent softmax gate in
AGMF-Net, which more effectively leverages the low-fidelity signal
while routing corrections through the residual pathway, yielding supe-
rior performance under sparse high-fidelity sampling.

3.4. Optimization of hydrofoil

A comparative validation of CFD and viscous XFOIL predictions
against Kermeen’s experimental data (Pellegrini and Roman, 1996) is
presented in Table 11. The CFD simulation yielded an accurate predic-
tion of the lift coefficient, with an error of less than 2 %. However, it
overpredicted the drag coefficient by 18.5 %. This deviation is likely due
to the high sensitivity of drag to adverse pressure gradients and
boundary layer separation. Even a minor shift in the separation point
can significantly increase drag, especially since Cp is two orders of
magnitude smaller than C;, amplifying relative errors in the C; /Cp ratio.
As a result, the error in C;,/Cp reached 13.9 %.

Although XFOIL was executed in viscous mode, it exhibited higher
discrepancies across all metrics compared to CFD. This outcome un-
derscores CFD’s superior capability to capture detailed flow physics,
including transitional and separation effects, which remain challenging
for integral boundary layer methods like those used in XFOIL.

The optimization progression driven by Bayesian inference is illus-
trated in Fig. 11. Initially, the surrogate model—trained on a small set of
observations—captures a coarse landscape of the design space, with the
acquisition function (Log-EI) indicating high potential near a camber
coefficient of approximately 0.0248. This point is selected for the first
infill iteration. After evaluating it, the model is updated, and the second
acquisition maximum emerges near a slightly lower camber of 0.0227,
which is then sampled next. The third iteration further concentrates
around this optimal region, demonstrating the model’s ability to refine
its predictions and reduce uncertainty. Notably, the acquisition peaks
become more localized across iterations, indicating increasing model
confidence and convergence toward the optimal design region.

The hydrodynamic improvements are quantitatively summarized in
Table 12 and physically illustrated through the pressure and velocity
field distributions in Fig. 12. The optimized hydrofoil, corresponding to
a maximum camber coefficient of 0.0239, yields a significant lift
enhancement—from C; to 0.2723—representing a 93.6 % increase.
Although this comes with a moderate increase in drag (Cp rising from
0.0073 to 0.0100), the overall hydrodynamic efficiency (C./Cp) im-
proves markedly by 41.6 %, from 37.06 to 52.49.

Fig. 12a and b reveal the flow mechanisms behind this performance
improvement. The pressure field around the optimized hydrofoil ex-
hibits a stronger low-pressure region on the suction side near the leading
edge, creating a larger pressure differential and thus stronger lift.
Simultaneously, the velocity fields in Fig. 12¢ and d shows greater flow
acceleration over the upper surface of the optimized shape, confirming
enhanced suction and a favorable pressure gradient. Importantly, the
flow remains fully attached in both cases, indicating that the increased
camber did not induce boundary layer separation, which is critical for
maintaining drag control.

Fig. 13 highlights the geometric difference between the baseline and
optimized foils. The optimized shape introduces a subtle positive cam-
ber—peaking at 0.0239—without modifying the original thickness dis-
tribution. This asymmetry results in a slightly forward-leaning mean
camber line and an effectively increased angle of attack, which in turn
promotes early suction buildup over the upper surface. Despite its small
magnitude, this camber adjustment proves highly effective, confirming
the hydrodynamic sensitivity of lift-to-drag ratio to fine geometric
modifications under laminar conditions.

4. Conclusions

This study introduced AGMF-Net, a novel adaptive gated multi-
fidelity neural network that integrates deep Mixture-of-Experts gating
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Fig. 11. Bayesian optimization of hydrofoil design using AGMF-Net with coupled XFOIL and CFD observations. The left subplots show surrogate predictions and
uncertainty bands, while the right subplots display the Log-Expected Improvement (Log-EI) used for infill point selection.

with ensemble-based uncertainty quantification within a Bayesian

Zable 1,2 f hvdrod . " bet the baseli d optimized optimization framework. The development of AGMF-Net addressed the
omparison of iydrocynamic pertormance between the baseline and optimize need for a surrogate model that is both accurate and robust under
hydrofoils. .. . L . . . . .
limited high-fidelity data, a scenario common in engineering design
Performance Metric Baseline Optimized Relative Change (%) optimization. In our experiments, AGMF-Net achieved strong predictive
G 0.2723 0.5270 +93.6 accuracy even at the initial sampling stage, outperforming all other
Cp 0.0073 0.0100 +36.7 models in RMSE and r? metrics before any infill iterations. This early
C1/ Cp 37.06 52.49 +41.6

advantage was attributed to its ability to leverage both low-fidelity and
sparse high-fidelity data through adaptive weighting of linear,
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Fig. 12. Comparison of pressure and velocity fields between baseline and optimized hydrofoil.

