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A B S T R A C T

High-fidelity computational fluid dynamics (CFD) simulations provide critical predictive accuracy in marine and 
ocean engineering design; however, their substantial computational expense often renders direct optimization 
infeasible. To alleviate this limitation, surrogate models approximate expensive objective functions from a finite 
set of observations, thereby enabling more tractable design exploration and optimization. Our objective is to 
build a novel, general-purpose multi-fidelity surrogate modeling approach that integrates seamlessly into a 
Bayesian optimization framework and remains robust under sparse high-fidelity data. We propose an adaptive 
gated multi-fidelity neural network (AGMF-Net), which incorporates three specialized expert subnetworks—
linear, nonlinear, and residual—combined through a deep Mixture-of-Experts gating network that dynamically 
adjusts their contributions based on the input. To improve predictive uncertainty estimation, we ensemble 
multiple independently initialized AGMF-Net instances and use the resulting variance to guide sampling de
cisions. We embed this surrogate into a Bayesian optimization workflow driven by the logarithmic expected 
improvement acquisition function, which balances exploration and exploitation while maintaining numerical 
stability. We evaluated the proposed method against co-Kriging and the multi-fidelity neural network baseline on 
benchmark functions. AGMF-Net achieved higher initial predictive accuracy, rapidly converged to global optima, 
and maintained lower mean absolute relative error during optimization iterations. Finally, we applied the 
framework to a hydrofoil design optimization. The model successfully identified a subtle camber modification 
that improved the lift-to-drag ratio by 41.6 % compared to the baseline geometry, demonstrating that AGMF-Net 
can accelerate CFD-driven hydrodynamic design scenarios that combine sparse high-fidelity data with cheaper 
simulations. These results highlight the potential of adaptive gating and ensemble uncertainty quantification to 
accelerate design exploration and improve solution quality when only limited high-fidelity evaluations are 
feasible.

1. Introduction

High-fidelity CFD simulations have become indispensable in ocean 
and marine engineering, where designers must resolve turbulent and 
multi-scale flow phenomena around hulls, propellers, and hydrofoils. 
Although CFD delivers reliable hydrodynamic prediction, its high 
computational cost restricts direct use in iterative design optimization. 
In response, data-efficient surrogate models have emerged as a critical 
tool for accelerating high-cost simulation-based design loops. By 
providing fast approximations of expensive simulators, surrogates 

enable practitioners to explore design spaces and assess system perfor
mance with dramatically fewer expensive evaluations (Forrester et al., 
2008; Peherstorfer et al., 2018a).

This efficiency is particularly important in Bayesian optimization 
(BO), which iteratively uses a probabilistic surrogate to balance explo
ration and exploitation of a black-box objective (Shahriari et al., 2015; 
Jones et al., 1998). BO relies on a probabilistic surrogate (commonly a 
Gaussian Process in classical approaches) to predict outcomes and 
quantify uncertainty, guiding the selection of new experiments via 
acquisition functions. Integrating cheaper, lower fidelity simulations or 
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models into this process— a concept known as multi-fidelity Bayesian 
optimization (MFBO)—can further reduce the overall optimization cost 
by allowing occasional queries of fast, approximate information sources 
in lieu of expensive high-fidelity ones (Peherstorfer et al., 2018a). In 
recent years, MFBO frameworks have demonstrated substantial 
speed-ups in applications ranging from materials discovery (Sabanza 
et al., 2024; Fare et al., 2022) to aerospace design (Mukhopadhaya et al., 
2020) by optimally allocating resources across fidelity levels. These 
advances underscore the importance of developing surrogate modeling 
techniques that are not only accurate and data-efficient, but also capable 
of leveraging multiple fidelities and providing reliable uncertainty es
timates to drive decision-making.

Multi-fidelity surrogate modeling has accordingly become a vibrant 
research area, aiming to fuse information from inexpensive low-fidelity 
(LF) sources and sparse high-fidelity (HF) data to build improved pre
dictive models. Early approaches in this domain were largely based on 
Gaussian process regression; the seminal co-kriging framework of Ken
nedy and O’Hagan (2000) (Kennedy and O’Hagan, 2000) introduced a 
hierarchical GP model to correct LF predictions using HF data. Such 
GP-based multi-fidelity surrogates (and their extensions) can provide 
principled uncertainty quantification and have shown success in various 
engineering problems (Le et al., 2014; Ciarlatani and Gorlé, 2025; 
Novais et al., 2024). However, Gaussian process (GP) models face lim
itations when dealing with high-dimensional inputs or highly nonlinear 
system responses, often suffering the curse of dimensionality and loss of 
accuracy in complex scenarios (Williams and Rasmussen, 2006). For 
instance, studies have noted that classical multi-fidelity GP tends to 
degrade in performance on large-scale nonlinear problems (Perdikaris 
et al., 2017). This has motivated a shift toward deep learning methods, 
which can learn rich representations and handle large data with complex 
patterns (Raissi et al., 2019). Recent deep multi-fidelity surrogates 
exploit neural networks to capture correlations across fidelity levels and 
improve scalability (Perdikaris et al., 2017). Recurrent architectures 
such as Long Short-Term Memory (LSTM) networks have been used to 
automatically detect cross-fidelity features and achieve accurate 
multi-fidelity regression (Conti et al., 2023). Likewise, advanced con
volutional neural nets (Halder et al., 2022) and neural operators (Li 
et al., 2020; Lu et al., 2021) have been explored to learn mappings be
tween coarse and fine solution fields in physics problems.

Notably, Meng and Karniadakis (2020) (Meng and Karniadakis, 
2020) proposed a composite neural network that couples subnetworks 
across fidelity levels to model both linear and nonlinear correlations. 
Their architecture integrates a low-fidelity encoder with two 
higher-fidelity branches—one linear, one nonlinear—capturing 
multi-scale relationships in a unified model. This concept of decom
posing fidelity interactions has inspired further advances in deep 
multi-fidelity learning. For instance, Lu et al. (2020) (Lu et al., 2020) 
introduced a residual-learning framework for inferring material prop
erties from indentation data, where the neural network explicitly 
learned the discrepancy between a low-fidelity analytical solution and 
high-fidelity finite element simulations. Building on such ideas, Zhan 
et al. (2024) (Zhan et al., 2024) proposed Ada2MF, a dual-adaptive 
multi-fidelity model for turbulent wake flow prediction. By integrating 
residual learning with learnable gating and adaptive loss weighting, 
Ada2MF improved robustness and mitigated negative transfer in re
gimes with limited high-fidelity data. In parallel, attention-based stra
tegies have also emerged. Cheng et al. (2024) (Cheng et al., 2025) 
developed MF-Net, an architecture that uses self-attention to fuse 
multi-source low-fidelity features with sparse high-fidelity data in an 
end-to-end manner. Their model achieved state-of-the-art accuracy in a 
welding mechanics case study. Taken together, these developments 
highlight a clear trend: robust multi-fidelity models increasingly rely on 
mechanisms that adaptively gate, weight, or attend to each fidelity 
level—leveraging correlations while guarding against misleading 
signals.

Despite progress, two major challenges remain: (1) negative transfer 

due to naively mixing inconsistent fidelity sources, and (2) the lack of 
adaptive architectures that generalize across domains. Addressing these, 
Zhan et al. (2024) proposed Ada2MF, a dual-adaptive network 
combining an Adaptive Multi-fidelity (AMF) module and Adaptive Fast 
Weighting (AFW). AMF blends three experts—linear, nonlinear, and 
residual— via learnable weights, while AFW adjusts loss contributions 
from each fidelity dynamically.

This line of research connects with the Mixture of Experts (MoE) 
paradigm (Jacobs et al., 1991), where a gating network selects among 
expert sub-models. Modern MoE approaches, such as sparsely-gated 
models (Shazeer et al., 2017), scale this idea to billions of parameters 
with minimal computational cost. Applying this gating philosophy to 
surrogate modeling promises robustness by emphasizing trustworthy 
experts depending on the input.

