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ABSTRACT  
 

To avoid the time-consuming hydrodynamic performance evaluation of 

ships via a viscous flow solver in hull form optimization, this paper uses 

the surrogate model as a data mining tool based on the adaptive sampling 

method to guide the new sample points to continuously approach the real 

optimal solution sets in the design space. Firstly, the accuracy and 

efficiency of the adaptive sampling method are verified by multi-

objective mathematical functions. Then, based on this method, the 

resistance and wake performance of KCS ship at Fr = 0.26 is optimized. 

In order to reduce the computational workload, a small number of sample 

points are selected according to the optimal Latin square experimental 

design method, and then the viscous flow solver naoeFOAM-SJTU is 

used to evaluate the comprehensive hydrodynamic performance of the 

deformed ship to establish the surrogate model. The new sample points 

are searched by the adaptive sampling method, and the surrogate model 

is updated dynamically until the convergence condition is satisfied to 

output the optimal solution sets. Compared with the traditional 

optimization method, the proposed method can greatly reduce the 

number of required sample points without reducing the optimization 

accuracy, and further improve the optimization efficiency. 

 

KEY WORDS:  hull form optimization; surrogate model; 

adaptive sampling method; KCS, resistance and wake 

performance.  

 

INTRODUCTION 

 

With the development of computer technology, the computational fluid 

dynamics (CFD) method has been widely used. The hydrodynamic 

performance of ships, such as resistance and seakeeping performance, 

can be obtained using the CFD method, which provides a numerical tool 

for comprehensive evaluation of ship hydrodynamic performance for 

hull form optimization. The simulation-based design (SBD) technology 

developed on this basis is currently recognized as a hull form 

optimization method with great advantages (Ni et al., 2020). It integrates 

the hull deformation method, CFD method, surrogate model, and 

optimization algorithm, and has received extensive attention in marine 

fields since it was proposed. Over the past decade, with the development 

of SBD technology, multi-objective optimization problems have 

gradually become a research hotspot. Typically, there are two main 

methods to solve multi-objective optimization problems, of which one is 

using evolutionary multi-objective algorithms, and the other one is using 

the weighted sum (WS) method (Sekulski, 2014). Due to the uneven 

distribution of the optimal solution obtained by the WS method, multi-

objective evolutionary algorithms are usually used to solve multi-

objective optimization problems (Lin et al., 2018a). The common 

evolutionary algorithms mainly include the Non-Dominated Sorting 

Genetic Algorithm-II (NSGA-II) (Miao et al., 2020a; Liu et al., 2021; Liu 

et al., 2022), the Multi-objective Particle Swarm Optimization Algorithm 

(MOPSO) (Kim et al.,2016; Su et al., 2019; Tang et al., 2020). In contrast 

to single-objective problems, there are usually some conflicts between 

optimization objectives, it is impossible to achieve the best at the same 

position due to the existence of multiple optimization objectives in multi-

objective optimization problems (Lin et al., 2018a). Therefore, when using 

the evolutionary algorithms mentioned above for optimization, it is usually 

to optimize at least one objective without deteriorating any one 

optimization objective. Such optimization is also known as Pareto 

optimization. Through this multi-objective optimization method, an 

optimal solution set, also known as the Pareto front (PF), will eventually 

be obtained. After obtaining this optimization solution set, engineers can 

select the appropriate optimization solution according to the engineering 

requirements. 

 

To reduce optimization costs, the surrogate model has been widely 

employed to replace the expensive CFD evaluation. The surrogate model, 

also known as the ‘black box model’, mainly uses a reasonable 

mathematical model to establish a direct mapping relationship between 

the design variables and the objective functions in the optimization 

problems. The commonly used surrogate models include the Kriging 

model, radial basis function (RBF), artificial neural network (ANN), etc. 

(Miao and Wan, 2020b; Huang and Chi, 2016; Liu et al., 2020). For 

example, Lin et al (2018b) applied the Kriging model to optimize the 

resistance of a twin-skeg ship and obtained the optimal solution whose 

total resistance was reduced by 5.4 % compared with the original ship. 

