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ABSTRACT   
 
Vortex-induced vibration (VIV) is a key issue in deep water riser 
design. Design of deep water systems is a challenging engineering 
problem and the understanding of VIV and its suppression are very 
active areas of research. This paper presents the response of a vertical 
tension riser model in a step current when subject to VIV. The riser is 
13.12m long and 28mm in diameter, with a mass ratio of 3.0. The 
simulation is carried out by a multi-strip method. This method 
combines a series of 2D RANS simulations of the flow at individual 
axial strips along the riser with a fully 3D FEM structural analysis 
based on Euler-Bernoulli beam theory. The entire flow-structure 
solution procedure is carried out in the time domain via a loose 
coupling strategy. The numerical results show that the VIV response is 
mainly dominated by the 7th mode for in-line vibrations and the 4th 
mode for cross-flow vibrations. The response included significant 
contributions from several modes. The riser pipe vibrates with a multi-
modal pattern. Moreover, the dominant modes and modal amplitudes, 
the mean in-line displacement, and the instantons deflected shape of the 
riser in the cross-flow direction, etc., agree well with the experimental 
results. In particular, the numerically predicted location of the 
maximum mean in-line displacement and the experimental result differ 
by only about 1%. The good agreement between the numerical and 
experimental results shows that the multi-strip method is practical in 
predicting the general features as well as specifics of the VIV of the 
riser. 
 
KEY WORDS:  multi-mode response; vortex-induced vibration; vortex 
shedding; deep-water riser; lift and drag; long flexible cylinder 
 
 
INTRODUCTION 
 

Vortex-induced vibration (VIV) is a critical concern for the offshore 
industry for a variety of structures including pipelines, spar platforms, 
and risers. As oil exploration and production moves to increasingly 
deeper waters, there is a growing need to develop analytical methods 
for numerical analysis of long, flexible riser response. Vortex-induced 
vibration is a major cause of fatigue failure in offshore slender 
structures. The reliable estimation of fatigue damage of risers requires 

predictions of the presence and magnitude of VIV displacements and 
excitation modes in response to various current profiles and axial 
tensions, and is of practical interest to the industry.  

 
Key features of offshore risers are that they have length-to-diameter 

of the order of at least 310 , and that they undergo vibrations in high 
modes where the frequency intervals between adjacent modes are 
proportionately very small. Nevertheless, the ratio of the wavelength of 
any excited mode to the diameter of the riser is likely to be of order 210 . 
These features have restricted progress towards an understanding of the 
multi-mode response of risers to vortex excitation. 

 
Over the past few decades, VIV of long flexible risers has been 

extensively studied. Many VIV experiments have been carried out for 
deepwater risers with high L/D, such as Chaplin et al (2005), Gu et al 
(2013), Tognarelli et al (2004), Tognarelli et al (2008), Trim et al 
(2005), Vandiver et al (2006). Chaplin et al (2005) carried out the 
experimental project in which a vertical model riser, 28 mm in diameter, 
13.12 m long, was expected to a stepped current consisting of a uniform 
flow of up to 1 m/s over almost half of its length. The remainder of the 
riser was in the still water. Cross-flow vibrations were observed at 
modes up to the 8th, with standard deviations of individual modal 
weights greater than 50% of the riser’s diameter. In-line vibrations 
were observed at modes up to the 14th.  

 
 Apart from the various experimental investigations, there have been 

several CFD studies on VIV of flexible cylinders with high L/D during 
the past few years. Whitney and Chung (1981) is one of the earliest 
researches of VIV of long pipes. Maximum RMS values of 
displacement and acceleration are presented for a range of speeds, pipe 
lengths, pipe diameters and wall thickness. Chung and Felippa (1981) 
gave the drag forces along the pipe and analyzed the three major factors 
affecting the forces. Willden and Graham (2001) used a quasi-three 
dimensional numerical method to simulate the VIV of a cylinder with 
L/D=100 that subject to a sheared inflow. Meneghini et al (2004) and 
Yamamoto et al. (2004) presented the numerical simulations of long 
marine risers with L/D up to 4600 using two-dimensional discrete 
vortex method (DVM). Menter et al. (2006) first simulated riser VIV 
using fully three-dimensional (3D) finite volume method (FVM) and 
finite element method (FEM), respectively. Constantinides and Oakley 
(2008a; 2008b) presented the numerical simulations of long cylinders 
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with L/D=4200. Huang et al. (2009) performed finite-analytic Navier-
Stokes (FANS) simulations of an L/D=482 cylinder. Nevertheless, 
three-dimensional fluid-structure interaction (FSI) simulations of VIV 
of vertical risers are still quite limited.  