Another key component in BO is uncertainty quantification (UQ). 
While Gaussian processes offer built-in UQ, they lack scalability. 
Bayesian neural networks (BNNs) (Neal, 2012) provide a principled 
alternative but are difficult to train. Lakshminarayanan et al. (2017)
proposed deep ensembles as a practical and competitive method for UQ, 
outperforming many BNNs in calibration and robustness.

In multi-fidelity contexts, uncertainty-aware surrogates remain 
scarce. Some researchers extended BNNs to multi-fidelity modeling 
(Meng et al., 2021), but training complexity remains a bottleneck. Thus, 
integrating scalable UQ into expressive multi-fidelity architectures is a 
critical research frontier.

Surrogate modeling in hydrodynamics and fluid mechanics further 
motivates our work. Optimizing hydrofoils, propellers, and marine 
structures requires resolving turbulent, multi-scale physics—often 
needing unsteady Reynolds-averaged Navier–Stokes (URANS) simula
tions (Li et al., 2023; Bonfiglio et al., 2018). Recent works have com
bined XFOIL with CFD for multi-fidelity optimization of airfoils (Aye 
et al., 2023), but most rely on traditional co-kriging or basic neural nets, 
lacking adaptive fusion or robust UQ.

To address these gaps, we propose AGMF-Net, an Adaptive Gated 
Multi-Fidelity neural network. AGMF-Net builds on Ada2MF (Zhan 
et al., 2024) and enhances it in two ways: (1) using a deep 
Mixture-of-Experts (DMoE) gating sub-network to assign context-aware 
weights to three specialized experts (linear, nonlinear, residual), and (2) 
employing deep ensembles for uncertainty-aware predictions. This re
sults in a surrogate that is accurate, general, and robust to fidelity 
inconsistency.

The objective of this study is to develop a novel, general-purpose 
multi-fidelity surrogate model integrated within a Bayesian optimiza
tion framework that can accurately predict expensive functions using 
limited high-fidelity observations.

This study introduces AGMF-Net, a novel surrogate architecture that 
integrates deep gated expert fusion with ensemble-based uncertainty 
quantification, enabling accurate and robust multi-fidelity learning 
under limited high-fidelity data. We incorporate AGMF-Net into a 
Bayesian optimization loop and evaluate its effectiveness on challenging 
mathematical benchmark functions. To demonstrate its practical utility, 
we then apply it to a realistic hydrofoil optimization problem that re
quires expensive URANS simulations.

2. Methods

This section centers on the proposed Adaptive Gating Multi-Fidelity 
Network (AGMF-Net) and its assessment. We direct readers to the Ap
pendix for comprehensive methodological background: the Bayesian 
optimization procedure—including the numerically stable formulation 
of logarithmic Expected Improvement (logEI)—the benchmark surro
gate models (Kriging, MLP, co-Kriging, MFNN), and the evaluation 
metrics (RMSE, r2, MARE). In Section 2.1, we develop the AGMF-Net 
architecture and training objective. In Section 2.2, we evaluate AGMF- 
Net on benchmark functions, specifying design domains, initialization, 
acquisition optimization, and the reporting procedure. In Section 2.3, 
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we perform a hydrofoil optimization with coupled URANS-XFOIL 
fidelities, and we describe the simulation configuration and assess
ment workflow.

2.1. Adaptive gating multi-fidelity neural network (AGMF-Net)

The proposed adaptive gating multi-fidelity neural network (AGMF- 
Net) aims to construct a generalized multi-fidelity surrogate model 
capable of accurately approximating complex functions from limited 
data. This framework builds upon the nonlinear correlation learning 
strategy of Meng and Karniadakis (2020) and the residual learning 
approach introduced by Lu et al. (2020) to improve predictive fidelity. 
Additionally, AGMF-Net addresses the need to effectively map design 
variables to response quantities in practical engineering settings.

To this end, the architecture adopts the additive formulation of 
Ada2MF (Zhan et al., 2024), expressed as: 

f̂ (X, fL(X))= tanh(α1) Fl(X, fL(X))+ tanh(α2) Fnl(X, fL(X))

+ tanh(α3) Fres(X), (1) 

where Fl, Fnl, and Fres represent the linear, nonlinear, and residual sub
networks, respectively. Scalar gating parameters αi ∈ R control the 
contribution of each component.

In Ada2MF, the adaptive multi-fidelity (AMF) module combines the 
linear, nonlinear, and residual subnetworks using tanh(αi) global co
efficients that do not depend on (X, fL(X)). Such input-invariant weights 
can be sub-optimal when correlation between the low-fidelity signal fL 
and the high-fidelity target f varies across the domain. Moreover, 
tanh( ⋅) is unnormalized and permits negative coefficients, which can 
introduce subtractive combinations and sensitivity in poorly constrained 
regions; saturation near ±1 can also slow learning. We therefore replace 
the global coefficients with input-dependent, normalized weights 

w(X)= softmax(W(X, fL(X))) (2) 

and define the predictor as 

f̂ (X, fL(X))=w1(X)Fl(X, fL(X))+w2(X)Fnl(X, fL(X)) + w3(X)Fres(X). (3) 

Each summand corresponds to a distinct expert subnetwork. Fig. 1
depicts the architecture. We quantify predictive uncertainty by aggre
gating multiple independently initialized instances (deep ensembles), as 
in our MLP and MFNN baselines. The softmax gating yields non-negative 
weights that sum to one. This deep mixture-of-experts gate provides 
context-aware routing (up-weighting the linear/nonlinear experts 
where fL aligns with f , and shifting mass to the residual expert where fL is 
biased), and ensures each prediction is a convex combination of expert 
outputs. In practice this tends to improve robustness (no sign-flipped 
cancellations), interpretability (weights directly indicate each expert’s 
local contribution), and smoother uncertainty aggregation when used 
with ensembles.

We trained AGMF-Net with paired low- and high-fidelity data. For 
each minibatch, we evaluated the three expert subnetworks on (X, fL(X))
and obtained the prediction ̂f (X, fL(X)) and the input-dependent mixture 
weights w(X) as defined in Equation (2). To guide learning, we 
decomposed the objective into three complementary Mean Squared 
Error (MSE) terms measured against the high-fidelity targets: 

L H := MSE(f̂ (X, fL(X)), f(X)), (4a) 

L LH := MSE(Fl(X, fL(X))+ Fnl(X, fL(X)), f(X)), (4b) 

L R := MSE(Fres(X), f(X) − fL(X)), (4c) 

L H trained the full mixture to match f . L LH aligned the experts that 
consume (X, fL(X)) with the high-fidelity signal so the model could 
exploit informative low-fidelity structure. L R taught the residual expert 
to correct the discrepancy f(X) − fL(X), which supported robust bias 
correction when the low-fidelity model was inaccurate.

We then formed a single scalar objective via Adaptive Fast Weighting 
(AFW) (Zhan et al., 2024): 

L =
∑

k∈{H,LH,R}

w(task)
k L k,w(task)

k = softmax(u) ∈ R3 (5) 

Where u ∈ R3 are unconstrained logits. After each gradient step on L , 
we updated u using the relative log-improvements of the component 
losses to reallocate emphasis toward slower-improving terms and away 
from faster-improving ones. 

l (r) =
(
log L

(r)
H , log L

(r)
LH, log L

(r)
R
)T
,Δl (r) = l (r) − l (r+1), u(r+1) = u(r)

− η
[
diag

(
w(task)(r)) − w(task)(r)( w(task)(r))T

]
Δl (r) (6) 

with step size η > 0. This schedule balanced the three learning signals 
automatically. When the low-fidelity model aligned with the high- 
fidelity target in a region, L LH typically decreased rapidly and AFW 
reduced its weight, while L R received less emphasis. When the low- 
fidelity model was biased, L LH improved slowly and AFW reweighted 
toward L R, prompting the residual expert to explain the discrepancy. In 
this way, AFW mitigated negative transfer from low-fidelity to high- 
fidelity learning by down-weighting misleading supervision and up- 
weighting corrective signals.