Wang et al (2021) introduced the RBF surrogate model into hull form 

optimization for the design of the resistance and wake non-uniformity 

under full load and ballast conditions of a deep-sea aquaculture ship. In 

addition, the ANN surrogate model was applied to optimize the 

resistance and seakeeping performance of DTMB5415 (Diez and Serani, 

2015). 
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For the surrogate model-based optimization, it’s obvious that the accuracy 

of the surrogate model is very essential. An inaccurate surrogate model 

may lead to an invalid optimal solution. To solve this problem, many 

researchers have proposed different algorithms to improve the accuracy of 

the surrogate model. Currently, there are mainly two methods: one is to 

construct a high-quality surrogate model at one time, and the other is to 

sequentially update the surrogate model with additional sample points. The 

former requires a reasonable method to sample in the design space. Design 

of Experiment (DOE) is an effective and widely-used sampling method, it 

includes orthogonal experimental sampling, Latin hypercube sampling 

(LHS), optimized Latin hypercube sampling (OLHS), uniform 

experimental sampling, and so on (Chang et al, 2023). Although those 

methods mentioned above could be beneficial to improving the accuracy 

of the surrogate model, there still exist two problems in terms of 

optimization accuracy and efficiency: 1) lots of samples are needed to 

guarantee the accuracy of the surrogate model, which will restrict the 

optimization efficiency; 2) the number of samples depends on personal 

experience, the optimization design will fail if the samples are not enough 

and one-time sampling may not guarantee the accuracy of surrogate 

models of some objectives. 

 

As for the second method, the significant part is to use the information 

collected in the previous iteration to generate new sampling points, so as 

to update the surrogate model for the next optimization. Due to its superior 

error estimation ability, the Kriging model has been widely studied in 

sequential optimization based on surrogate models. Based on the Kriging 

model, some sequential sampling methods are studied, which mainly 

include expected improvement (EI), mean-squared error (MSE), 

probability of improvement (PI), etc. (Schonlau, 1997; Romero et al., 2015; 

Jones, 2001).  The expected improvement method and its variants have 

been widely applied to engineering optimization because they can well 

balance the exploration and exploitation in design space. In this paper, a 

new optimization system is proposed based on the pseudo expected 

improvement (PEI) to solve multi-objective optimization problems (Zhan 

et al., 2017), which is also called sequential sampling-based optimization 

(SBO) system. The mathematical function is used to test the reliability of 

this SBO optimization system. Finally, the wake and resistance 

performance of the KCS ship is optimized using SBD and SBO methods, 

respectively. 

 

METHODOLOGY 
 

In this section, the principle of the SBO method is introduced, including 

the surrogate model, adaptive sampling strategy, multi-objective 

optimization algorithm, termination conditions and the multi-objective 

optimization system based on the sequential sampling method. 

 

Surrogate model 

 
In this paper, the Kriging model is employed due to its superior error 

estimation capability.  

 
The Kriging model is a semi-parametric interpolation model composed of 

two important parts. The first part is a simple regression model with a 

polynomial change trend, which is used for the global approximation of 

the model. The second part is the random distribution part representing the 

surrounding volatility, which is used for the local approximation of the 

model. These two parts can be expressed by the following formula: 
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KRG KRGi KRGi KRG
i

y x β f x ε x  (1) 

 

where KRGiβ  is the polynomial regression coefficient, KRGif  denotes the 

basis function of the polynomial, ( )KRGε x  is the random distribution part 

of the Kriging model, which satisfies certain statistical characteristics. The 

mean is 0, the variance is 2 , and the covariance is not 0, and the 

covariance expression is as follows: 
 

2Cov[ ( ), ( )] ( , )=KRG i KRG j KRG i jε x ε x σ R x x  (2) 

 

where ( , )KRG i jR x x  is the correlation function used in the KRG model, 

which can represent the spatial correlation of sample points. It is mainly 

related to the distance between points. The functional relationship can be 

expressed as follows: 
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where KRGN  denotes the number of design variables;
pθ  is the parameter 

to be solved. 

