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ABSTRACT 
 
The fractional step finite element method and domain decomposition 
method are applied to parallel simulate the 3D lid-driven cubic cavity 
flows based on the open source codes PETScFEM. The Reynolds 
numbers (Re) between 1 and 10000 are considered, covering laminar and 
partly turbulent field. Primary eddy, secondary eddies, corner eddies, 
Taylor-Gortler-like (TGL) vortices and other cavity flow features are 
researched. At high Reynolds number, the mean and mean-root-square 
velocities statistics along the horizontal and vertical centerlines in the 
symmetry plane keep reasonable agreement with experiment data 
respectively. Parallel performance is also analyzed. 
 
KEY WORDS: PETScFEM; 3D cavity flows; domain decomposition; 
parallel computation; TGL vortices; high Reynolds number. 
 
INTRODUCTION 
 
Lid-driven cavity flows are not only technologically important, but also 
they are of great scientific interest. These flows display many kinds of 
fluid mechanical phenomena, including corner eddies, Taylor-Gortler-
like (TGL) vortices, transition, turbulence and so on. Simple geometrical 
settings and easily posed boundary conditions have made cavity flows 
become popular test cases for computational schemes.  

 
As a classic benchmark, the 2D lid-driven cavity flows have been 
extensively studied with numerical methods. However, the pioneering 
experimental work of Koseff & Street and coworkers in the early 1980s 
clearly showed that cavity flows were inherently 3D in nature. With the 
increase of computing capability in recent years, the 3D lid-driven cavity 
problems have matured as a standard Re-dependent benchmark. Jiang et 
al. (1994), Wong et al. (2002) and many other researchers have 
investigated the lid-driven cubic cavity at low and moderate Reynolds 
number. Prasad & Koseff (1989) have studied the 3D lid-driven cavity 
flows at Re=3200, 5000, 7500, and 10000 with experimental methods, 
which improves the research of these problems at moderate and high 
Reynolds number with numerical methods. Zang et al. (1993) have 
applied finite volume method in a lid-driven cavity at Reynolds numbers 
of 3200, 7500, and 10000, showing agreement with the experimental 
data. Large eddy simulations (LES) have enjoyed popularity for 
turbulent flows. Bouffanais et al. (2007) and Shetty et al. (2010) have 
analyzed the lid-driven cubic cavity at high Reynolds numbers by LES. 
Direct numerical simulation (DNS) is also popular, which can be used 

for both laminar and turbulent flows. Leriche et al. (2006) and Hachem 
et al. (2010) have simulated the cubic cavity flows at moderate and high 
Reynolds numbers by DNS. As reviewed in Shankar et al. (2002), the 
flow fields of the lid-driven cubic cavity are laminar when Re<6000; 
transition to turbulence takes place in the range 6000<Re<8000, and 
sufficient partition of the fields are turbulent by Re=10000; TGL vortices 
can be observed in both unsteady laminar and turbulent flows.  

 
It is difficult to obtain the solution of incompressible Navier-Stokes (NS) 
equations using classical finite element method. The mathematical 
analysis of the Stokes problem shows that the approximation spaces for 
velocity and pressure must satisfy a compatibility condition known as the 
inf-sup LBB (proposed by Ladyzhenskaya, Babuska and Brezzi) 
condition. This has the drawback that only some combination of 
interpolation spaces for velocity and pressure can be used. However, the 
fractional step method based on the Poisson projection can be used with 
spatial interpolations which do not satisfy the LBB condition. These 
methods are applied widely because of the computational efficiency. 
Guermond et al. (1998) have investigated the stability and convergence 
of fractional step method with equal order interpolations. It is shown that 
there is a lower bound for the time step for stability reason. Codina (2001) 
got the similar results and presented a stabilized fractional step finite 
element method. These results are used in this work. 