The input-dependent softmax gate w(X) at prediction time com
plemented AFW during training. The gate produced non-negative 
mixture weights that summed to one, which favored stable convex 
combinations of experts rather than subtractive cancellations and 
worked well with our deep-ensemble uncertainty estimates. We trained 
multiple independently initialized instances and aggregated them as a 
deep ensemble to quantify predictive uncertainty, following best prac
tice for uncertainty-aware neural surrogates. We standardized inputs 
and targets before training and de-standardized predictions for report

Fig. 1. Architecture of adaptive gated multi-fidelity neural network 
(AGMF-Net).
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ing.
In practice, we observed that Adaptive Fast Weighting (AFW) makes 

the optimization objective time-varying early in training because the 
task-weight logits u evolve based on relative log-loss improvements. This 
adaptive reweighting slowed—but stabilized—convergence compared 
with a single MSE objective. To reach a steady weighting regime and 
avoid premature bias toward any one component loss, we allocated a 
larger epoch budget to AGMF-Net than to the other surrogates in every 
test problem (see the hyperparameters in Tables 1–3). Empirically, the 
composite loss L stabilized later than a standard MSE loss and benefited 
from the extended training schedule.

2.2. Benchmark function experiments

2.2.1. Forrester function
The Forrester function served as a single-variable benchmark to 

assess surrogate model performance. Forrester et al. (2008) originally 
proposed the function over the domain x ∈ [0,1], defined as: 

f(x)= (6x − 2)2 sin(12x − 4), (7) 

fL(x)=
1
2

f(x) + 10(x − 0.5) − 5. (8) 

Equation (7) represents the high-fidelity target, while Equation (8)
introduces a biased low-fidelity approximation. The function contains a 
global minimum at x ≈ 0.75725 and a local minimum at x ≈ 0.14259, 
which challenge surrogate models to capture nonconvex behavior.

This study applied all six surrogate models described in Subsection 
2.1 and Appendix to approximate the function. Table 1 reports the 
hyperparameters used for neural network-based models. The experi
ment initialized with three evenly spaced samples from the domain [0,1]. 
The Bayesian Optimization procedure, outlined in Appendix A, 
continued until one of the models predicted the global minimum with a 
MARE below 5 %.

We assessed predictive performance by computing RMSE and r2 over 
200 evenly distributed test points within the design space. To evaluate 
the surrogate’s accuracy at the optimum, we determined MARE by 
comparing predictions with the known global minimum point.

2.2.2. Modified Branin Function
To extend the evaluation to two dimensions, the modified Branin 

function was selected. The design space (x1, x2) ∈ [0, 1]2 was trans
formed into the original Branin domain using: 

u1 =15x1 − 5, u2 = 15x2. (9) 

The high-fidelity Branin function was normalized and defined as: 

f(u1,u2)=
1

51.95

[(

u2 −
5.1u2

1
4π2 +

5u1

π − 6
)2

+

(

10 −
10
8π

)

cos(u1) − 44.81

]

.

(10) 

Following the multi-fidelity structure proposed by Dong et al. 

Table 1 
Hyperparameters used in the Bayesian Optimization of the Forrester Function.

Surrogate Model MLP MFNN Ada2MF AGMF-Net

Activation Function Mish Mish 
(except Fl)

Mish 
(except Fl)

Mish 
(except Fl)

Optimizer AdamW AdamW AdamW AdamW
Learning Rate 1.00 ×

10− 3
1.00 × 10− 3 1.00 × 10− 3 1.00 × 10− 3

Number of Epochs 4000 4000 4000 10000
Number of 

Ensemble Models
30 30 30 30

Number of Neurons 
in Hidden Layers

(5,5,5,5,5) Fl (− ) 
Fnl 
(5,5,5,5,5)

Fl (− ) 
Fnl 
(5,5,5,5,5) 
Fres 

(5,5,5,5,5)

Fl (− ) 
Fnl 
(5,5,5,5,5) 
Fres 

(5,5,5,5,5) 
W (1)

Table 2 
Hyperparameters used in the Bayesian Optimization of the Branin Function.

Surrogate 
Model

MFNN Ada2MF AGMF-Net

Activation 
Function

Mish (except Fl) Mish (except Fl) Mish (except Fl)

Optimizer AdamW AdamW AdamW
Learning Rate 1.00 × 10− 3 1.00 × 10− 3 1.00 × 10− 3

Number of 
Epochs

6000 6000 10000

Number of 
Ensemble 
Models

10 10 10

Number of 
Neurons in 
Hidden 
Layers

Fl (− ) 
Fnl 
(10,10,10,10,10)

Fl (− ) 
Fnl 
(10,10,10,10,10) 
Fres 

(10,10,10,10,10)

Fl (− ) 
Fnl (10,10,10,10,10) 
Fres (10,10,10,10,10) 
W (2)

Table 3 
Hyperparameters used in the Bayesian Optimization of the Hartmann-3D 
Function.

Surrogate 
Model

MFNN Ada2MF AGMF-Net

Activation 
Function

Mish (except Fl) Mish (except Fl) Mish (except Fl)

Optimizer AdamW AdamW AdamW
Learning Rate 1.00 × 10− 3 1.00 × 10− 3 1.00 × 10− 3

Number of 
Epochs

10000 10000 12000

Number of 
Ensemble 
Models

10 10 10

Number of 
Neurons in 
Hidden 
Layers

Fl (− ) 
Fnl 
(15,15,15,15,15)

Fl (− ) 
Fnl 
(15,15,15,15,15) 
Fres 

(15,15,15,15,15)

Fl (− ) 
Fnl (15,15,15,15,15) 
Fres (15,15,15,15,15) 
W (3)

Fig. 2. Modified Branin Function via Dong et al. (Dong et al., 2015).
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(2015), the low-fidelity function incorporated a quadratic bias: 

fL(u1, u2)= f(u1, u2)+ 20(0.9 + u1)
2
− 50. (11) 

The Branin function contained three global minima in the (u1, u2)

space, approximately located at:
(− 3.1950, 12.275), (9.4248, 2.475), (3π, 2.475).
Under the normalization in Equation (9), these minima corresponded 

to: 

(x1, x2) ≈ (0.1239,0.8183), (0.5428,0.1517), (0.9617, 0.1650).

Fig. 2 shows the resulting function landscape. This experiment 
applied four multi-fidelity surrogate models—co-Kriging, MFNN, 
Ada2MF and AGMF-Net—as described in Subsection 2.1 and Appendix 
Table 2 lists the corresponding neural network hyperparameters. The 

[0, 1]2 domain was initially sampled using 16 points generated via 
optimal Latin hypercube sampling (Franco, 2008). Bayesian Optimiza
tion followed the procedure in Appendix A and terminated once any 
model achieved a minimum with a MARE below 5 %.

We evaluated predictive performance by computing RMSE and r2 

over 40,000 evenly distributed grid sampling test points within the 
design domain. To assess local accuracy at the optima, we calculated 
MARE by comparing predictions with the known values at the three 
global minimum points.

2.2.3. Hartmann-3D
We used the conventional Hartmann-3D as the high-fidelity target on 

[0, 1]3: 

f(x)= −
∑4

i=1
αi exp

(

−
∑3

j=1
βij
(
xj − Pij

)2

)

, (12) 

with 

α={1.0,1.2,3.0,3.2},P=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0.3689

0.4699

0.1170

0.4387

0.2673

0.7470

0.1091

0.0381

0.8732

0.5743

0.5547

0.8828

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,β=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

3

0.1

10

10

30

35

3

0.1

10

10

30

35

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(13) 

Following Toal’s adjustable construction (Toal, 2015), we defined 
the low-fidelity function as 

fL(x)= −
∑4

i=1
αi exp

(

−
∑3

j=1
βij

(

xj −
3
4
Pij(a + 1)

)2
)

, (14) 

And we fixed the correlation parameter at a = 0.5.
Fig. 3 renders the high-fidelity Hartmann-3D landscape as a set of 

percentile isosurfaces, revealing multiple separated basins and sharp 
ridges that indicate strong non convexity and anisotropy.