 

If the response value corresponding to n sample points 1 2, , , nx x x  is 

1 2, ,..., ny y y , the Kriging model is used to predict the response of the 

predicted point x , and the predicted value is: 
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In order to obtain the Kriging model with better performance, the 

parameter ˆ
KRGβ  is obtained by the optimal linear unbiased estimation: 
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The variance 2  can be calculated by the following formula: 
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It can be seen that the parameter ˆ
KRGβ  and the variance are related to the 

correlation function, and there is a parameter pθ  to be solved in the 

correlation function, which can be obtained by solving the following 

optimization problem by the maximum likelihood estimation method: 
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After obtaining the parameter 

pθ , the predicted value of the point x can 

be obtained according to Eq. (4).  

 

Adaptive sampling strategy 

 
In this paper, the pseudo expected improvement (PEI) method which is 

proposed based on expected improvement (EI) by Zhan et al (2018) is 

applied to solving multi-objective hull form optimization problems. The 

EI method is proposed by Jones et al (1998).  The expected improvement 

is expressed in Eq. (8): 
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where miny  is the optimal value of the objective function, ( ) g and ( ) g

represent the cumulative distribution function and probability density 

function of the standard normal distribution, respectively, ( )s x  is the 

standard deviation of Kriging model. 

 
However, the EI method only selects one sample point, which restricts the 

efficiency of optimization. Therefore, the PEI method is proposed to select 

more sample points at once. In multi-objective optimization problems, the 

miny  is not an optimal value point, but a set of Pareto fronts (PF) which 

can be expressed as follows: 
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where m is the number of objective functions, k is the number of points 

in PF. 

 

To increase efficiency, the EIM criterion is proposed and it’s presented as 

follows (Zhan et al., 2018): 
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To obtain more sample points at once, the PEI method based on the 

influence function is introduced, and the pseudo expected improvement 

matrix (PEIM) is provided in Eq. (11), the concrete description can be 

found in Zhan et al (2018). 
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Each element in the matrix can be expressed as follows: 

 

,

1
( )

,
1 1

PEI ( , 1) EI ( ) IF ( , 1)

( ) ( )
                       =[( ( ))Φ( ) ( ) ( )]

( ) ( )

                       1 exp(

ˆ ˆ
ˆ

)



−
+

= =

− =  −

− −
− +

 
  − −  − 

 

x x x

x x
x x

x x

∣ ∣i ν

j j
ii i

j j
j i ii i

i ii
i i

q n
pN t

i ν ν ν
t ν

q q

f y f y
f y s

s s

θ x x

 (12) 

where q  is the number of sample points that want to be selected at once, 

IFi  is the influence functions of the i-th surrogate model, n  is the number 

of design variables, ,i νθ  and ,i νp   is the parameters of the i-th surrogate 

model.  

 

Multi-objective optimization algorithm 

 
To solve multi-objective optimization problems, the Nondominated 

Sorting Genetic Algorithms (NSGA) are proposed. This algorithm mainly 

sorts all individuals according to non-dominated sequences and assigns 

corresponding fitness values according to this ranking. At the same time, 

in order to ensure the diversity of the population of individuals, a sharing 

function is added to calculate the distance between different individuals. 

However, this method still has problems such as complex calculations and 

a lack of elite strategy. Therefore, Deb, Agrawal and Pratap further 

improved the problems of this method and formed the NSGA-II algorithm. 

The basic process of this algorithm is shown in Fig. 1. On the one hand, 

the elite strategy is introduced to put the excellent individuals contained in 

the parent generation into the offspring group, so as to avoid the reduction 

of algorithm efficiency caused by the abandonment of excellent 

individuals. On the other hand, a crowding comparison operator is 

introduced to evaluate the population density around the individual, and a 

more suitable individual is selected by combining crowding and non-

dominated sorting. NSGA-II algorithm is a popular, widely used and 

reliable multi-objective genetic algorithm. This paper uses this algorithm 

to carry out multi-objective optimization. 