Fig. 13. Geometric comparison between baseline and optimized hydrofoils. The optimized shape introduces a maximum camber of 0.0239 while preserving the

original thickness distribution, enabling higher lift with minimal drag penalty.

nonlinear, and residual subnetworks.

During Bayesian optimization of the mathematical benchmark
functions, AGMF-Net rapidly converged toward the global optimum.
The LogEI acquisition function effectively guided the model to focus
exploitation in regions with the highest expected improvement, leading
to the lowest mean absolute relative error (MARE) of all surrogates.
However, this exploitation-oriented behavior also came with tradeoffs.
Although AGMF-Net maintained excellent local accuracy near the op-
timum, its global predictive accuracy during infill was occasionally
slightly lower than other test models, which achieved marginally better
overall RMSE and r? in later iterations due to more balanced exploration

13

across the design space. This pattern highlights that while AGMF-Net
can quickly refine predictions around optimal regions, it may be less
effective at globally capturing secondary features if exploration is not
sufficiently promoted by the acquisition strategy.

In the hydrofoil optimization study, AGMF-Net demonstrated sub-
stantial practical value by efficiently identifying a subtle camber
modification that improved the lift-to-drag ratio by 41.6 %. This
outcome confirmed that the model’s strengths—namely, its adaptive
gating mechanism and ensemble-driven uncertainty quantification—-
translate effectively to real-world problems involving computationally
expensive simulations. The ability to achieve significant design
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improvements using only a limited number of high-fidelity CFD evalu-
ations underscores AGMF-Nets promise for surrogate-assisted optimi-
zation in industrial settings.

Overall, these results validate the research objective of developing a
general-purpose, data-efficient multi-fidelity surrogate modeling
framework that can exploit prior knowledge and adaptively focus
learning in critical regions of the design space. While this study has
demonstrated AGMF-Net’s effectiveness in ocean engineering optimi-
zation scenarios, its architecture is broadly applicable to other domains
where high-fidelity data are limited, including materials discovery,
structural analysis, and computational biology. Future work will extend
AGMF-Net to higher-dimensional and multi-objective problems and
explore advanced acquisition strategies, such as entropy-based and
multi-task formulations, to improve the balance between exploration
and exploitation. Additionally, we plan to benchmark the framework on
diverse datasets beyond fluid dynamics to further demonstrate its
robustness, scalability, and versatility in real-world surrogate modeling
and optimization tasks.
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Let 7 denote the domain of the k design variables, where #’cR¥, and let f : #’—R be the objective function. The goal of optimization is to

systematically search 2 for a solution vector x* € .2° that achieves the global optimum f* = f(x"). Depending on the problem formulation, this
corresponds to either minimizing or maximizing f. In this study, we formulate all derivations within the minimization framework. Readers should
appropriately adapt the expressions when applying them to maximization problems.

For a minimization task, the global optimum is defined as

x' €argminf(x); f =minf(x) =f(x')

(A1)

Since f is treated as a black-box function that is expensive to evaluate, we approximate it using a surrogate modelf constructed from discrete
observations of f. This surrogate provides inexpensive predictions of the objective value over the design space &. We begin by uniformly sampling &

to evaluate f at selected points, forming an initial dataset. We then train a probabilistic surrogate modelf on this data.