The optimization and evaluation procedure matched section 2.2.1 
and 2.2.2. We initialized [0,1]3 with 30 points from an optimal Latin 
hypercube. For evaluation, we computed RMSE and r2 on a dense grid of 
403 = 64,000 test points. Neural-network hyperparameters for MFNN, 
Ada2MF, and AGMF-Net appear in Table 3.

2.3. Hydrofoil optimization

Following the benchmark evaluations of AGMF-Net, we applied the 
model to a real-world engineering problem: optimizing the lift-to-drag 
ratio (CL/CD) of a hydrofoil. The initial geometry was based on the 
NACA 661 − 012 profile provided by Kermeen (Kermeen and Plesset, 

Fig. 3. Hartmann-3D high-fidelity objective visualized with semi-transparent 
isosurfaces (marching-cubes at 10/25/40/60/80th percentiles); black markers 
denote the 30 initial optimal Latin hypercube samples in [0, 1]3

Table 4 
Design space and flow conditions for NACA 661 − 012 hydrofoil optimization.

Parameter Value Unit

Design domain (c) [0, 0.04] % chord
Angle of attack 3 degrees
Flow speed 9.45 m/s
Reynolds number 8.93 × 105 ​
Kinematic viscosity 8.87 × 10− 7 m2/s
Water density 997 kg/m3

Mach number 6.33 × 10− 3 ​

Fig. 4. NACA 661 − 012 via Kermeen (Kermeen and Plesset, 1956) with CST 
resampling coordinates.

Fig. 5. CFD simulation domain.
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1956). The optimization involved a single design variable—the 
maximum camber coefficient located at 42 % of the chord length. 
Optimization was conducted within a non-cavitating regime, under the 
flow conditions and design domain summarized in Table 4.

The digitized coordinates of NACA 661 − 012 provided by Kermeen 
(Kermeen and Plesset, 1956) lacked sufficient resolution for both CFD 
and XFOIL analysis. To address this limitation, we reconstructed a 
high-resolution geometry using the class-shape transformation (CST) 
method (Kulfan, 2008) with a sixth-order Bernstein polynomial. We 
scaled the airfoil to a unit chord length to simplify numerical treatment 
(Fig. 4).

We computed the high-fidelity objective function by solving the 
incompressible, unsteady Reynolds-averaged Navier–Stokes (URANS) 
equations using a finite volume method: 

Continuity equation : ∇ ⋅ u = 0 (16a) 

Momentum equation :
∂u
∂t

+∇ ⋅ (u⊗u)= −
1
ρ∇p+∇⋅[ (ν+ νt)∇u].

(16b) 

We modeled transition using the SST-γ − Reθ transition model 
(Langtry and Menter, 2009), a correlation-based extension of the SST 
k-ω turbulence model. This framework introduces two additional 
transport equations for intermittency (γ) and the transition 
momentum-thickness Reynolds number (Reθ), enabling accurate pre
diction of laminar-turbulent transition. The model is particularly suit
able for simulating the hydrodynamic performance of airfoils and 
hydrofoils, where the location of the transition and separation points has 
a decisive influence on lift and drag. The governing equations are 
expressed as: 

∂(ρ k)
∂t

+∇ ⋅ (ρ u k)=∇ ⋅ [(μ+ σk μt)∇k] +Pk − β* ρ k ω (17a) 

∂(ρ ω)

∂t
+∇ ⋅ (ρ u ω)=∇ ⋅ [(μ+ σω μt)∇ω] +α ρ Pk

μt
− β ρ ω2

+ 2 ρ (1 − F1) σω2
∇k⋅∇ω

ω (17b) 

∂(ρ γ)
∂t

+∇ ⋅ (ρ u γ)=Pγ − Eγ +∇⋅
[(

μ+
μt

σγ

)

∇γ
]

(17c) 

∂(ρ Reθ)

∂t
+∇ ⋅ (ρ u Reθ)=PReθ − EReθ +∇⋅

[(

μ+
μt

σθ

)

∇Reθ

]

(17d) 

We used the pimpleFoam solver in OpenFOAM® v2412, which im
plements the PIMPLE algorithm (Weller et al., 1998). To accelerate 
convergence, we enabled local time stepping (LTS) (Jeanmasson et al., 
2018). We selected pimpleFoam over simpleFoam due to stability ad
vantages under the specified flow regime.

We generated a C-type mesh containing 4,662,000 hexahedral cells 

Table 5 
Boundary and initial conditions for each transported field in the OpenFOAM® simulation.

Field Inlet Outlet Airfoil Initial field

Pressure (m2/s2) freestreamPressure  
= 0

freestreamPressure  
= 0

zeroGradient uniform 0

Velocity U (m/s) freestreamVelocity 
= (0.790913, 
0.04145, 0)

freestreamVelocity 
= (0.790913, 
0.04145, 0)

noSlip uniform (0.790913, 
0.04145, 0)

Turbulent viscosity νt (m2/s2) calculated calculated fixedValue 1e-10 (for 
stability)

uniform 1e-10 (for 
stability)

Turbulent kinetic energy k (m2/s2) turbulentIntensit yKineticEnergyInl et intensity =
0.01

zeroGradient fixedValue 1e-10 (for 
stability)

uniform 9.40892e-5

Specific dissipation ω (s− 1) turbulentMixingLe ngthFrequencyInle t 
mixingLength =
0.0122474

zeroGradient fixedValue 181,636 uniform 2.45404e-3

Intermittency γ fixedValue 1 zeroGradient zeroGradient uniform 1
Momentum thickness Reynolds 

number Reθt

fixedValue 1 zeroGradient zeroGradient uniform 1

Fig. 7. The ratio of lift and drag coefficients time domain.

Table 6 
Hyperparameters used in Bayesian Optimization of the Hydrofoil Problem.

Surrogate Model XFOIL Coupled XFOIL and CFD

Activation Function Mish Mish (except Fl)
Optimizer AdamW AdamW
Learning Rate 1.00 × 10− 3 1.00 × 10− 3

Number of Epochs 4000 4000
Number of Ensemble Models 10 10
Number of Neurons in Hidden 

Layers
(5,5,5,5,5) Fl (− ) 

Fnl (5,5,5,5,5) Fres 

(5,5,5,5,5) 
W (1)

Fig. 6. Mesh boundary layer at trailing edge.
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(Fig. 5) and partitioned it into 168 subdomains using the Scotch 
decomposition method (Pellegrini and Roman, 1996). The simulations 
were executed on the high-performance computing facilities at the 
Computational Marine Hydrodynamics Laboratory (CMHL). To fully 
resolve the boundary layer without resorting to wall functions, we set 
the first cell height to 1.25 × 10− 4 m, yielding y+ ≈ 1 (Fig. 6). The 
boundary conditions for all transported fields are summarized in 
Table 5. We applied second-order upwind schemes (Van Leer, 1979) and 
continued simulations until the CL/CD ratio stabilized (Fig. 7).

To construct the low-fidelity model, we employed XFOIL 6.99, using 

viscous analysis for discrete design points. XFOIL is an interactive 2-D 
airfoil analysis/design program that solves an inviscid potential flow 
with a high-order panel method and couples it to an integral boundary- 
layer solver with transition modeling, enabling rapid prediction of lift, 
drag, and moment polars at subsonic Reynolds numbers (Drela, 1989) 
(Drela and Youngren, 2001). We validated both fidelity levels against 
experimental data for the initial design. Three high-fidelity design points 
were sampled uniformly across the design domain and evaluated using 
CFD.