 

 
 

Fig. 1. Flow chart of NSGA-II 

 

Termination conditions 

 
In multi-objective optimization problems, the inverse generation distance 

(IGD) indicator is usually employed to measure the performance of multi-

objective methods on mathematical example. The hypervolume (HV) 

indicator is usually employed to measure the performance of multi-

objective methods on the practical optimization problems because the true 

Pareto fronts are unknown. According to Wang et al (2021), the definition 

of IGD and HV are presented as: 

 
1) IGD indicator: Assuming that the true Pareto front of the problem is 

PF and the current Pareto front obtained by the multi-objective 

optimization algorithm is PF , the IGD is defined as: 

 

( )
( ),

,




 p PF
d p PF

IGD PF PF =
PF

 (13) 

 

where ( ),d p PF  is the minimum value of all Euler distances from point 

p of current PF  to point P of the true PF , 
PF  is the number of true 
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PF points. If the IGD value is small, it indicates that the current PF  is 

closer to the real PF . 

 
2) HV indicator: It’s the volume of the closed region composed of the 

current PF and the reference point * * * *
1 2r ( , , , )= L nr r r , which is defined 

as: 

 

( ) ( ) ( )1 1HV r,PF volume , , 



    =        
L n n

x PF
f x r f x r  (14) 

 

where ( )volume g is the Lebesgue measure, ( )nf x  is the n-th objective 

value of a non-dominated solution ( )
T

1 2 m, , ,= f f fLf  in the solution 

set PF , ( )
T

1 2 m, , ,= r r rLr  is the reference points. 

 

In this paper, since the true PFs are known, the termination condition of 

the SBO optimization system in the process of mathematical functions 

testing is provided: 

 

( ) ( )1, ,  − k k-IGD PF PF IGD PF PF  (15) 

 

where ( ), kIGD PF PF  and ( )1, k-IGD PF PF are the IGD value of 

approximate PF after the (k-1)-th and k-th iteration, respectively,   is the 

threshold value. In this paper, 0.001= . 

 

In practical engineering optimization problems, the true PFs are unknown, 

the termination in Eq. (15) is not unavailable. To solve this problem, the 

termination condition in practical optimization problems is defined as: 

 

( ) ( )1HV r,PF HV r,PF −− k k  (16) 

 

where ( )HV r,PFk  and ( )1HV r,PF −k are the HV value of approximate 

PF after the (k-1)-th and k-th iteration, respectively. 

 

Multi-objective optimization system based on sequential 

sampling method 

 
Based on the PEI criterion, the SBO-PEI optimization system for multi-

objective optimization problems is proposed. Fig. 2 shows the flow chart 

of the SBO-PEI multi-objective optimization system. The process is 

described as follows: 

 
1) Suppose that a multi-objective optimization problem has m design 

variables and n objective functions. m sample points are selected using 

Optimized Latin Hypercube sampling method. 

2) The deformed ships are obtained using deformation methods according 

to the initial sample set. 

3) The hydrodynamic performance of deformed ships is simulated based 

on our in-house viscous solver naoe-FOAM-SJTU (Ren et al., 2020). 

4) The n Kriging model are constructed based on the design variables and 

hydrodynamic performance of deformed ships.   

5) The NSGA-Ⅱ algorithm is employed to search the approximate PF to 

evaluate whether the optimization result satisfies the termination 

condition. If it does, the optimization process will be terminated. 

Otherwise, proceed with 6). 

6) Use the PEI strategy to search n sample points at once and determine 

whether the new sample point coincides with the existing sample point. 

The coincidence is eliminated, and the remaining new sample points are 

retained. Then, proceed with 2) until the termination condition is 

satisfied. 

 

 
Fig. 2. Flow chart of SBO-PEI multi-objective optimization system 

 

PERFORMANCE TEST USING MATHEMATICAL CASES   
 
To validate the performance of the SBO-PEI optimization system, several 

common multi-objective optimization problems are adopted for testing. 