 
In this paper, a three-dimensional CFD approach is used to study the 

riser VIV responses in uniform currents and in-depth comparisons are 
made with experimental results. This approach is essentially a multi-
strip numerical method, combing solutions of the incompressible 
Reynolds Averaged Navier-Stokes (RANS) equations with a finite-
element structural dynamics analysis. More precisely, this solution 
methodology combines a series of 2D simulations of the flow at 
individual axial strips along the riser with a fully 3D structural analysis 
to predict overall VIV loads and displacements. An implementation of 
the flow-structure interaction technique into the open source code 
OpenFOAM is presented. The entire flow-structure solution procedure 
is carried out in the time domain via a loose coupling strategy, such that 
the hydrodynamic loads from each riser strip are summed to obtain the 
overall loading along the span of the riser. 

 
In order to validate our approach, numerical simulations of the 

vortex-induced vibration of long-flexible risers were carried. The flow 
conditions and riser configuration are chosen according to experiments 
reported in Francisco (2006).  The numerical results are compared with 
the benchmark data of Francisco (2006), and good agreement was 
achieved. The numerical results show that the VIV response is mainly 
dominated by the 7th mode for in-line vibrations and the 4th mode for 
cross-flow vibrations. The maximum in-line mean amplitude 
is max / 0.372x D = . The maximum cross-flow mean amplitude 
is max / 0.82y D = .  

 
This paper is organized as follows: the first section gives a brief 

introduction to the numerical methods used to model the fluid and 
structural motion. The second section describes the problem and 
summarises the main parameter of the model riser. The natural 
frequencies and mode shapes of the riser are obtained in the next 
section. The fourth section presents overview of the computational 
domain. Grid convergence studies for the simulation of the flow around 
one strip of the riser are also carried out. The next section comprises 
two parts, namely in-line motion analysis and cross-flow motion 
analysis. In each part, time domain analysis, frequency domain analysis 
and mode analysis are conducted. The results compare well with the 
experimental data. The final section concludes the paper. 
 
MATHMATICAL MODEL 
 
Hydrodynamic Governing Equations 
 

In this paper, the fluid is assumed to be incompressible and has 
constant density ρ and constant dynamic viscosity µ . The Reynolds-
averaged Navier-Stokes equations are used as governing equations: 
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results from the fluctuating velocity field, and is generally referred to as 
the Reynolds stress 

ijτ . 
A turbulent model is required to compute the Reynolds stresses for 

turbulence closure. The SST k ω−  turbulence model, which is 

originally described by Menter (1994), is a two-equation eddy-viscosity 
model. Authors who use the SST k ω−  model usually merit for its 
good behavior in adverse pressure gradients and separating flow. The 
Reynolds stress is modelled by a linear constitutive relationship using 
Boussinesq hypothesis with the mean flow straining field as 

22
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where tµ is the turbulent viscosity, obtained from solving the SST 

k ω−  model, ( )1/ 2 i ik u u′ ′=  is the mean turbulent kinetic energy. 
Applying Eq.3 to Eq.2, one has 
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The solution of the governing equations is achieved by using the 
PIMPLE (merged PISO-SIMPLE) algorithm, which is a large time-step 
transient solver for incompressible flow. PISO is an acronym for 
Pressure Implicit Splitting of Operators which is used for time 
dependent flows while SIMPLE for Semi-Implicit Method for Pressure 
Linked Equations which is used for steady state problems. In the 
SIMPLE algorithm, a pressure correction term is used while the 
velocity corrections are neglected because they are unknown. This 
results in rather slow convergence. The PISO algorithm also neglects 
the velocity correction in the first step, but them performs one in a later 
stage, which leads to additional corrections for the pressure. 
OpenFOAM utilizes collocated grids with all variables stored at cell 
centers and pressure and velocity coupled using the Rhie and Chow 
(1983) scheme. 