The surrogate yields a predictive posterior distribution, whose mean approximates f and whose variance informs the acquisition function used to
guide infill sampling. In this work, we employ the logarithmic Expected Improvement (logEI) acquisition function due to its numerical stability
(Ament et al., 2023). Given the posterior mean y (%), standard deviation ¢(%’), and the current best observed value y", the logEI is defined as

log E1 () = log, <%> +log(a(2)),

(following (Ament et al., 2023)), where
h(z) = ¢(z) +z ®(2),

(A.2)

(A.3)

and ¢, ® denote the standard Normal density and distribution functions, respectively, and h(z) = ¢(z) + z ®(2) is the classical EI factor (Jones et al.,
1998). The function log, is mathematically equivalent to logeh and is evaluated using the following numerically stable approximation:

log (¢(z) +2®@(2)) 2z > -1,

log; (z) = 2

2
—%—61—2 log (J2]) zg—l/\/E,

72—701 + log lmexp(10g<erfcx(fz/\/§)~|z\> +cz> - 1/\/5 < z< -1,

(A.4)

with constants ¢; = log(27)/2, c; = log(n /2)/2, and ¢ denoting numerical precision. Functions loglmexp and erfcx represent numerically stable
implementations of log(1 —exp(z)) and exp(z?)erfc(z), respectively.

Directly evaluating logy,(2) = log (¢(2) +2 ®(2)) can be numerically fragile. In the extreme left tail (2<0), both ¢(z) and ®(z) become vanishingly
small (e.g., ¢( — 30) ~ e~*°/\/27), so a naive sum underflows to zero and log; (z) collapses to -co, destroying gradients. In this regime we rely on the
Mills’ ratio asymptotic ®(z) ~ ¢(z)/(— 2), which yields the stable approximation log,,(z) ~ —% —c¢1 — 2 log (|z|) with ¢; = log(2xn)/2. Around the
transition region (— 1/\/e < z < —1)we haveh(z) = ¢(z) — |z| ®(2), i.e., the difference of two small terms, so direct subtraction causes catastrophic
cancellation. We therefore rewrite ®(z) using the scaled complementary error function, ®(z) = %e*"'z/ 2erfex(— 2 /v2 ), and evaluate in log-space as
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logy(2) = log ¢(2) +log 1mexp(A) with A = log(erfcx(—z/v2)|z|) +¢c2 <0 and ¢ = log(n/2)/2. For z> —1 we evaluate log (¢(2) +z ®(2))
directly, which is stable in double precision. This piecewise evaluation, summarized in Eq. (A.4), follows Ament et al. (2023) and prevents under-
flow/overflow and cancellation across all z, preserving well-behaved values and gradients for acquisition optimization.

To identify the next candidate point X.qq € &, we maximize 1ogEI(?") using the L-BFGS-B algorithm (Zhu et al., 1997) with multiple random
restarts to avoid local optima. After evaluating f(X.qnq), the dataset is augmented with this new observation, and the surrogate model is retrained. This
process repeats iteratively until a stopping criterion is met. In this study, the stopping rule depends on the task: for benchmark functions, we stop when
the mean absolute relative error at the current predicted optimum point(s) falls below a preset threshold; for the hydrofoil (real engineering) opti-

mization, we stop after a fixed number of expensive evaluations (evaluation budget). Upon completion, we minimize the final surrogate f using
L-BFGS-B with multiple starting points to estimate the predicted optimum x* = argmi;lf(x). Finally, the true objective value at X" is evaluated and
XEA

compared with the best initial design. The complete Bayesian optimization workflow is illustrated in Figure A.1.

Fig. A.1. Bayesian Optimization Process.

Appendix B. Kriging
Kriging (Krige, 1951) implements a specific instance of Gaussian process regression with a characteristic kernel function:
, k /|[Pi
k(x,x)=exp| — ZejHXj - X; (A.5)
=

We define a Gaussian process by its mean and covariance functions as follows:

m(x) =E[f(x)], (A.62)

k(x,%) = E[(£(x) ~ m(x))(f(X) ~ (X))l (A.6D)
This specification leads to the GP prior over functions:

f(x) ~ Z22(m(x),k(x,x)) (A7)

Appendix C. Multilayer Perceptron (MLP)

The multilayer perceptron (MLP) represents a standard feedforward neural network, structured with an input layer, one or more hidden layers, and
an output layer. Each layer transforms its input through weighted summation followed by a non-linear activation function. Figure A.2 displays an MLP
with three hidden layers.

The network computes the forward pass from layer n to n + 1 using:

a™! =g(W"a" +b") (A.8)

Here, a" denotes the activation vector at layer n, W" is the weight matrix, b" is the bias vector, and o( -) is the activation function applied element-wise.
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Fig. A.2. Topology of MLP with 3 Hidden Layers.