The ZDT1 function and ZDT2 function whose PFs are expressed in Eq. 

(17) and Eq. (18) (Zitzler et al., 2000). They are tested using SBD 

optimization system and SBO-PEI optimization system. To obtain 

meaningful statistical results, each optimization system is run 20 times on 

each optimization problem. The test results are shown in Table 1. 

It can be seen that the ZDT1 and ZDT2 functions only need an average of 

44.2 and 58.3 sample points to satisfy the convergence condition, 

respectively. 
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Table 1. Test results  

Test functions 
Num of design 

variables 

Num of sample points based 

on SBO-PEI 

ZDT1 3 54.20 

ZDT2 6 59.25 
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Fig. 3. True PF of ZDT2 

 

 
 

Fig. 4. Predicted PF using NSGA-Ⅱ algorithm 

 

 
 

Fig. 5. Predicted PF using SBD optimization system 

 

 
(a) N=34 

 

 
(b) N=40 

 

 
(c) N=46 

 

 
(d) N=60 

Fig. 6. Iteration process of ZDT2 using SBO-PEI optimization system 

 

 

Fig.3 and Fig.4 show the true PF of the ZDT2 function and predicted PF 

using NSGA-Ⅱ algorithm. Besides, Fig.5 shows the predicted PF using 500 

sample points based on the SBD optimization system, it can be seen that 

there is a significant difference between the predicted PF and the real PF. 

One of the iteration processes based on SBO-PEI optimization system is 

shown in Figure 6, only 56 are needed to obtain the optimal solutions. 

 

HULL FORM OPTIMIZATION OF KCS  

 

Model and definition of optimization problems 

 
The model and principal dimensions of KCS are shown in Fig. 7 and Table 

2. 
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Fig. 7. Model of KCS 

 
Table 2. Principal dimensions of KCS 

 Unit Full scale Model scale 

ppL  m 230 7.2786 

wlL  m 232.5 7.3576 

wlB  m 32.2 1.019 

T  m 10.8 0.342 

 
The wake performance and resistance performance of KCS at Fr=0.26 are 

optimized using SBD optimization system and SBO-PEI optimization 

system, respectively. The objective functions are defined as: 

 

t
1 org

t

R
f

R
=  (19) 

2 n1f w= −  (20) 

 

where tR is the total resistance of the deformed ships, org
tR is the total 

resistance of the mother ship, nw is the nominal wake coefficient. 

 

Numerical calculations 

 
Based on our in-house viscous naoe-FOAM-SJTU, the resistance and 

wake performance of KCS are calculated. Three sets of different density 

grids (fine grid, medium grid and rough grid) are divided, and the 

convergence of the resistance and wake performance is verified. The three 

sets of grids adopt the same encryption method, and the background grid 

of the adjacent sets of grids is 2  times in the direction of each coordinate 

axis. The number of three sets of grids is shown in Table 3. The three sets 

of computational grids are shown in Figure 8.  

 

Table 3. Number of three sets of grids 

 Background grid number Total grid number 

S3 85×14×42 1252687 

S2 120×20×60 3586346 

S1 170×28×84 8448150 

 

 
(a) Coarse (S3) 

 
(b) Medium (S2) 

 

 
(c) Fine (S1) 

 

Fig. 8. Three sets of meshes 

 
The error between the mesh size of the three sets of grids and the calculated 

resistance coefficient and wake performance compared with the 

experimental results (Hino, 2005) are shown in Table 4. In order to save 

computing resources, the medium grid will be used for subsequent 

optimization. 

 
Table 4. Number of three sets of grids 

 Rt(CFD) Ct(CFD) Ct(EFD) 
1-wn 

(CFD) 

1-wn 

(EFD) 

S3 39.42 0.00343 0.00355 0.651 0.686 

S2 40.60 0.00353 0.00355 0.667 0.686 

S1 40.93 0.00356 000355 0.674 0.686 

 

Geometric reconstruction 

 
In this paper, the free form deformation (FFD) method (Liu et al., 2023) 

and the shifting method are used to modify the hull lines of KCS. The 

deformation parameters are shown in Table 5 and the deformation 

diagrams are shown in Fig. 9 and Fig. 10.  