 
Structural Dynamic Governing Equations 
 

The structural dynamics solution procedure is based on a beam 
element representation using a consistent mass-matrix formulation. The 
resulting equations of motion for each structure are a set of second-
order ODEs of the following form: 

{ } { } { } { }[ ] [ ] [ ]g xM x C x K K x F+ + − =                                                      (5) 

{ } { } { } { }[ ] [ ] [ ]g yM y C y K K y F+ + − =                                                     (6) 
where x  and y  are the in-line and transverse displacements of the riser 
centroid at discrete locations along the span of the riser, [ ]M  is the 
mass matrix, [ ]C  is the damping matrix, [ ]K is the stiffness matrix, and 
[ ]gK  is the geometric matrix. The forcing functions, 

x
F  and

yF , on the 
right-hand side of Eqs. (5) and (6) represent the hydrodynamic drag and 
lift forces acting on the structure. Note that the global mass, damping, 
and stiffness matrices are derived using small displacement Euler-
Bernoulli beam theory comprised of 4 DOF elements (two transverse 
displacements and two angular displacements). Hence, each finite 
element contributes a 4 4×  sub-matrix to the global matrices to obtain 
the overall structural dynamics formulation. Individual element 
contributions to the mass and stiffness matrix are presented as follows: 
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where EI is the bending stiffness, L is the length of the local finite 

10661066



element, and m is the structural mass per unit length (Karl et al (2004)). 
The axial tension present in the riser is included through the addition of 
the geometric stiffness matrix, gK   , with individual element 
contributions defined as follows: 

2 2
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3 4 3
36 3 36 330

3 3 4

gij

L L
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−  − −−  =  − − − 
− − 

                                                       (9) 

where T is the local axial tension force for each finite element. Note 
that the temporal integration of the structural dynamics equations of 
motion is carried out completely in the time domain using the 
Newmark beta method.  

 
 

PROBLEM DESCRIPTIONS 
 

The numerical simulation model of this paper follows Fransico et al 
(2006) experiments, the experimental device as shown in Fig.1. Note 
that the layout of this experiments is the same as the experiments of 
Chaplin et al (2005a).   

 

 
Fig. 1 Layout of the experiments of Fransico et al (2006) 

 
The riser is 28mm in diameter and 13.12m long, with an aspect ratio 

of about L/D=469. The lower 45% of its length was subject to a 
uniform current, the rest was in still water. A top tension T is applied 
on the top end of the riser. The riser is pinned at both the top and 
bottom ends and free to move in the in-line (x) and cross-flow (y) 
directions. Detailed information about the riser is summarized in Table 
1. 
 

Table 1 Summary of main parameter of the model riser 
External diameter D 0.028 m 

Length L 13.12 m 
Aspect ratio L/D 469 - 

Submerged Length Ls 5.94 m 
Flexural Stiffness EI 29.88 Nm2 

Top Tension Tt 1610 N 
Flow speeds V 0.605 m/s 
Mass ratio m* 3 - 

Mass ratio (bumpy cylinder) mb
* 3.1 - 

Reynolds number Re 16940 - 

 
NATURAL FREQUENCIES AND MODE SHAPES 
 

FEM calculated natural frequencies and mode shapes related to the 
first ten modes of the riser are presented. The natural frequencies and 
mode shapes are shown in Table 2 and Fig.2, respectively. Here, the top 
tension is taken as 1610 N. These results lay a foundation for the 
subsequent studies on multi-mode vortex-induced vibration of the riser. 
 

Table 2 First ten natural frequencies - 1610tT N=  

1f (Hz) 2f (Hz) 3f (Hz) 4f (Hz) 5f (Hz) 

1.2237 2.4516 3.6878 4.9364 6.2014 

6f  7f  8f  9f  10f  

7.4867 8.7961 10.133 11.520 12.906 

 

 
Fig. 2 First four mode shapes - 1610tT N=  

 
 

COMPUTATIONAL DOMAIN 
 
Geometry and Mesh Convergence Study 
 

Twenty CFD strips are placed at equidistant locations along the 
portion of the riser below the water line, and ninety structural elements 
(ninety-one nodes) are used to discretize the beam. Fig.3 shows the 
distribution of strips along the span of the riser. Fig.4 illustrates the 
entire domain and the mesh of a strip. All grids used in this paper are 
structured grids, which ensure the quality of the grids and offer 
convenience to systematic refinement in all directions. 