This study employs the Mish activation function (Misra, 2019), given by:

o(x) =x - tanh(softplus(x)) =x-tanh(In(1 + €*)) (A.9)
An ensemble of MLPs is constructed using distinct random initializations of weights drawn from the Kaiming normal distribution (He et al., 2015):
. 2
Wi~ (O7 —) (A.10)
fan_in

All bias vectors are initialized to zero. This ensemble formulation (Lakshminarayanan et al., 2017) enables the modeling of predictive uncertainty
and captures a distribution over function outputs.

Appendix D. Co-Kriging

Co-Kriging constructs a surrogate model by fusing information from both a low-fidelity function f, and a high-fidelity function f,, under the
assumption that f,(x) = pf(x) + §(x) (Kennedy and O’Hagan, 2001), where p € R is a scaling parameter and §(x) is an independent Gaussian process
capturing the discrepancy.

Let the combined training dataset be

Ix] . [y
X_{Xe}’y_[ } (A11)

where X, € R™** and X, € R™*¥ are the inputs and y,,y, are the corresponding outputs.
Define the kernel matrices:

K=k (X, X,), (A.12)
Kee =k (X, Xe), (A.13)
Kee =k (Xe, Xe), (A1)
Koo = p?ke (X, Xe) + ka(Xe, Xe), (A.15)

where k. and k,; are the ARD generalized exponential kernels defined in Eq. (A.5), used for the low- and discrepancy processes, respectively.
The full covariance matrix becomes:

_ kC(XmXC) Pkc(XuXe)
k= {pkc(xe,xa PPhe(Xe, Xe) + ka(Xe X, | (A-16)

Let ¢ denote the cross-covariance vector between the test point x and all training points:

ke(x,X.)

€= {pkc(x,Xe)+kd(x,Xe)}‘ (A.17)
Then the predictive mean and variance are given by:
Fx)=p+c' K (y—pl), (A182)
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(1-1K"'¢)’

5% (x) =p*c2+os—c'Kle+ K1

; (A.18b)

where y is the common mean, and o2, 62 are the marginal variances of the low-fidelity and discrepancy processes, respectively.
Appendix E. Multi-Fidelity Neural Network (MFNN)

The MFNN proposed by Meng and Karniadakis (2020) captures nonlinear correlations between low- and high-fidelity data using a composite
neural architecture.

The surrogate function ? is formulated as:

fXfi(X) = aFi(X, £1(X)) + (1 — a)Fu(X, f(X)), @ € [0, 1], (A.19)

where f;, denotes the low-fidelity function, and Fj, F; represent the linear and nonlinear subnetworks, respectively. The scalar a serves as an adaptive
gating coefficient inferred from training data.

The linear subnetwork F; consists of a single linear layer without hidden layers or activation functions, enabling direct affine transformation. In
contrast, the nonlinear subnetwork F,; adopts a multilayer perceptron (MLP) structure with hidden layers and non-linear activation functions to model
complex relationships. Figure A.3 illustrates the MFNN architecture. The model ensembles multiple independently initialized instances to quantify
predictive uncertainty, following the same strategy as the MLP ensemble.

Fig. A.3. Architecture of the Multi-Fidelity Neural Network (MFNN), adapted from (Meng and Karniadakis, 2020).

Appendix F. Root Mean Square Error (RMSE)

RMSE quantified the global predictive accuracy of each surrogate. It is defined as the square root of the mean of the squared differences between
predicted and true values across all test points:

RMSE= |- 37 (F(x¥) — F ()", (A.20)

n 3

where n; denotes the number of test points. Lower RMSE values indicated better overall prediction accuracy.
Appendix H. Squared Pearson Correlation (%)

r? assessed the degree to which surrogate predictions correlated with the true function values. It is defined as:

72_< cov(f(xe), f (%c)) )2 (A.21)
var(f(x.)) var(f (x;))

n o) ) - (S5 ) (876
_ i=1 i=1 i=1 (A22)

Vs - (S s ey - (S76) |

i=1 i=1

This metric focused on the similarity of the functional shape rather than absolute value agreement. Values of r? closer to 1 implied strong shape
correspondence.
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MARE specifically evaluated the prediction quality at the function’s optimal point. It was computed as:

MARE =1

1) 7<)
DN

(A.23)

This metric emphasized local accuracy around the predicted optimum, complementing the global metrics RMSE and r2.

Data availability

The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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