 
Based on the open source codes PETScFEM, fractional step finite 
element method (FEM) with domain decomposition technique is applied 
for parallel simulation of 3D lid-driven cubic cavity flows. The 
numerical method is briefly introduced as follows: In the preprocessing, 
the computational domain is discretized by the regular mesh with the 
brick elements. The fractional step method is applied to decouple the 
incompressible Navier-Stokes system in three sub-steps. All these three 
sub-equations are discretized by finite element method with the equal 
order interpolation of the velocity and pressure in space. For the parallel 
computation, the whole mesh is decomposed to several non-overlapping 
sub-domains. All the sub-domains are computed at the same time. The 
information of the interface among the sub-domains is passed among the 
processors by MPI (Message Passing Interface). All the linear systems 
are solved by GMRES (Generalized Minimal RESidual) method with 
Jacobi preconditioner, which are carried out in PETSc (Portable, 
Extensible Toolkit for Scientific computation). With the numerical 
method described above, this paper parallel simulates the 3D lid-driven 
cubic cavity flows at different Reynolds numbers. The reliability and 
efficiency of the numerical method is validated at Re=1000. The velocity 
profile coincides with the reference values. The 3D streamlines, velocity 
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vectors, pressure iso-surfaces, and vorticity iso-surfaces are presented. 
Then lid-driven cavity flows at low Reynolds numbers (1, 10, 100, and 
400) are simulated to show the corner eddies, which indicate the intrinsic 
3D property. Cavity flows at moderate Reynolds numbers (2000, and 
3200) are simulated to observe the evolution of the TGL vortices. Finally 
cavity flows at high Reynolds number (10000) is simulated, which is 
partly turbulent. The mean and root-mean-square velocity statistics 
(Re=3200, 10000) are briefly presented, which keep reasonable 
agreement with the experiment data.  

 
This paper is organized as follows: In the second section, the detailed 
numerical algorithms applied in this paper are presented. Then numerical 
results of 3D lid-driven cubic cavity flows at different Reynolds numbers 
are given. The parallel performance is also analyzed. The paper ends 
with a concluding remark. 
 
 
NUMERICAL METHOD 
 
Governing Equations 
 
The Navier–Stokes equations governing incompressible viscous fluid 
flow in a domain   in a time interval [0, ]T are 

0t p        u u u u ,                                                                    (1) 

0  u ,                                                                                                 (2) 
where u  is the velocity field, p is the kinematic pressure, and   is the 
kinematic viscosity. These equations need to be supplied with an initial 
condition for the velocity and a boundary condition. For the lid-driven 
cubic cavity flows, we will take as the simple homogeneous Dirichlet 
condition. The initial condition is zero velocity everywhere. 
 
Time and Space Discretizations 
 
In order to write the variational formulation of the finite element space 
discretization, let us introduce the forms: 
 

   , : ,a   u v u v ,    , : ,b q q v v , 

   , , : ,c  u v w u v w , 

 
where  ,   denotes the standard 2L  inner product. In these expressions, 

, ,u v w  are assumed to belong to the velocity space  1
0 V H , and q  

belongs to the pressure space  2Q L  . 

 
Having introduced these notations, the weak form of problem (Eq. 1~2) 
consists of finding u  and p  such that 
 

       , , , , 0t c a b p      u,v u u v u v v v V , 

 , 0b q q Q  u , 

 
Monolithic time discretization, the generalized trapezoidal rule, is 
considered at first. Let [0,1]   be a given parameter and consider a 

partition of [0, ]T  into N  time steps of equal size t . Let f  be a 

generic function of time and nf  the value of f  at nt n t , and let 
1: (1 )n n nf f f      , 1: ( ) /n n n

t f f f t   . Given nu  at nt , the 

time discrete problem consists of finding 1nu  and 1np   at 1nt   as the 
solution of 

       1, , , , 0 ,n n n n n
t c a b p           u ,v u u v u v v v V          (3) 

 1, 0nb q q Q   u ,                                                                         (4) 

where 1 / 2   corresponds to the second-order Crank-Nicolson scheme, 
and 1   means the backward Euler method. 
  
Let hV  be a finite element space to approximate V , and hQ  a finite 

element space to approximate Q . We choose P1/P1 element pairs, which 
is stable when fractional step methods using a pressure Poisson equation 
are employed. Then the finite element discretization of Eq. 3 and Eq. 4 
reads 

   
   

, ,

, , 0 ,

n n n
t h h h h h

n n
h h h h h h

c

a b p

 

 

  

 



    

u ,v u u v

u v v v V
                                        (5) 

 1, 0n
h h h hb q q Q   u ,                                                                     (6) 

   
The discrete version of the Eq. 5~6 can be rewritten as a coupled 
nonlinear algebraic system of the form 

1( ) 0n n n n
tM U K U U GP       ,                                                       (7) 

1 0nDU   ,                                                                                              (8) 
where U  and  P  are the arrays of nodal velocities and pressures, 
respectively, M  is the mass matrix, K  is the matrix containing the 
diffusive and convective parts, G  is the gradient matrix, and D  the 
divergence matrix. 
 