 
Fig. 3 illustration of multi-strip 

model 

 
 
 
 
 
 
 
 
 
 

 
Fig. 4 geometry domain and entire 
mesh of a strip 

Grid convergence studies for the simulation of the flow past one 
strip of the cylindrical riser are carried out. Here, the cylinder is kept 
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fixed. Simulations are performed with three different grid resolutions 
by varying the nodes around the cylinder and the distance of nearest 
grid to the cylinder boundary. Table 3 summarizes the information of 
the three meshes. In Table 3, the ‘Quadrant’ column lists the number of 
nodes for one quadrant of the cylinder, and the ‘Radius’ column shows 
the number of nodes in the radial direction between the cylinder and the 
outside concentric cycle. 
 

Table 3 the details of three-meshes for the grid convergence study 
Mesh Number of Cells Quadrant Radius 
Mesh I 46820 50 120 
Mesh II 71653 75 180 
Mesh III 98640 100 240 
 
 

Table 4 presents comparisons between the average drag coefficients, 
rms lift coefficients and Strouhal number obtained in the present work 
for Reynolds number equals to 56.31 10× , and experimental data from 
the literature. As shown in Table 4, the numerical results obtained in 
the present work for the three meshes agree well with the experimental 
data of ITTC C and Marin. 
 
 

Table 4 Force coefficients and Strouhal numbers for different meshes 
and comparison with other results 

Case .d aveC  ,l rmsC  St 

Mesh I 1.136 0.851 0.22 
Mesh II 1.142 0.845 0.22 
Mesh III 1.144 0.837 0.22 
Marin (Exp.) 1.16 0.83 0.19 
ITTC A 0.700 0.532 0.281 
ITTC B 0.874 0.472 0.249 
ITTC C 1.053 0.832 0.249 

 
 
COMPUTATIONAL RESULTS AND DISCUSSION 

 
Fig. 5 illustrates the vortex shedding along the riser at one moment. 

The alternate vortex shedding causes oscillatory drag and lift forces on 
the riser. These two forces then induce in-line and cross-flow riser 
motions, which in turn affect the vortex shedding. The in-line and cross 
flow motions are analyzed subsequently hereafter.Fig.6 is the time 
history of lift and drag coefficient at the tenth slice. 
 

 
 

Fig. 5 vortex shedding along the riser at one moment 
 

 
Fig.6 time history of lift and drag coefficient. 

 
In-line Motion Analysis 
 
Fig.7 depicts the time history of the in-line displacement at every ten 
equal segments along the span of the riser. As is shown in Fig.7, the 
displacement is relatively large in the middle part of the riser, and 
becomes smaller at both ends. The maximum displacement occurs not 
in the middle, but in the lower 30%-40% (the node number is 34 and 
the number of node is 1 to 91 from bottom to top) of the length. The in-
line displacement of each node fluctuates around a mean position. 
Moreover, the fluctuation is more intense where the mean displacement 
is larger. 
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Fig. 7Time history of the in-line displacement at the Node 10, 19, 28, 
37, 46, 55, 64, 73, 82 (the node label is marked from the bottom to the 

top) 
 

Fig.8 depicts the mean in-line displacement, plotted against the 
relative elevation /z L . The red line represents the experimental results 
and the blue line is the present numerical results. As already noted, the 
maximum displacement is not in the middle of the length because the 
displacement of the upper part of the riser (in still water) is smaller than 
the displacement of the lower part exposed to the current. The 
numerically obtained mean in-line displacement curve agrees well with 
the experimental one. Table 5 gives the value and location of the 
maximum in-line displacement. The numerical results is in good 
agreement with the experimental data. In particular, the present study 
predicts the location of the maximum displacement with the error of 
about 1.1%. 

 
The root mean square value ( s ) of in-line displacement is defined as 

( )
2

1

1 S

i

i

s s t s
S =

= −                                                                               (10) 

 

 
Fig. 8 The mean in-line displace-

ment 
Fig. 9 The RMS of the in-line 

displacement 
 

Table 5 the maximum of in-line mean displacement 
 The maximum of in-line 

displacement ( /x D ) 
The location of maximum of 
in-line displacement ( /z L ) 

Experiment 3.292 0.371 
Present 3.072 0.367 
Error / % 6.7 1.1 
 
Fig.9 shows the RMS of the in-line displacement. The experimental 

result is marked by a red curve and the present numerical result is 
marked by a blue curve. Fig.9 shows that the two RMS curves are 
consistent with each other. Both curves show that the RMS value of in-
line vibration exhibits 7th mode shape. However, there are also other 
modes of vibration, otherwise the RMS node would be at / 0x D = . 
Thus, the riser exhibits multi-mode vibration. 
 