To support the multi-fidelity model, we trained a single-fidelity 

Fig. 8. Comparison of predictive performance and acquisition functions of six surrogate models for Bayesian optimization of the Forrester function.

Table 7 
Comparison of surrogate model performance over infill iterations for the Forrester function optimization. The best performance in each row is highlighted in bold.

Metric Infill Iteration Kriging MLP co-Kriging MFNN Ada2MF AGMF-Net

RMSE 0 44.7229 38.9339 8.6760 13.6389 24.8582 10.8987
1 43.5161 36.5703 0.8620 2.7143 26.7417 2.9163

r2 0 0.2069 0.2552 0.7822 0.7154 0.4586 0.8393
1 0.1892 0.2433 0.9711 0.9326 0.3962 0.8919

MARE 0 2.4417 2.2814 1.0777 1.3832 1.7932 1.1554
1 2.4463 2.2538 0.0974 0.0395 1.8896 0.0308
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Fig. 9. Decomposition of Ada2MF and AGMF-Net on the Forrester function with increasing numbers of training samples. The upper panels illustrate the model 
predictions and the corresponding decomposed components, while the lower panels show the weight space that governs their combination across the domain.
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surrogate using a multilayer perceptron (MLP) on 100 low-fidelity 
samples. We then constructed the AGMF-Net multi-fidelity surrogate 
using the hyperparameters listed in Table 6. Two Bayesian optimization 
iterations explored the objective landscape, followed by surrogate 
optimization. The resulting optimal design was compared against the 
baseline.

3. Results and discussion

3.1. Evaluation of surrogate models using the forrester function

Fig. 8a (iteration 0) and Table 7 together show two clear patterns. 
First, in this one-dimensional setting, co-Kriging provides the strongest 
global fit in terms of RMSE at initialization, reflecting the well-known 
strength of Gaussian process co-Kriging for smooth, low-dimensional 
functions with an approximately stationary discrepancy. However, 
AGMF-Net achieves the highest r2 among all models, indicating a 
stronger overall correlation with the true function even with sparse 
high-fidelity data. Second, AGMF-Net already ranks among the top 
methods at the optimum (low MARE) despite using the same sparse 
high-fidelity samples, indicating that its gated fusion and residual 
correction focus predictions near the true minimizer from the outset.

After the first infill (Fig. 8b), the divide between “global fit” and 
“optimization accuracy at the minimizer” becomes more pronounced. 
Co-Kriging continues to deliver the lowest RMSE, confirming that it still 
predicts the overall 1D function shape extremely well. In contrast, 
AGMF-Net and MFNN reduce the optimal-point error most aggressively, 
with AGMF-Net maintaining high correlation and the lowest MARE. 
Ada2MF improves more slowly under the same budget; and the single- 
fidelity baselines (Kriging, MLP) remain least competitive on all metrics.

The acquisition surfaces in Fig. 8a and b are consistent with these 
outcomes. Co-Kriging’s calibrated uncertainty sharpens the full-domain 
reconstruction rapidly, while AGMF-Net concentrates Log-EI mass near 
the global minimizer early, which accelerates reduction of the error at 
the optimum. This contrast explains why co-Kriging leads the table on 
RMSE in this problem, yet AGMF-Net satisfies the MARE-based stopping 
criterion within a single iteration.

Fig. 9a–c compare Ada2MF and the proposed AGMF-Net on the 
Forrester benchmark using three, four, and five evenly spaced obser
vations. Both models reconstruct the high-fidelity response through 
three experts—linear, nonlinear, and residual—combined by adaptive 
weights, where Ada2MF employs global coefficients and AGMF-Net in
troduces input-dependent gating over (X, fL(X)). As shown in Table 8, 
AGMF-Net consistently outperforms Ada2MF across all metrics and 
sample sizes, achieving lower RMSE and higher r2 for every case. The 
only exception is the MARE at five samples, where AGMF-Net is slightly

higher but remains comparable. The improvement is most evident in 
the highly nonlinear region (X> 0.85) for the three- and four-sample 
cases (Fig. 9a and b), where Ada2MF fails to capture the strong curva
ture of the true function, whereas AGMF-Net closely tracks the target. 
With five samples (Fig. 9c), AGMF-Net reproduces the full function 

profile with near-perfect accuracy, demonstrating superior correlation 
adaptivity and representational robustness.

The upper panels show the decomposition of the ensemble-mean 
prediction into three ensemble-mean expert curves—linear, nonlinear, 
and residual—corresponding to the model’s additive architecture. The 
lower panels illustrate the ensemble-mean weights. In Ada2MF, each 
ensemble member learns fixed global coefficients tanh(αi) that remain 
constant across the domain; thus, the averaged weights appear abso
lutely flat, directly reflecting their input-invariant nature. In contrast, 
AGMF-Net’s softmax-based gating produces input-dependent, positive, 
and normalized weights that sum to one, enabling the model to form 
convex combinations of the experts and to adapt smoothly to local fi
delity correlations.

It should also be noted that the linear expert is linear with respect to 
the joint input (X,fL(X)), not X alone. Because fL(X) is nonlinear in X, the 
corresponding Fl(X, fL(X)) curve appears curved when plotted along X, 
even though the mapping in the joint input space remains linear.

3.2. Evaluation of surrogate models using the Modified Branin Function

We restrict this comparison to the multi-fidelity surrogates—co- 
Kriging, MFNN, Ada2MF, and AGMF-Net—because multi-fidelity 
consistently dominated single-fidelity in our Forrester study and in 
prior reports (Kandasamy et al., 2017) (Peherstorfer et al., 2018b). 
Fig. 10a–e visualizes the predictive fields across four infill iterations, and 
Table 9 summarizes RMSE, r2, and MARE. At initialization (Fig. 10a), 
AGMF-Net already achieved the lowest global error and highest 
explained variance while also yielding the smallest MARE at the 
minima, indicating that input-dependent gating with a residual expert 
aligned quickly with the biased low-fidelity signal under sparse 
high-fidelity data. As additional samples accumulated (Fig. 10b–e), 
MFNN drove the strongest reduction in RMSE and r2, reflecting its 
emphasis on global fit, whereas AGMF-Net concentrated probability 
mass around the true basins and delivered the best optimum-focused 
accuracy by the final stage (lowest MARE in Table 9) while maintain
ing competitive r2. Ada2MF started behind but improved substantially 
with more data, becoming globally competitive by the end; however, it 
did not match AGMF-Net near the optima. Co-Kriging remained the 
weakest of the four throughout this two-dimensional task—its conser
vative Gaussian-process posterior produced smooth, under-responsive 
fields and consistently inferior RMSE, r2, and MARE compared with 
the neural network surrogates. Taken together, Figs. 10a–e and Table 9
show AGMF-Net’s principal strength on this problem: rapid alignment 
with useful low-fidelity structure at the start and superior localization of 
the global minima as the BO loop progressed.

3.3. Evaluation of surrogate models using the Hartmann-3D function

Table 10 reports the evaluation of the four multi-fidelity surrogates 
on the Hartmann-3D benchmark under Bayesian optimization, listing 
performance at initialization and after nine infill iterations. Across the 
entire sequence, AGMF-Net consistently attains the strongest global fit 
and the most accurate estimates at the optimum. By the final iteration, it 
achieves the best entries in all three columns of Tables 10 and is the only 
model whose accuracy at the predicted optimum meets the 5 % 
threshold within the allotted iterations. Ada2MF ranks second overall: it 
narrows the gap as more data are acquired and maintains competitive 
global approximation quality, but it does not reach the accuracy ach
ieved by AGMF-Net at the optimum. MFNN continues to improve with 
added information yet remains behind the adaptive-gated variants in 
both global fidelity and optimal-point accuracy. Co-Kriging performs 
worst throughout, indicating that on this three-dimensional landscape 
the neural multi-fidelity surrogates—particularly the proposed 
adaptive-gated design—offer clear advantages over a Gaussian-process 
baseline. These results substantiate the benefit of replacing fixed, 

Table 8 
Comparison of Ada2MF and AGMF-Net on the Forrester function under different 
training sample sizes.