Fractional Step Schemes 
 
 The fractional step schemes applied to the fully discrete problem (Eq. 
7~8) is exactly equivalent to  

1 1ˆ( ) ( ) 0n n n n nM U U K U U GP
t

  


      ,                           (9) 

1 1 11 ˆ( ) ( ) 0n n n nM U U G P P
t




      ,                                              (10) 

1 0nDU   ,                                                                                            (11) 

where 1ˆ nU   is an auxiliary variable and   is a numerical parameter, 
whose values are [0,1]. We make the essential approximation 

ˆ ˆ( ) ( )n n n nK U U K U U       ,                                                              (12) 

where 1ˆ ˆ (1 )n n nU U U      . If we write 1nU   in terms of 1ˆ nU   
using Eq. 10 and inserting the result in Eq. 11, the equations to be solved 
are 

11 ˆ ˆ ˆ( ) ( ) 0n n n n nM U U K U U GP
t

  


      ,                                     (13) 

1 1 1ˆ( )n n ntDM G P P DU     ,                                                           (14) 

1 1 11 ˆ( ) ( ) 0n n n nM U U G P P
t




      ,                                              (15) 

which have been ordered according to the sequence of solution, for 1ˆ nU  , 
1nP   and 1nU  . We can approximate the operator 1DM G  in Eq. 14 to 

the Laplace operator if M  is approximated by a diagonal matrix. In this 
paper,  0.9   and 1   are adopted. 
 
Parallel Schemes 
 
We consider solving in each time step a linearized form of systems, i.e. 
Ax y , resulting from finite element discretization as described in the 

previous sections. Let   denote the computational mesh domain, and 
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1{ }i i n
i

  its decomposition into n  non-overlapping sub-domains. Let 

11 22[ , , , ]LL nnA diag A A A   is a block-diagonal with each block 

, 1,2, ,iiA i n   being the matrix corresponding to the unknowns 

belonging to the interior vertices of sub-domain i . LIA and ILA   

represents connections between sub-domains to interfaces. IIA   

corresponds to the discretization of the differential operator restricted to 
the interfaces and represents the coupling between local interface points. 
Let ( , )T

L Ix x x , ( , )T
L Iy y y , then the linear system can be split to  

LL LI L L

IL II I I

A A x y

A A x y

    
    

    
.                                                                       (16) 

 
The numerical solution of Ax y  is equivalent to solving 

1 1( )II IL LL LI I I IL LL LA A A A x y A A y    ,                                                      (17) 

LL L L LI IA x y A x  .                                                                                (18) 

 
The domain decomposition method starts by first determining Ix  on the 

interfaces between sub-domains by solving Eq. 17. Upon obtaining Ix , 

the sub-domain problems (Eq. 18) decouple and may be solved in 
parallel. 
 
RESULTS AND DISCUSSION 
 
The computational model for 3D lid-driven cubic cavity flows is shown 
in Fig.1. The computational domain is [0, 1] [0, 1] [0, 1].  The lid of 
the cubic cavity moves parallel to the positive x -axis with the steady 
velocity 1u  . The other walls stay still. There is a reference pressure 
point of zero. The initial condition is zero velocity everywhere. The 
cubic cavity flow is dependent on the Reynolds number, which is 
determined by Re / 1 /Ud    , where U  is the velocity of the 
moving lid and d  is the characteristic length of the cavity. So the 
kinematic viscosity   is the pivotal parameter which determines the 
cavity flow features. 
 

 
 
Fig. 1. The computational model for 3D lid-driven cubic cavity flows 
 
The lid-driven cubic cavity flows at a series of Reynolds numbers 
ranging from 1 to 10000 are simulated, covering the steady field, 
unsteady laminar field and partly turbulent field. It is noted that all these 
flows are simulated with a uniform Cartesian 48 48 48 mesh, while 
non-uniform meshes are widely used.  

 
Lid-driven cubic cavity flow at Re=1000 

 
For the cavity flow at Re=1000, a fixed time step of 0.05s is employed 
and 1000 iteration steps are performed. The lid velocity generates 
vorticity which propagates throughout until the flow field reaches a 
steady state. The 3D streamlines are illustrated in Fig. 2. From the side 
view, the downstream secondary eddy (DSE) and upstream secondary 
eddy (USE) can be observed clearly; from the back view, the flows in the 
DSE move from the symmetry plane to the side walls in spiral way, 
through the axis of the primary eddy back to the symmetry plane; from 
the oblique view, there are several streamlines from DSE, bottom wall, 
USE to the axis of the primary eddy, which form the corner eddies. 
   