 
Table 5. Deformation parameters 

Parameters Range 

1 f  [-0.036,0.036] 

2 f  [0.3,0.4] 

1x  [-0.035,0.025] 

1y  [-0.015,0.015] 

1z  [-0.018,0.018] 

2x  [-0.035,0.035] 

2y  [-0.05,0.05] 

3y  [-0.065,0.065] 
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(a) Bow deformation diagrams  

 

 
(b) Stern deformation diagrams  

 

Fig. 9. Deformation diagrams of KCS using FFD method 

 

 

 
Fig. 10. Deformation diagrams of KCS using shifting method 
 

Optimization results 

 
The wake and resistance performance of KCS is optimized by using the 

SBD optimization system and SBO-PEI optimization system, respectively. 

80 sample points are selected using OLHS at once in the SBD optimization 

system and 8 sample points are selected in the SBO-PEI optimization 

system. The extra sample points will be selected according to the flow chart 

of Fig. 2. The iteration of HV is shown in Fig.11 and the convergence is 

achieved. Fig.12 shows the PF obtained using SBD optimization system 

and SBO-PEI optimization system. 

 
Fig. 11. Convergence curve of HV value 

 

 
Fig. 12. Pareto fronts of two optimization systems 

 
As shown in Fig.12, the optimal solutions are extracted from the overlap 

of PF obtained by the two optimization systems. The specific parameters 

are shown in Table 6. The simulation results are shown in Table 7. It can 

be seen from Fig.12 and Table 7 that the optimization prediction results 

obtained by the SBO-PEI optimization system are closer to the numerical 

results, reflecting that the SBO-PEI optimization system has higher 

prediction accuracy near the Pareto optimal solution set of the multi-

objective optimization problem. 

 
Table 6. Optimal solutions 

Parameters SBD SBO 

1 f  0.0144 0.0163 

2 f  0.3995 0.3916 

1x  -0.0122 -0.0096 

1y  0.0099 0.0148 

1z  -0.0164 0.0104 

2x  0.0348 0.035 

2y  -0.0109 0.045 

3y  -0.0638 -0.0576 
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Table 7. Comparison of the resistance and wake of initial and optimal hulls  

 

 
Kriging 

( 1f ) 

CFD 

( 1f ) 1f  
Kriging 

( 2f ) 
CFD 

( 2f ) 2f  

initial - 1.0 - - 0.667 - 

SBD 1.0259 1.0872 8.72% 0.5851 0.5730 
-

14.09% 

SBO 1.0260 1.0201 2.01% 0.5852 0.5853 
-

12.25% 

 

CONCLUSIONS 

 
As the optimization problems become more complicated, it’s tough to 

build a surrogate with great accuracy at once. To a large extent, it depends 

on the quantity and quality of sample points. Therefore, the traditional SBD 

technology is difficult to be adopted. The dynamic approximation model 

technology based on some filling criteria is born. 

 

In this paper, a new optimization system based on PEI criteria is proposed 

for hull form optimization. To verify the reliability of this method, the 

multi-objective mathematical functions are tested first, and then the 

resistance and wake performance of KCS are optimized based on SBD 

optimization system and SBO-PEI optimization system. Through testing, 

it is found that the SBO-PEI method can use fewer sample points to obtain 

better results. In the optimization example, the SBO-PEI method only 

needs 66 sets of sample points, and the optimization efficiency is improved 

by 17.50 %. 

 
This paper only studies the EI and its variants and does not pay attention 

to other filling criteria. In the future, other fill criteria will be studied and 

applied to more complex optimization problems to further prove their 

accuracy and efficiency. Besides, how many sample points to add in each 

iteration is needed to be further discussed. 
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