Metric Training Samples Ada2MF AGMF-Net

RMSE 3 24.8582 10.8987
4 7.7119 3.8214
5 0.9724 0.1455

r2 3 0.4586 0.8393
4 0.7271 0.8128
5 0.9668 0.9943

MARE 3 1.7932 1.1554
4 0.6989 0.4184
5 0.0126 0.0162
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Fig. 10. Comparison of predictive performance of four multi-fidelity surrogate models for Bayesian optimization of the Branin function.
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domain-invariant mixing with the input-dependent softmax gate in 
AGMF-Net, which more effectively leverages the low-fidelity signal 
while routing corrections through the residual pathway, yielding supe
rior performance under sparse high-fidelity sampling.

3.4. Optimization of hydrofoil

A comparative validation of CFD and viscous XFOIL predictions 
against Kermeen’s experimental data (Pellegrini and Roman, 1996) is 
presented in Table 11. The CFD simulation yielded an accurate predic
tion of the lift coefficient, with an error of less than 2 %. However, it 
overpredicted the drag coefficient by 18.5 %. This deviation is likely due 
to the high sensitivity of drag to adverse pressure gradients and 
boundary layer separation. Even a minor shift in the separation point 
can significantly increase drag, especially since CD is two orders of 
magnitude smaller than CL, amplifying relative errors in the CL/CD ratio. 
As a result, the error in CL/CD reached 13.9 %.

Although XFOIL was executed in viscous mode, it exhibited higher 
discrepancies across all metrics compared to CFD. This outcome un
derscores CFD’s superior capability to capture detailed flow physics, 
including transitional and separation effects, which remain challenging 
for integral boundary layer methods like those used in XFOIL.

The optimization progression driven by Bayesian inference is illus
trated in Fig. 11. Initially, the surrogate model—trained on a small set of 
observations—captures a coarse landscape of the design space, with the 
acquisition function (Log-EI) indicating high potential near a camber 
coefficient of approximately 0.0248. This point is selected for the first 
infill iteration. After evaluating it, the model is updated, and the second 
acquisition maximum emerges near a slightly lower camber of 0.0227, 
which is then sampled next. The third iteration further concentrates 
around this optimal region, demonstrating the model’s ability to refine 
its predictions and reduce uncertainty. Notably, the acquisition peaks 
become more localized across iterations, indicating increasing model 
confidence and convergence toward the optimal design region.

The hydrodynamic improvements are quantitatively summarized in 
Table 12 and physically illustrated through the pressure and velocity 
field distributions in Fig. 12. The optimized hydrofoil, corresponding to 
a maximum camber coefficient of 0.0239, yields a significant lift 
enhancement—from CL to 0.2723—representing a 93.6 % increase. 
Although this comes with a moderate increase in drag (CD rising from 
0.0073 to 0.0100), the overall hydrodynamic efficiency (CL/CD) im
proves markedly by 41.6 %, from 37.06 to 52.49.

Fig. 12a and b reveal the flow mechanisms behind this performance 
improvement. The pressure field around the optimized hydrofoil ex
hibits a stronger low-pressure region on the suction side near the leading 
edge, creating a larger pressure differential and thus stronger lift. 
Simultaneously, the velocity fields in Fig. 12c and d shows greater flow 
acceleration over the upper surface of the optimized shape, confirming 
enhanced suction and a favorable pressure gradient. Importantly, the 
flow remains fully attached in both cases, indicating that the increased 
camber did not induce boundary layer separation, which is critical for 
maintaining drag control.

Fig. 13 highlights the geometric difference between the baseline and 
optimized foils. The optimized shape introduces a subtle positive cam
ber—peaking at 0.0239—without modifying the original thickness dis
tribution. This asymmetry results in a slightly forward-leaning mean 
camber line and an effectively increased angle of attack, which in turn 
promotes early suction buildup over the upper surface. Despite its small 
magnitude, this camber adjustment proves highly effective, confirming 
the hydrodynamic sensitivity of lift-to-drag ratio to fine geometric 
modifications under laminar conditions.

4. Conclusions

This study introduced AGMF-Net, a novel adaptive gated multi- 
fidelity neural network that integrates deep Mixture-of-Experts gating 

Table 9 
Comparison of surrogate model performance over infill iterations for the 
modified Branin function optimization. The best performance in each row is 
highlighted in bold.

Metric Infill Iteration co-Kriging MFNN Ada2MF AGMF-Net

RMSE 0 0.1273 0.1217 0.1705 0.0945
1 0.1294 0.0361 0.1866 0.1489
2 0.1218 0.0159 0.2038 0.1607
3 0.1154 0.0100 0.1470 0.1469
4 0.1137 0.0091 0.0221 0.0684

r2 0 0.8902 0.8930 0.8408 0.9195
1 0.8894 0.9652 0.8224 0.8683
2 0.8961 0.9867 0.8047 0.8697
3 0.9021 0.9901 0.8675 0.8937
4 0.9036 0.9910 0.9786 0.9438

MARE 0 0.2185 0.1714 0.1298 0.1206
1 0.2100 0.2152 0.1366 0.2364
2 0.1736 0.1161 0.1280 0.1446
3 0.1683 0.0685 0.1381 0.0565
4 0.1619 0.0637 0.1206 0.0425

Table 10 
Comparison of surrogate model performance over infill iterations for the 
Hartmann-3D function optimization. The best performance in each row is 
highlighted in bold.

Metric Infill Iteration co-Kriging MFNN Ada2MF AGMF-Net

RMSE 0 0.2288 0.1915 0.1383 0.1797
1 0.2353 0.2577 0.1405 0.1264
2 0.2636 0.2919 0.1439 0.0987
3 0.2476 0.2416 0.1249 0.1023
4 0.2219 0.2215 0.1108 0.0819
5 0.2275 0.2041 0.1156 0.0727
6 0.2063 0.1890 0.0911 0.0558
7 0.2121 0.1732 0.0964 0.0617
8 0.1954 0.1438 0.0827 0.0492
9 0.1886 0.1286 0.0789 0.0461

r2 0 0.7506 0.7850 0.8588 0.8012
1 0.7445 0.7124 0.8549 0.8580
2 0.7228 0.6724 0.8499 0.8925
3 0.7361 0.7165 0.9387 0.9412
4 0.7749 0.7348 0.9552 0.9719
5 0.7622 0.7648 0.9511 0.9780
6 0.7988 0.8135 0.9672 0.9857
7 0.7895 0.8345 0.9620 0.9832
8 0.8123 0.8648 0.9724 0.9876
9 0.8234 0.8850 0.9756 0.9891

MARE 0 0.5049 0.3938 0.5196 0.4198
1 0.5070 0.4408 0.4311 0.3606
2 0.5089 0.4838 0.3403 0.2803
3 0.4971 0.3615 0.2988 0.2011
4 0.4736 0.3052 0.1873 0.1436
5 0.4819 0.3395 0.1154 0.1192
6 0.4523 0.2761 0.0812 0.0749
7 0.4597 0.2494 0.1052 0.0816
8 0.4388 0.2379 0.0816 0.0587
9 0.4215 0.2241 0.0690 0.0419

Table 11 
Validation of lift and drag coefficients against experimental data.