The iso-surfaces for different velocity magnitudes are shown in Fig. 3. 
As the flow moving through the cavity, the velocity magnitude decreases. 
With the influence of the side walls, the fluid accumulates near by the 
side walls. The accumulated fluid turns to the central part, and then 
moves forward in a spiral way, which forms the corner eddies. Fig. 3(d) 
suggests that the corner eddies propagate throughout the whole cavity. 
As shown in Fig. 3 (b) and (c), the jet flow near the symmetry plane is 
accelerated by impinging the bottom wall and the upstream wall. 
 

  
(a)                                   (b)                                   (c) 

 
Fig. 2. 3D streamlines at Re=1000 on different views: (a) side view; (b) 
back view; (c) oblique view. 
 

  
(a)                                                       (b) 

 

  
(c)                                                      (d) 

 
Fig. 3. Iso-surfaces for different velocity magnitudes at Re=1000: (a) 0.3; 
(b) 0.25; (c) 0.2; (d) 0.15. 
 
Iso-surfaces of the pressure and y  are illustrated in Fig. 4. With the 

effect of the side walls, these iso-surfaces are visualized with 3D 
properties.  
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(a)                                                       (b) 

 
Fig. 4. Iso-surfaces for different variables at Re=1000: (a) pressure; (b) 
y-component of the vorticity, i.e. y . 

 
The u -velocity component profile along the vertical centerline in the 
symmetry plane has been used as a measure of solution accuracy for the 
3D lid-driven cavity benchmark. The computed solution from the present 
formulation is shown in Fig. 5, which coincides well with the one given 
by Wong et al. (2002). 
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Fig. 5. u -velocity profile comparison along the vertical centerline in the 
symmetry plane at Re=1000.  
 
Lid-driven cubic cavity flows at low Reynolds numbers 
 
  In this subsection, cavity flows at Re=1, 10, 100, and 400 are simulated. 
These flows are laminar steady state. As shown in Fig. 6, the kinematic 
energy of the whole cavity is enhanced with the increase of the Reynolds 
number. Cavity flows have 3D properties even when Re is very small. 
 

  
(a)                                                 (b) 

 

  
(c)                                                      (d) 

 
Fig. 6. Iso-surfaces of velocity magnitude of 0.2 for different Reynolds 
numbers: (a) Re=1; (b) Re=10; (c) Re=100; (d) Re=400. 
 
The 3D sectional perspective views for the computed velocity vector and 
vorticity fields at Re=400 is shown in Fig. 7. The vorticity plots at x=0.5 
for x , y=0.5 for y , and z=0.5 for z fully illustrate the transport of 

flow information. The streamlines projection shows the secondary flows 
and corner eddies clearly.  These results are very similar with the ones 
given by Wong et al. (2002). 
 

  
(a)                                                  (b) 

 

  
(b)                                               (d) 

 

  
(e)                                                      (f) 

Fig. 7. Perspective 3D solution summary at Re=400: (a) streamlines 
projection at z=0.5; (b) z ;  (c) streamlines projection at y=0.5; (d) y ; 

(e) streamlines projection at x=0.5; (f) x . 
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Fig. 8 indicate that the secondary flows and corner eddies are always 
exist with the influence of the side walls, although the vorticity is not so 
strong at small Reynolds numbers. Cubic cavity flows have intrinsic 3D 
features.  
 

  
(a)                                                       (b) 

 

  
(c)                                                      (d) 

 
Fig. 8. x  at x=0.5 for different Reynolds numbers: (a) Re=1, x   [-

0.005, 0.005]; (b) Re=10, x   [-0.05, 0.05]; (c) Re=100, x   [-0.5, 

0.5]; (d) Re=400, x   [-1, 1]. 

 
 
2D planar projections of the velocity vector field at Re=100, 400, and 
1000 on the three centroidal planes of the cube are shown in Fig. 9. As 
can be seen at y=0.5, the center of the primary eddy starts in the upper 
right half region, then gradually moves toward the cube center as the 
Reynolds number increases. At x=0.5 plane, a pair of vortices appear 
near the centerline and move out towards the lower corners as the 
Reynolds number increases. Two small eddies are also emerging at the 
top corners as the Reynolds number goes through 400 to 1000. At z=0.5 
plane, corner eddies can be seen as well.  
    
The computed u -velocity profile along the vertical centerline in the 
symmetry plane at Re=100 and 400 are compared with the reference 
results respectively, which are shown in Fig. 10 and Fig. 11. The present 
solutions match well with other numerical results. 
 