Fig.10 and Fig.11 shows the numerical and experimental results of 
the instantaneous spatio-temporal plot of the nondimensional in-line 
displacement from the mean position during three seconds. Fig.10 
shows a very stable 7th mode. However, Fig.11 appears more complex. 
Fig.11 suggests that there are more than one type of mode shape during 
this period. Indeed, the dominant modes are the 7th and 8th mode, as 
shown further on. The mode transition between modes makes Fig.11 
appears complicated. 
 

The numerical results seems more practical because the Reynolds 
number is about 41.69 10× . At this Reynolds number, the flow has 
transformed to purely turbulent. Although the wake vortex still shed 
from the riser at a certain frequency, the fluid flow is unstable. The 
turbulence has the characteristics of irregular, multi-scale and non-
linear. Thus the fluctuating drag force imposed on the riser is inclined 
to cause multi-mode shape under this condition. 

 

 
Fig. 10 Spatio-temporal plot of non-dimensional in-line response 

 

 
Fig. 11 Spatio-temporal plot of non-dimensional in-line response of 

experimental results of Francisco (2006) 
 

 
Fig. 12 The power spectra of the in-line displacement along the span 
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Fig.12 shows the power spectra of the in-line displacement of the 
node along the span. This figure is obtained via Fast Fourier 
Transformation (FFT) of the time history of the displacement. As 
shown in the Fig.12, the dominant frequencies where the largest 
spectral densities are found are almost the same and equal to 9.5526 Hz. 
The value of the dominant frequency is between the 7th and the 8th 
natural frequency, as demonstrated in Table 2. 

 
Model analysis is now carried out. The time history of each 

displacement modal amplitude can be obtained as follows 
 
( ) ( ) ( )1 ,xA t z U z t−= Φ                                                                             (11) 

 
where [ ]1 2, , , nφ φ φΦ =  is the displacement modal shapes matrix and its 
column components are the non-dimensional displacement mode 
shapes normalized to be one at its maximum. ( ),U z t  is the nodal 
displacements matrix, with the time series of the displacements being 
its row vectors, ( ) ( ) ( ) ( )1 2, , , , nU z t u t u t u t=    . ( )xA t  is the 
instantaneous displacement modal amplitudes matrix, and it has the 
same units as ( ),U z t , because the mode shapes are non-dimensional.  
 

Fig.13 depicts the first nine mode of displacement modal amplitudes 
in the case. Fig.14 shows the experimental results of Francisco (2006) 
under the same condition. As shown in Fig. , the response is mainly 
dominated by the 7th mode, consistent with the experimental data 
shown in Fig.11. However, Fig.13 also shows appreciable contribution 
from the 8th mode, which is consistent with the fact that the dominant 
frequency obtained via FFT of the displacement is between the 7th and 
the 8th natural frequency, as already noted. As shown in Fig.14, the 
envelope of the in-line displacement modal amplitude remains nearly 
constant at each mode, while Fig.13 shows that the envelopes of the 
amplitudes vary with time.  
 

 

 

 

 

 

 

 

 

 
Fig. 13 Non-dimensional in-line displacement modal amplitudes from 

raw data- 1610 , 0.605 /tT N V m s= =  
 

 
Fig. 14 Non-dimensional in-line displacement modal amplitudes from 

the experimental results of Francisco (2006) 
 
Cross-flow Motion Analysis 

 
The same procedure as in the previous section is applied to the 

analysis for the cross-flow motion of riser. First, the time history of the 
cross-flow amplitudes at every ten equal segments is given in Fig.15. 
The displacement of each node oscillates around / 0y D = . The 
amplitude of the oscillation changes over time. 
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Fig. 15 Time history of the cross-flow displacements at the Node 10, 19, 
28, 37, 46, 55, 64, 73, 82 (the node label is marked from the bottom to 

the top of the riser) 
 