Metric Experiment CFD XFOIL CFD Error 
(%)

XFOIL Error 
(%)

CL 0.267 0.272257 0.295 1.97 10.5
CD 0.0062 0.0073468 0.008 18.5 29.0
CL/

CD

43.1 37.0580 36.875 13.9 14.4
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with ensemble-based uncertainty quantification within a Bayesian 
optimization framework. The development of AGMF-Net addressed the 
need for a surrogate model that is both accurate and robust under 
limited high-fidelity data, a scenario common in engineering design 
optimization. In our experiments, AGMF-Net achieved strong predictive 
accuracy even at the initial sampling stage, outperforming all other 
models in RMSE and r2 metrics before any infill iterations. This early 
advantage was attributed to its ability to leverage both low-fidelity and 
sparse high-fidelity data through adaptive weighting of linear, 

Fig. 11. Bayesian optimization of hydrofoil design using AGMF-Net with coupled XFOIL and CFD observations. The left subplots show surrogate predictions and 
uncertainty bands, while the right subplots display the Log-Expected Improvement (Log-EI) used for infill point selection.

Table 12 
Comparison of hydrodynamic performance between the baseline and optimized 
hydrofoils.

Performance Metric Baseline Optimized Relative Change (%)

CL 0.2723 0.5270 +93.6
CD 0.0073 0.0100 +36.7
CL/ CD 37.06 52.49 +41.6
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nonlinear, and residual subnetworks.
During Bayesian optimization of the mathematical benchmark 

functions, AGMF-Net rapidly converged toward the global optimum. 
The LogEI acquisition function effectively guided the model to focus 
exploitation in regions with the highest expected improvement, leading 
to the lowest mean absolute relative error (MARE) of all surrogates. 
However, this exploitation-oriented behavior also came with tradeoffs. 
Although AGMF-Net maintained excellent local accuracy near the op
timum, its global predictive accuracy during infill was occasionally 
slightly lower than other test models, which achieved marginally better 
overall RMSE and r2 in later iterations due to more balanced exploration 

across the design space. This pattern highlights that while AGMF-Net 
can quickly refine predictions around optimal regions, it may be less 
effective at globally capturing secondary features if exploration is not 
sufficiently promoted by the acquisition strategy.

In the hydrofoil optimization study, AGMF-Net demonstrated sub
stantial practical value by efficiently identifying a subtle camber 
modification that improved the lift-to-drag ratio by 41.6 %. This 
outcome confirmed that the model’s strengths—namely, its adaptive 
gating mechanism and ensemble-driven uncertainty quantification—
translate effectively to real-world problems involving computationally 
expensive simulations. The ability to achieve significant design 

Fig. 12. Comparison of pressure and velocity fields between baseline and optimized hydrofoil.

Fig. 13. Geometric comparison between baseline and optimized hydrofoils. The optimized shape introduces a maximum camber of 0.0239 while preserving the 
original thickness distribution, enabling higher lift with minimal drag penalty.
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improvements using only a limited number of high-fidelity CFD evalu
ations underscores AGMF-Nets promise for surrogate-assisted optimi
zation in industrial settings.

Overall, these results validate the research objective of developing a 
general-purpose, data-efficient multi-fidelity surrogate modeling 
framework that can exploit prior knowledge and adaptively focus 
learning in critical regions of the design space. While this study has 
demonstrated AGMF-Net’s effectiveness in ocean engineering optimi
zation scenarios, its architecture is broadly applicable to other domains 
where high-fidelity data are limited, including materials discovery, 
structural analysis, and computational biology. Future work will extend 
AGMF-Net to higher-dimensional and multi-objective problems and 
explore advanced acquisition strategies, such as entropy-based and 
multi-task formulations, to improve the balance between exploration 
and exploitation. Additionally, we plan to benchmark the framework on 
diverse datasets beyond fluid dynamics to further demonstrate its 
robustness, scalability, and versatility in real-world surrogate modeling 
and optimization tasks.
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Appendix A. Bayesian Optimization (BO)

Let X denote the domain of the k design variables, where X ⊂Rk, and let f : X →R be the objective function. The goal of optimization is to 
systematically search X for a solution vector x* ∈ X that achieves the global optimum f* = f(x*). Depending on the problem formulation, this 
corresponds to either minimizing or maximizing f . In this study, we formulate all derivations within the minimization framework. Readers should 
appropriately adapt the expressions when applying them to maximization problems.

For a minimization task, the global optimum is defined as 

x* ∈ argmin
x∈X

f(x); f * =min
x∈X

f(x)= f(x*) (A.1) 

Since f is treated as a black-box function that is expensive to evaluate, we approximate it using a surrogate model f̂ constructed from discrete 
observations of f . This surrogate provides inexpensive predictions of the objective value over the design space D . We begin by uniformly sampling D 

to evaluate f at selected points, forming an initial dataset. We then train a probabilistic surrogate model f̂ on this data.
The surrogate yields a predictive posterior distribution, whose mean approximates f and whose variance informs the acquisition function used to 

guide infill sampling. In this work, we employ the logarithmic Expected Improvement (logEI) acquisition function due to its numerical stability 
(Ament et al., 2023). Given the posterior mean μ(X ), standard deviation σ(X ), and the current best observed value y*, the logEI is defined as 

log EIy* (X )= logh

(
μ(X ) − y*

σ(X )

)

+ log(σ(X )), (A.2) 

(following (Ament et al., 2023)), where 

h(z)=ϕ(z) + z Φ(z), (A.3) 

and ϕ, Φ denote the standard Normal density and distribution functions, respectively, and h(z) = ϕ(z) + z Φ(z) is the classical EI factor (Jones et al., 
1998). The function logh is mathematically equivalent to log∘h and is evaluated using the following numerically stable approximation: 

logh(z)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

log (ϕ(z) + z Φ(z)) z > − 1,

−
z2

2
− c1 + log 1mexp

(
log
(

erfcx
(
− z
/ ̅̅̅

2
√ )

⋅|z|
)
+ c2

)
− 1
/

̅̅̅
ϵ

√
< z ≤ − 1,

−
z2

2
− c1 − 2 log (|z|) z ≤ − 1

/
̅̅̅
ϵ

√
,

(A.4) 

with constants c1 = log(2π)/2, c2 = log(π /2)/2, and ϵ denoting numerical precision. Functions log1mexp and erfcx represent numerically stable 
implementations of log(1 − exp(z)) and exp

(
z2)erfc(z), respectively.

Directly evaluating logh(z) = log (ϕ(z)+z Φ(z)) can be numerically fragile. In the extreme left tail (z≪0), both ϕ(z) and Φ(z) become vanishingly 
small (e.g., ϕ( − 30) ≈ e− 450/

̅̅̅̅̅̅
2π

√
), so a naive sum underflows to zero and logh(z) collapses to -∞, destroying gradients. In this regime we rely on the 

Mills’ ratio asymptotic Φ(z) ∼ ϕ(z)/( − z), which yields the stable approximation logh(z) ≈ − z2

2 − c1 − 2 log (|z|) with c1 = log(2π)/2. Around the 
transition region ( − 1/

̅̅̅
ϵ

√
< z ≤ − 1) we have h(z) = ϕ(z) − |z| Φ(z), i.e., the difference of two small terms, so direct subtraction causes catastrophic 

cancellation. We therefore rewrite Φ(z) using the scaled complementary error function, Φ(z) = 1
2e

− z2/2erfcx
(
− z /

̅̅̅
2

√ )
, and evaluate in log-space as 
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logh(z) = log ϕ(z) + log 1mexp(A) with A = log
(
erfcx

(
− z /

̅̅̅
2

√ )
⋅|z|
)
+ c2 ≤ 0 and c2 = log(π /2)/2. For z > − 1 we evaluate log (ϕ(z)+z Φ(z))

directly, which is stable in double precision. This piecewise evaluation, summarized in Eq. (A.4), follows Ament et al. (2023) and prevents under
flow/overflow and cancellation across all z, preserving well-behaved values and gradients for acquisition optimization.