 

   

   
 

   
 
Fig. 9. 2D planar projections of mid-plane velocity vector for different 
Reynolds number: Re=100 (top); Re=400 (middle); Re=1000 (bottom) 
on different planes: x=0.5 (left); y=0.5 (middle); z=0.5 (right). 
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Fig. 10. u -velocity profile comparison along the vertical centerline in 
the symmetry plane at Re=100. 
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Fig. 11. u -velocity profile comparison along the vertical centerline in 
the symmetry plane at Re=400.   
 
Lid-driven cubic cavity flows at moderate Reynolds numbers 
 
Moderate Reynolds number 2000 and 3200 are selected for the 
simulations of cubic cavity flows. These flows are unsteady but laminar. 
A fixed time step of 0.05s is employed. The total simulation time is 
1000s with the last 500s utilized for collecting flow statics.  
 
Taylor-Gortler-like (TGL) vortices are observed at Re=2000 and 3200. 
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These vortices are caused due to centrifugal forces, when the flow moves 
along the curvature formed by downstream wall, downstream secondary 
eddies, and bottom wall. These longitudinal vortices take part in a slow 
spanwise motion quasi-periodically. A quasi-periodic evolution of TGL 
vortices at Re=2000 is illustrated in Fig. 12. As can be seen, there are 
two pairs of TGL vortices besides corner eddies. The evolution 
procedure seems to be: the left pair vortices become stronger and move 
to the centerline slowly, while the right pair becoming weaker; the left 
pair vortices disappear when they reach the centerline, while a new pair 
emerging near the left corner; then the right pair vortices become 
stronger and move to the centerline as the left pair have done; after the 
right pair vortices disappear and reborn, the procedure goes into the next 
period. The time of one period is approximate 60s.  
 

  
(a)                                                       (b) 

  
(c)                                                        (d) 

 

  
(e)                                                       (f) 

 

 
(g) 

Fig. 12. The evolution of TGL vortices at Re=2000 (x=0.5): (a) t=340s; 
(b) t=350s; (c) t=360s; (d) t=370s; (e) t=380s; (f) t=390s; (g) t=400s. 

3D streamlines at Re=3200 are presented in Fig. 13. From the side view, 
the DSE and USE are smaller than which at Re=1000; from the back 
view, the DSE is of asymmetry and irregular which affected by TGL 
vortices. 
    
A series of experiments has been conducted in a lid-driven cavity at 
Reynolds numbers between 3200 and 10000 by Prasad & Koseff (1989). 
The mean and root-mean-square velocities profiles along the horizontal 
and vertical centerlines in the symmetry plane of this work are shown in 
Fig. 14, which are compared to the experiment data. It is noted that the 
experiment has accumulated 5.46 min (~327s) of velocity data at each 
measuring point, while 500s values are collected for our statistics. 
However, as you can see, the mean velocities profiles coincide with 
experiment data, and the root-mean-square (rms) velocities profiles keep 
reasonable agreement with experiment one. The root-mean-square (rms) 
velocities are very important statistics to measure the fluctuations of the 
velocities for the unsteady flow. As shown in Fig. 14(c), Urms are larger 
near the lid and the bottom wall than which in the cavity center, because 
of the influence of the boundary layers; Urms are larger near the bottom 
wall than which near the lid, because the DSE and the TGL vortices are 
strongly unsteady; there is a secondary peak value of the Urms near the 
bottom wall, which is due to the fluctuations of the TGL vortices. 
Similar statistics profile can be seen in Fig. 14(d), while the TGL 
vortices appear near the upstream wall (x=0). Wrms are larger near the 
downstream wall (x=1) than which near the upstream wall, because the 
peak value of the mean velocity <W> near the downstream wall is twice 
of the one near the upstream wall, and the DSE is much more unstable 
than the USE. 
 

   
(a)                                   (b)                                   (c) 

Fig. 13. 3D streamlines at Re=3200 on different views: (a) side view; (b) 
back view; (c) oblique view. 
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(c)                                                        (d) 

Fig. 14. The mean and root-mean-square velocity statistics comparison 
along the horizontal and vertical centerlines in the symmetry plane at 
Re=3200: (a) <U>; (b) <W>; (c) 10Urms; (d) 10Wrms. 
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Lid-driven cubic cavity flows at high Reynolds number 
 
Cavity flow at Re=10000 is simulated in this subsection, which is partly 
turbulent. The solution at Re=3200 is used as the initial data for this 
simulation. A fixed time step of 0.02s is employed. The total simulation 
time is 800s with the last 400s utilized for collecting flow statics. 
 
