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ABSTRACT

To precisely understand the independent impacts and interaction
mechanisms of various motion factors on the aerodynamic response of
wind turbines, this study employs computational fluid dynamics (CFD)
methods, utilizing the FEWT-SJTU solver, to examine the effects of
forced surge motion on wind turbines' dynamic behavior. The study
finds that increasing forced motion amplitude leads to nearly linear
rises in power and thrust fluctuations, spreading attack angles, and
more pronounced blade deformations, while period changes cause only
slight decreases in mean power and thrust with more moderate
fluctuations. This research offers valuable insights for optimizing
turbine design and operation, highlighting that amplitude has a more
significant impact on turbine performance and deformation than period.

KEY WORDS: Floating wind turbine; forced surge motion; aero-
elastic; FEWT-SJTU.

INTRODUCTION

As modern society advances at a rapid pace, the transition to renewable
energy sources, particularly wind power, is gaining momentum as a
substitute for fossil fuels. However, the complex marine environment,
characterized by wind, waves, and currents, causes motion in offshore
platforms. This motion can lead to fluctuations in the power output of
wind turbines, which can directly affect the turbine's stability and
operational efficiency. Moreover, the platform's response to motion is
further complicated by blade deformation and variations in
aerodynamic performance. Decoupling these perturbations is essential
for understanding and optimizing the design and operation of floating
wind turbines. Only through a detailed analysis and quantitative
description of these interactions can we develop effective strategies to
ensure the reliability and economic viability of floating wind turbines in
challenging marine conditions.

The primary research methods for investigating the aerodynamic

272

performance of wind turbines encompass wind tunnel tests (Fang et al.,
2020; Fontanella et al., 2022; Meng et al.,, 2022) and numerical
simulations. To ensure the controllability and repeatability of
experimental procedures, as well as the computational efficiency of
numerical analyses, previous studies have delved into the impact of
specified platform motions on the unsteady aerodynamic responses of
floating wind turbines. Concurrently, by prescribing particular platform
motions, these studies have been able to isolate the effects of individual
motions or specific combinations thereof on the aerodynamic response
of the turbines. This approach facilitates a more precise understanding
of the independent impacts and interaction mechanisms of various
motion factors.

Currently, numerous scholars are employing Computational Fluid
Dynamics (CFD) methods to investigate the impact of platform motion
on the unsteady aerodynamic performance of wind turbines (Feng et al.,
2021; Chen et al., 2022). CFD techniques offer highly accurate
aerodynamic performance calculations, capable of simulating complex
aerodynamic phenomena and providing comprehensive flow field
information. They also allow for the substitution of real wind turbine
blades with actuator lines, thereby avoiding the need to solve the
boundary layer on the blade surface. This approach effectively reduces
computational resource demands while maintaining high accuracy.
Fang et al. (2021) utilized CFD to examine the aerodynamic
performance and wake characteristics of a floating horizontal-axis wind
turbine under longitudinal motion at a 1:50 model scale. They
discovered that even a small amplitude of longitudinal motion
significantly affects the rotor's thrust, torque, and power, as well as
altering the near and far wake characteristics. Alkhabbaz et al. (2024)
conducted high-fidelity CFD simulations to study the effect of the
longitudinal motion of a semi-submersible platform on the aerodynamic
performance and wake characteristics of an NREL 5-MW floating wind
turbine. Their findings indicated that longitudinal motion substantially
influences the apparent wind speed perpendicular to the rotor plane,
leading to power output fluctuations over the longitudinal cycle and a
faster wake recovery compared to a stationary wind turbine. Wang et al.



(2024) used CFD methods to investigate the aerodynamic performance
of a floating wind turbine under coupled blade rotational and
translational motions. They analyzed the effects of different
translational frequencies and amplitudes on aerodynamic loads, blade
pressure distributions, and wake characteristics. Cheng et al. (2019)
analyzed the unsteady aerodynamic performance of an NREL 5 MW
wind turbine under periodic longitudinal oscillation and longitudinal
rocking motions using the OpenFOAM open-source software. They
explored the influence of platform motion amplitude on the
aerodynamic loads of the wind turbine and analyzed the tower shadow
effect. Cai et al. (2024) applied the CFD method to model the wind
turbine and investigate its aerodynamic performance under longitudinal
oscillation, as well as the coupling conditions of longitudinal oscillation
and other motions. They revealed significant changes in the
aerodynamic characteristics of the wind turbine under these conditions.
While domestic and international scholars have conducted extensive
research using the aforementioned methods, fewer studies have focused
on the effects of forced surge motion considering blade deformation.