To identify the next candidate point xcand ∈ D , we maximize logEI(X ) using the L-BFGS-B algorithm (Zhu et al., 1997) with multiple random 
restarts to avoid local optima. After evaluating f(xcand), the dataset is augmented with this new observation, and the surrogate model is retrained. This 
process repeats iteratively until a stopping criterion is met. In this study, the stopping rule depends on the task: for benchmark functions, we stop when 
the mean absolute relative error at the current predicted optimum point(s) falls below a preset threshold; for the hydrofoil (real engineering) opti
mization, we stop after a fixed number of expensive evaluations (evaluation budget). Upon completion, we minimize the final surrogate f̂ using 

L-BFGS-B with multiple starting points to estimate the predicted optimum x̂* = argmin
x∈X

f̂ (x). Finally, the true objective value at x̂* is evaluated and 

compared with the best initial design. The complete Bayesian optimization workflow is illustrated in Figure A.1.

Fig. A.1. Bayesian Optimization Process.

Appendix B. Kriging

Kriging (Krige, 1951) implements a specific instance of Gaussian process regression with a characteristic kernel function: 

k(x, xʹ)= exp

(

−
∑k

j=1
θj

⃦
⃦
⃦xj − xʹ

j

⃦
⃦
⃦

pj

)

(A.5) 

We define a Gaussian process by its mean and covariance functions as follows: 

m(x)=E[f(x)], (A.6a) 

k(x, xʹ)=E[(f(x) − m(x))(f(xʹ) − m(xʹ))]. (A.6b) 

This specification leads to the GP prior over functions: 

f(x) ∼ G P (m(x), k(x, xʹ)) (A.7) 

Appendix C. Multilayer Perceptron (MLP)

The multilayer perceptron (MLP) represents a standard feedforward neural network, structured with an input layer, one or more hidden layers, and 
an output layer. Each layer transforms its input through weighted summation followed by a non-linear activation function. Figure A.2 displays an MLP 
with three hidden layers.

The network computes the forward pass from layer n to n + 1 using: 

an+1 = σ(Wnan +bn
) (A.8) 

Here, an denotes the activation vector at layer n, Wn is the weight matrix, bn is the bias vector, and σ( ⋅) is the activation function applied element-wise. 

P. Paladaechanan et al.                                                                                                                                                                                                                       Ocean Engineering 343 (2026) 123314 

15 



Fig. A.2. Topology of MLP with 3 Hidden Layers.

This study employs the Mish activation function (Misra, 2019), given by: 

σ(x)= x ⋅ tanh(softplus(x))= x⋅tanh(ln(1+ ex)) (A.9) 

An ensemble of MLPs is constructed using distinct random initializations of weights drawn from the Kaiming normal distribution (He et al., 2015): 

Wij ∼ N

(

0,
2

fan in

)

(A.10) 

All bias vectors are initialized to zero. This ensemble formulation (Lakshminarayanan et al., 2017) enables the modeling of predictive uncertainty 
and captures a distribution over function outputs.

Appendix D. Co-Kriging

Co-Kriging constructs a surrogate model by fusing information from both a low-fidelity function fc and a high-fidelity function fe, under the 
assumption that fe(x) ≈ ρfc(x) + δ(x) (Kennedy and O’Hagan, 2001), where ρ ∈ R is a scaling parameter and δ(x) is an independent Gaussian process 
capturing the discrepancy.

Let the combined training dataset be 

X=

[
Xc
Xe

]

, y=

[
yc
ye

]

, (A.11) 

where Xc ∈ Rnc×k and Xe ∈ Rne×k are the inputs and yc, ye are the corresponding outputs.
Define the kernel matrices: 

Kcc = kc(Xc,Xc), (A.12) 

Kce = kc(Xc,Xe), (A.13) 

Kec = kc(Xe,Xc), (A.14) 

Kee = ρ2kc(Xe,Xe) + kd(Xe,Xe), (A.15) 

where kc and kd are the ARD generalized exponential kernels defined in Eq. (A.5), used for the low- and discrepancy processes, respectively.
The full covariance matrix becomes: 

K=

[
kc(Xc,Xc) ρkc(Xc,Xe)

ρkc(Xe,Xc) ρ2kc(Xe,Xe) + kd(Xe,Xe)

]

. (A.16) 

Let c denote the cross-covariance vector between the test point x and all training points: 

c=
[

kc(x,Xc)

ρkc(x,Xe) + kd(x,Xe)

]

. (A.17) 

Then the predictive mean and variance are given by: 

f̂ (x)= μ + c⊤K− 1(y − μ1), (A.18a) 
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σ̂2
(x)= ρ2σ2

c + σ2
d − c⊤K− 1c +

(
1 − 1⊤K− 1c

)2

1⊤K− 11
, (A.18b) 

where μ is the common mean, and σ2
c , σ2

d are the marginal variances of the low-fidelity and discrepancy processes, respectively.

Appendix E. Multi-Fidelity Neural Network (MFNN)

The MFNN proposed by Meng and Karniadakis (2020) captures nonlinear correlations between low- and high-fidelity data using a composite 
neural architecture.

The surrogate function f̂ is formulated as: 

f̂ (X, fL(X))= αFl(X, fL(X))+ (1 − α)Fnl(X, fL(X)),α ∈ [0, 1], (A.19) 

where fL denotes the low-fidelity function, and Fl, Fnl represent the linear and nonlinear subnetworks, respectively. The scalar α serves as an adaptive 
gating coefficient inferred from training data.

The linear subnetwork Fl consists of a single linear layer without hidden layers or activation functions, enabling direct affine transformation. In 
contrast, the nonlinear subnetwork Fnl adopts a multilayer perceptron (MLP) structure with hidden layers and non-linear activation functions to model 
complex relationships. Figure A.3 illustrates the MFNN architecture. The model ensembles multiple independently initialized instances to quantify 
predictive uncertainty, following the same strategy as the MLP ensemble.

Fig. A.3. Architecture of the Multi-Fidelity Neural Network (MFNN), adapted from (Meng and Karniadakis, 2020).

Appendix F. Root Mean Square Error (RMSE)

RMSE quantified the global predictive accuracy of each surrogate. It is defined as the square root of the mean of the squared differences between 
predicted and true values across all test points: 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
nt

∑nt

i=1

(
f
(
x(i)

t
)
− f̂
(
x(i)

t
))2

√

, (A.20) 

where nt denotes the number of test points. Lower RMSE values indicated better overall prediction accuracy.

Appendix H. Squared Pearson Correlation (r2)

r2 assessed the degree to which surrogate predictions correlated with the true function values. It is defined as: 

r2 =

(
cov(f(xt), f̂ (xt))
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

var(f(xt)) var( f̂ (xt))

√

)2

(A.21) 

=

⎛

⎜
⎜
⎜
⎜
⎝

nt
∑nt

i=1
f
(
x(i)

t
)

f̂
(
x(i)

t
)
−

(
∑nt

i=1
f
(
x(i)

t
)
)(

∑nt

i=1
f̂
(
x(i)

t
)
)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[

nt
∑nt

i=1

(
f
(
x(i)

t
))2

−

(
∑nt

i=1
f
(
x(i)

t
)
)2][

nt
∑nt

i=1

(
f̂
(
x(i)

t
))2

−

(
∑nt

i=1
f̂
(
x(i)

t
)
)2]

√

⎞

⎟
⎟
⎟
⎟
⎠

2

. (A.22) 

This metric focused on the similarity of the functional shape rather than absolute value agreement. Values of r2 closer to 1 implied strong shape 
correspondence.
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Appendix I. Mean Absolute Relative Error (MARE)

MARE specifically evaluated the prediction quality at the function’s optimal point. It was computed as: 

MARE=
1
n
∑n

i=1

⃒
⃒
⃒
⃒
f
(
x*

i
)
− f̂
(
x*

i
)

f
(
x*

i
)

⃒
⃒
⃒
⃒. (A.23) 

This metric emphasized local accuracy around the predicted optimum, complementing the global metrics RMSE and r2.

Data availability

The data that support the findings of this study are available from the 
corresponding author upon reasonable request.
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