Fig. 15 shows the 3D streamlines sometime on different views. From the 
side view, the DSE and USE occupy small spaces; from the back view, 
the streamlines in DSE are irregular, almost random, which affect the 
streamlines along the downstream wall as well. 
 
As similar as the case at Re=3200, the mean and root-mean-square 
velocities profiles are shown in Fig. 16. It is noted that we collect 400s 
values for statistics, while the experiment has accumulated 5.46 min 
(~327s). As can be seen, the mean and mean-root-square velocities 
profiles keep reasonable agreement with experiment data respectively. 
As shown in Fig.15 and 16, the peak values of the mean velocity <U> 
and <W> at Re=10000 is smaller than which at Re=3200, while the root-
mean-square velocities at Re=10000 are larger respectively. The cavity 
flow at Re=10000 is partly turbulent, so the boundary layers are thinner 
than the laminar flow, the momentum and energy exchanges between the 
boundary layers and central part are much stronger, and the velocities 
display much larger and more random fluctuations at high frequencies. 
The secondary peak values of the rms velocities profiles are not clear in 
Fig. 16. This suggests that the high frequency fluctuations are dominant 
and that they have destroyed the integrity of the TGL vortices. 
 

   
(a)                                   (b)                                   (c) 

 
Fig. 15. 3D streamlines at Re=10000 on different views: (a) side view; (b) 
back view; (c) oblique view. 
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(c)                                                        (d) 

Fig. 16. The mean and root-mean-square velocity statistics comparison 
along the horizontal and vertical centerlines in the symmetry plane at 
Re=10000: (a) <U>; (b) <W>; (c) 10Urms; (d) 10Wrms. 

Parallel implementation performance 
 

Mesh domain decomposition method with MPI are implemented for the 
parallel computation. First, the whole mesh is decomposed to several 
non-overlapping sub-domains by the open source software METIS. Fig. 
17 shows the mesh decomposition for different sub-domains. As can be 
seen, the balance of sub-domains is kept well. Each sub-domain is 
assigned to a processor on the Intel(R) Xeon(R) CPU of 2.27GHz. The 
information of the interface among the sub-domains is passed among the 
processors by MPI.  
    
All the cases mentioned above are simulated with 8 processors. For the 
parallel performance test, we compute cavity flows at Re=3200 with 
different processors from 1 to 8. A fixed time step of 0.05s and 1000 
iteration steps are implemented in the test case. Parallel performance, 
including time and speedup ratio, is shown in Fig. 18. As can be seen, 
computation time decreases and speedup ratio increases as the number of 
processors increases. The speedup ratio is smaller than the linear one 
because of the time consuming of the increasing message passing. 
 
 

 
(a)                                   (b)                                   (c) 

 
 

 
(d)                                   (e)                                   (f) 

 
 
Fig. 17. Mesh decomposition for different sub-domains:  (a) 1; (b) 2; (c) 
3; (d) 4; (e) 6; (f) 8. 
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Fig. 18. Parallel performance at Re=3200: (a) time; (b) speedup ratio. 
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CONCLUSIONS 
 
The fractional step finite element method is applied to solve the 
incompressible viscous fluid problems. Mesh domain decomposition 
method with MPI technique is implemented to parallel simulate the 3D 
lid-driven cubic cavity flows at the Reynolds numbers between 1 and 
10000, covering the steady field, unsteady laminar field and partly 
turbulent field. At low Reynolds numbers, intrinsic 3D properties such as 
corner eddies are illustrated. The present velocity profiles along the 
vertical centerline in the symmetry plane at Re=100, 400, and 1000 agree 
well with other numerical solutions respectively. At moderate Reynolds 
numbers (2000 and 3200), a quasi-periodic evolution of the TGL 
vortices is presented. At high Reynolds number (10000), the mean and 
mean-root-square velocities statistics along the horizontal and vertical 
centerlines in the symmetry plane keep reasonable agreement with 
experiment data respectively. Parallel time consuming and speedup ratio 
are presented to show the good parallel performance. 
 
From these results, it is found that the complex 3D lid-driven cubic 
cavity flows can be efficiently and reasonably simulated by solving the 
Navier-Stokes equations based on the tools of PETScFEM. The 
PETScFEM is not only an efficient CFD tool, but also lays a good basis 
for constructing new numerical methods and schemes. 
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