In this paper, based on the FEWT-SJTU solver from the CMHL of
Shanghai Jiao Tong University, we perform detailed calculations to
assess the aerodynamic performance and blade deformation of the
NREL 5MW wind turbine under forced surge motion. Our research
specifically targets the unsteady aerodynamic response and blade
deformation of the wind turbine under varying parameters of surge
motion, all within the context of uniform wind conditions. The paper
provides a comprehensive introduction to the structural calculation
method, the prediction method for aerodynamic performance, and the
coupling strategy employed. We also meticulously describe the
calculation conditions and the model used, and validate the accuracy
and reliability of our computational results. Ultimately, our analysis
delves into the impact of different forced motion amplitudes and
periods of the floating wind turbine on both its aerodynamic
performance and blade deformation, offering valuable insights into the
dynamic behavior of such systems under specified operational
conditions.

METHODOLOGY

Structural model

In this paper, the Euler-Bernoulli beam model is employed to represent
the blade equivalently for deformation calculations. The blade is
discretized using the one-dimensional finite element method. The
structural dynamics equation utilized to solve for the blade deformation
is as follows:

MX+Cx+Kx= f (1)
where, M is the mass matrix, C is the damping matrix, and K is the
stiffness matrix, while x represents the displacement vector. The
damping uses Rayleigh damping, which is linearly superimposed by the
stiffness matrix and the mass matrix.
C=aM+ pK 2
The coupling between the various deformations of the blade is
considered. The off-diagonal elements of the stiffness matrix represents
the coupling effect between the flapwise deformation and the edgewise
deformation, which is caused by the pre-twisting of the blade. The
coupling between the torsional deformation and the bending

deformation is caused by the non-coincidence of the shear center, the
aerodynamic center and the center of gravity, and the coupling is
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realized by adding the equivalent torque to the external load.

Unsteady actuator line model

Compared to fixed wind turbines, floating wind turbines exhibit a more
complex six-degrees-of-freedom motion, which significantly alters the
flow field near the blades. At each blade section, the velocity vector of
the unsteady actuator line model is the resultant of the velocity vectors
caused by the platform motion, the inflow wind, and the blade rotation.

f =(L.D)=pUgcN,(Cre. +Cpep) ©)

where, L and D is the lift and drag on the airfoil interface; U is the
relative wind speed at the cross section of the blade, as shown in Fig. 1,

U imotion 1S the additional speed of the platform motion, Ujyis the wind
speed of the incoming flow, and U, is the linear velocity of the
actuator caused by the rotation of the blade ; ¢ is the chord length of
the airfoil section ; N}, is the number of blades of a single wind turbine ;
Ciand Cp is the lift coefficient and drag coefficient ; e;and e is the
unit vector in the x and y directions in the body coordinate.

Fig. 1 Induced velocity vector diagram of the airfoil
Coupled strategy

The coupling between blade deformation and aerodynamic load is
achieved by exchanging displacement and force data at the end of each
time step calculation. The detailed calculation process is illustrated in
Fig. 2. When computing the aerodynamic load using the unsteady
actuator line model, it is essential to account for the changes in blade
position and inflow wind speed due to platform motion. In this study,
we simulate platform motion with a forced motion to influence the
calculation of the aerodynamic load.

Update the location of actuator
line

Calculate relative inflow wind
speed and attack angle

T=t+At
Calculate the aerodynamic loads]

|

Assemble the global load vector

Calculate the displacement
and velocity

Fig. 2 Fluid-structure coupling calculation of wind turbine blades

NUMERICAL SETUP



Wind turbine

The wind turbine utilized in this study is an NREL 5MW model,
featuring three blades with a rotor disc diameter of 126 meters. It has a
rated wind speed of 11.4 m/s, a hub height of 189 meters, and operates
at a rated rotational speed of 12.1 revolutions per minute. For a
comprehensive list of additional parameters can refer to Jonkman et al.
(2009).

Computational domain and mesh

The computational domain is illustrated in Fig. 3, with dimensions of
756 meters in length, 378 meters in width, and 378 meters in height.
The wind turbine is situated 126 meters downstream from the inlet
boundary. The top boundary and the bottom boundary is set as a slip
condition, and the left and right sides are defined by symmetry
boundary conditions.