 
Fig. 16 Deflected shapes of the 

riser 

 
Fig. 17 Deflected shapes of the 
riser obtained by experiment 

 
Typical instantaneous deflected shapes of the riser and the relevant 

experimental results are shown in Fig.16 and Fig.17, where cross-flow 
displacements are plotted against the relative elevation /z L . 
Continuous lines in Fig.16 plot the positions of the riser at intervals of 
0.01s through a time period (1 second) of the cross-flow oscillation. 
The numerical results agree well with the experimental data not only in 
the mode shape but also in the predicted amplitude. A typical feature of 
the results, demonstrated in the figures, is that displacements of the 
upper part of the riser (in still water) are no smaller than those exposed 
to the current below. The maximum cross-flow amplitude is 

max / 0.82y D = . 
 
Fig.18 shows the spatio-temporal plot of non-dimensional cross-flow 

response, obtained by numerical simulation. Fig.18 shows that the 
dominant mode shape is controlled by the 4th mode, which agrees well 
with the experimental data of Francisco (2006), as shown in Fig.19. 
Compared with the in-line vibration mode, the cross-flow vibration 
mode is much more stable.  
 

 
Fig. 18 Spatio-temporal plot of non-dimensional cross-flow response 
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Fig. 19 Spatio-temporal plot of non-dimensional cross-flow response of 

experimental results of Francisco (2006) 
 

Fig.20 depicts the power spectra of the cross-flow displacements at 
nine equally spaced nodes along the span of the riser, obtained via FFT 
of cross-flow displacement data. Fig.20 shows that the dominant 
frequencies of vibration at each node are the same and equal to 4.4558 
Hz. This value is very close to the 4th natural frequency, as shown in 
Table 2. The dominant frequency of in-line direction is about twice that 
of the cross-flow direction. 

 

 
Fig. 20 The power spectra of the cross-flow displacements along the 

span 
 
We continue to carry out the mode analysis of cross-flow vibration. 

Fig.21 depicts the first nine non-dimensional cross-flow displacement 
modal amplitudes. As shown in Fig.21, the response is mainly 
dominated by the 4th mode, which agrees well with the experimental 
data, as shown in Fig.22. The modal amplitudes of the 6th, 7th, 8th and 
9th mode is very small and can be ignored. And there is evidence of 
simultaneous contributions from modes on either side of the dominant 
mode.  The situation of cross-flow mode is very similar to the in-line 
mode, where the envelope of the modal amplitude of each mode is not a 
constant but varies with time. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 21 Non-dimensional cross-flow displacement modal amplitudes 
 
 

 
 

Fig. 22 Non-dimensional cross-flow displacement modal amplitudes 
from the experimental results of Francisco (2006) 
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CONCLUSIONS 
 

In this study, we carried out numerical simulations of vortex-induced 
vibrations of a vertical tension riser in a stepped current. A multi-strip 
method numerical method has been developed combining a number of 
two dimensional RANS solutions with a three-dimensional finite 
element method based on Euler-Bernoulli beam theory. The good 
agreement between the numerical and experimental results show that 
the multi-strip method is reliable. The vibration response is analyzed in 
detail in in-line and cross-flow direction respectively. Lots of 
conclusions are drawn and a remarkable insight into the physics of 
vortex-induced vibration of long flexible riser is gained. 

 
The numerical results show that the numerically predicted mean in-

line displacement and the experimental result have great consistency. 
The structural nodes all respond at the same frequency. The frequency 
of in-line direction is 9.5526 Hz, which is between the 7th and the 8th 
natural frequency. And the frequency of cross-flow direction is 4.4558 
Hz, which is very close to the 4th natural frequency. The results of 
mode analysis are very consistent with the frequency results. The riser 
vibrates in the 7th and the 4th modes in the in-line and cross-flow 
directions, respectively. But the situation of the riser vibration is not 
stable. Mode transition among different modes is happened 
occasionally, especially for the modes on either side of the dominant 
mode. The long flexible riser pipe vibrates in multi-mode pattern. The 
multi-mode vibration of the riser might be due to the fluctuating drag 
and lift forces imposed on the riser because of the turbulent flow. The 
overall good agreement between numerical results and experimental 
data show that the multi-strip method is practical in predicting the 
characteristics of the VIV response of the riser both qualitatively and 
quantitatively. 
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