&)

Fig. 3 Computational domain

The computational domain grid is depicted in Fig. 4, with grids
uniformly distributed in the X, y, and z directions. To ensure accurate
capture of flow field changes near the wind turbine and within the wake
region while minimizing computational load, we initially performed
grid refinement over a larger area and subsequently conducted further
refinement in a finer area. The total number of grids utilized is 3.22
million. The simulation duration is set at 300 seconds, with a time step
of 0.01 seconds selected for the calculations.

(a) xy plane

(b) yz plane

Fig. 4 Computational meshes

Condition parameter setting

To investigate the impact of different forced motions on the
aerodynamic performance of the wind turbine, seven sets of working
conditions have been established. The specific working conditions are
detailed in Table 1. The forced surge motion is set as follows:

X= Asin(ZT—” t) 4)

where x is the displacement of the wind turbine in the x-direction, A is
the amplitude of the forced motion, and T is the period of the forced
motion.

Case0-1 and Case0-2 serve to validate the accuracy of the solution
method and results. Here, blade deformation and forced motion are
calculated independently and compared against reference data. In
Casel through Case5, we introduce forced surge motions with varying
amplitudes and periods. Specifically, we set amplitudes of 2m, 4m, and
8m, and periods of 9s, 12s, and 15s, as guided by Wu et al. (2015).

Table 1. Specifications for simulation cases

Margins Deformation Motion Period Amplitude
Case0-1 | yes / / /

Case0-2 | / surge 12s 2m

Casel yes surge 12s 2m

Case2 yes surge 12s 4m

Case3 yes surge 12s 8m

Cased yes surge 9s 2m

Case5 yes surge 15s 2m

VERIFICATION AND VALIDATION
Mesh convergence

To ensure the reliability and accuracy of our simulations, we conducted
a series of mesh independence tests using three distinct mesh densities:
coarse, medium, and fine. The coarse mesh was 1.2 times larger than
the medium mesh, while the fine mesh was 0.8 times smaller. The
results of the power and thrust calculations for different grids are
presented in Fig. 5. We observed that the periodic nature of the results
remained consistent across all mesh densities, indicating grid
independence. Additionally, the amplitude differences were minimal.

Table 2 shows the number of grids and the mean values of aerodynamic
power and thrust for different grids. The difference in aerodynamic
power between the fine grid and the medium grid is only 1.9%, and the
difference in thrust is 0.9%. This analysis confirms the convergence of
the different grid calculation results. In this study, we selected the
medium grid for numerical calculations to ensure both computational
efficiency and accuracy.

Table 2. The grid sensitivity analysis

Mesh Mesh quantity | Power (MW) Thrust(N)
Coarse 1, 860, 000 5.11 649.93
Medium 3, 220, 000 5.25(2.7%) 658.66(1.4%)
Fine 5, 660, 000 5.35(1.9%) 665.24(0.9%)

Deformation




To ensure the accuracy of blade tip deformation calculations, Case0-1
was specifically designed to simulate the deformation of the turbine
blades under uniform wind conditions at the rated wind speed of 11.4
meters per second. The simulation results are depicted in Fig. 6, where
the deformations of flapwise, edgewise, and torsional are compared
with those documented in reference. The comparison indicates that the
deformations are fundamentally consistent, with no significant
discrepancies noted between the simulation outcomes and the values
reported in the literature.
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Fig. 6 Span-wise distributions of blade deflection
Forced motion

To verify the accuracy of the forced motion simulations, Case0-2
models the power and thrust of the wind turbine under uniform wind
conditions at the rated wind speed of 11.4 meters per second, without
accounting for blade deformation effects. Fig.7 illustrates a comparison
of the power and thrust over a single cycle with the values reported in
reference. The results obtained in this study are marginally higher,
which may be attributed to assumptions inherent in the simulation
model or particular conditions employed in the calculations.
Nonetheless, these differences fall within an acceptable margin,
suggesting that the simulation offers a reliable representation of the
turbine's actual performance.
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Fig. 7 The comparison of power and thrust curves within a single cycle
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RESULTS AND DISSCUSSIONS
Different amplitudes

Fig.8 illustrates the power and thrust under different amplitudes of
forced motion. The period of change aligns with the period of the
forced motion, and the fluctuation values increase with the amplitude of
the forced motion. The relationship between the fluctuation values and
the amplitude of the forced motion is nearly linear. Specifically, the
average power increases by 2% and 7.2%, while the fluctuation values
increase by 97.8% and 86.5%. The average thrust decreases by 0.1%
and -0.1%, and the fluctuation values increase by 99.5% and 87.9%.
The sharp increase in fluctuation values may be attributed to the forced
motion, which induces additional velocity in the airflow around the
blades, thereby altering the power and thrust of the turbine.
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Fig. 8 Power and thrust under different amplitudes

Fig. 9 displays the attack angle under different amplitudes of forced
motion. The root of the blade exhibits a significantly larger angle of
attack. As the amplitude of the motion increases, the region of larger
angles of attack spreads outward from the root, and the temporal
variation of the attack angle becomes more pronounced. This pattern is
consistent with the increase in thrust fluctuations observed in Figure x
as the amplitude of the forced motion increases. When the forced
motion amplitude reaches 8 meters, a large angle of attack is
periodically generated from the blade root to a location at 0.5 times the



rotor radius, which significantly affects the rotor thrust.
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Fig. 9 Temporal and spatial distribution of the local attack angle under
different amplitudes

Fig.10 illustrates the ratio of tip deformation to wind turbine radius for
different amplitudes of forced motion. As the amplitude of the forced
motion increases, both the flapwise and the edgewise deformations of
the blades increase. The flapwise deformation is particularly more
affected by the forced motion. When the forced motion amplitude
reaches 8 meters, the tip flapwise deformation exceeds 10% of the
blade radius. The tip edgewise deformation, while smaller, exhibits
more intense temporal variations and displays distinct second-order
characteristics. These characteristics are due to the interaction between
the blade's inherent natural frequency and the frequency of the forced
motion.

Different periods
Fig. 11 presents the power and thrust data of a wind turbine under

different periods of forced motion. Specifically, it shows that the mean
power experiences a decrease of 0.7% and 0.3%, while the fluctuation
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values of power decrease by 23.9% and 18.6%. For the thrust, the mean
value decreases by 0.9% and 3.1%, and the fluctuation values decrease
by 24.1% and 18.9%. Notably, the fluctuation values are more
significantly influenced by the amplitude of the motion compared to the
mean values.

Fig. 12 illustrates the aerodynamic angle of attack under different
periods of forced motion. As the period of the motion increases, the
position of the larger angles of attack remains largely unchanged.
However, the overall aerodynamic angle of attack shows an increasing
trend, accompanied by more moderate fluctuations. This change in the
aerodynamic angle of attack has a corresponding effect on the
aerodynamic thrust, as depicted in Figure 11, where the fluctuation
values of thrust decrease as the period of the motion increases.
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Fig. 10 Tip deformation under different amplitudes

Fig.13 shows the ratio of tip deformation to rotor radius under different
periods of forced motion. As the period of the forced motion increases,
the amplitudes of both the flapping and the shimmy deformations of the
wind turbine blades change slightly but the differences are minimal.
The mean value of the tip flapping deformation remains around 8% of
the blade radius. The tip shimmy deformation is relatively small, and
the variation period is completely consistent across the three working
conditions, showing no significant influence from changes in the period
of the forced motion. Additionally, there is no clear pattern in the
changes of the maximum values.
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fluctuations rise by 99.5% and 87.9%. These sharp increases are likely
due to additional velocity induced in the airflow around the blades,
significantly altering turbine performance. Blade root attack angle and
tip deformation also increase with amplitude, with flapwise
deformation exceeding 10% of the blade radius at 8 meters amplitude.
Edgewise deformation, though smaller, shows intense temporal
variations and second-order characteristics due to frequency
interactions. In contrast, when the period of forced motion changes,
mean power and thrust decrease slightly, while fluctuation values drop
more significantly by 23.9% and 18.6% for power, and 24.1% and
18.9% for thrust. The attack angle increases overall with a more
moderate fluctuation, and thrust fluctuations decrease correspondingly.
Blade tip deformation ratio remains largely unchanged with period,
with flapwise deformation staying around 8% of the blade radius and
edgewise deformation showing no significant influence or clear pattern
in maximum values.

In conclusion, the amplitude of forced motion has a more pronounced
impact on the power, thrust, attack angle, and deformation of wind
turbines, leading to larger fluctuations and more significant changes in
these parameters. In contrast, the period of forced motion has a
relatively smaller effect on these aspects, with only slight changes in
the mean values and more moderate fluctuations. These findings
provide valuable insights for understanding the dynamic behavior of
wind turbines under forced motion conditions and can guide the design
and operation of wind turbines to enhance their performance and
reliability.
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