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ABSTRACT   
 

In this paper, a data-driven shape optimization approach is proposed for 

ship hull form optimization. To avoid the time-consuming evaluation of 

ships via a viscous flow solver, we developed a Machine-Learning (ML) 

based model that predicts the hull’s hydrodynamic performance. For this 

purpose, a Bayesian optimization framework is developed and applied to 

OPTShip-SJTU, an existing ship optimization solver. Among them, the 

CFD method is used to calculate ship performance, and the Radial Basis 

Function (RBF) method is adopted for hull surface deformation. To 

improve the efficiency of hull form optimization, the surrogate model is 

used to approximate the CFD simulation. Unlike the traditional static 

approximation models used in the process of hull form optimization, a 

dynamic approximation model based on expected improvement is 

proposed. The adaptive balance parameter is taken in the parallel 

efficient optimization (PEGO) algorithm to make a tradeoff between 

exploitation and exploration. The Optimal Latin hypercube algorithm is 

used as the method of design of experiments. The Kriging model is 

employed as the surrogate model. Wigley ship is used to demonstrate the 

proposed optimization framework. Lines of the ship are determined and 

optimization results of the resistance show the effectiveness of the 

proposed method. 

 

KEY WORDS: OPTShip-SJTU Solver; dynamic approximation model; 

parallel efficient global optimization algorithm (PEGO); Wigley; 

resistance 

 

INTRODUCTION 

 

Ship is a significant tool for humans to explore and exploit the ocean. 

Design of a ship is so complex that multiple performances should be 

considered, especially hydrodynamic performance which includes 

maneuverability, rapidity, and seakeeping. In the process of ship design, 

rapidity is the main concern. Besides, the resistance of ship is an essential 

aspect that reflects the ship’s rapidity performance. Reducing the 

resistance of ships becomes more and more challenging, which can be 

achieved by optimizing the ship hull lines. Changes in hull lines can also 

affect other ship properties, such as seakeeping performance and 

maneuverability. Noteworthy, how to obtain the best hull form is the 

main concern in the design stage. With the development of computer 

technology, Computer Fluid Dynamics (CFD) based on viscous theory 

has been widely applied to hydrodynamic problems. As a result, 

simulation-based design (SBD) technology has been widely applied to 

hull form optimization in the past decades. 

 

Based on SBD technology, scholars at home and abroad have conducted 

a lot of research and obtained good results. Peri, Rossetti and Campana 

(2001) modified a tanker ship by using the Bézier patch. Three different 

algorithms which included Conjugate Gradient (CG), Steepest Descentto 

(SD) and Sequential Quadratic Programming (SQP) were used to 

optimize its total resistance and wave amplitude. Peri and Campana 

(2003) performed a local reconstruction of the sonar cover of 

DTMB5415 based on the Bezier polynomial surface method and 

optimized the total drag coefficient when Fr=0.41. The results showed 

that the total drag coefficient of the optimized ship model was reduced 

by 6%. Lin, Yang and Guan (2019) used six cross-sectional area curve 

parameters of Small Waterplane Area Twin Hull (SWATH) as design 

variables. The optimal Latin hypercube sampling (OLHS) method was 

employed to obtain 40 sample data. After hydrodynamic evaluation, the 

Kriging model was constructed, and the optimal ship type was obtained 

by using Multi-Island Genetic Algorithm. The results showed that the 

total resistance of the optimal hull was reduced by 28.9% compared with 

the parent ship. Wang, Chen and Feng (2021) selected 9 parameters of 

deep-sea aquaculture vessels as design variables and applied 60 sample 

data which were obtained by uniform sampling method to construct 

radial basis network surrogate model. The optimization results showed 

that the total drag coefficient and the non-uniformity of wake flow of the 

optimal vessel were reduced by 1.67% and 17.12%, under the structural 

draft and 2.59% and 4.04%, under the ballast draft, respectively. Liu, 

Zhao and Wan (2022) optimized the resistance and propeller wake 

distortion of Japan Bulk Carrier (JBC) based on the in-house solver 

OPTShip-SJTU considering the interaction between hull and propeller. 

The Free-Form Deformation (FFD) method was applied to modify the 

stern shape of JBC. 30 sample points were obtained by using the 

Optimized Latin Hypercube Sampling Method (OLHS). The Kriging 

model was constructed to reduce the computation cost. The optimal 

results obtained by using the multi-objective genetic algorithm (NSGA-

II) showed that it was necessary to consider the propeller effect in the 
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process of resistance and wake optimization. 

 

As can be inferred from the above introduction, the conventional SBD 

optimization process usually involved constructing a surrogate model 

with reliable global prediction accuracy and then using optimization 

algorithms to search for the optimal design solution. Obviously, this 

optimization method relied heavily on the global prediction accuracy of 

the surrogate model. If the prediction accuracy of the surrogate model 

was low, it will lead to poor or failed optimization results. In addition, 

even if the global prediction accuracy of the surrogate model was high, 

it might not be able to predict the true optimal solution in the design 

space with high accuracy. To tackle this problem, the adaptive sampling 

method was put forward. In the field of ship and ocean engineering, the 

adaptive sampling method was relatively little applied. With the strong 

promotion of adaptive sampling strategies in the aviation field (Viana 

and Haftka, 2010; Liu, Han and Song, 2012; Forrester and Keane, 2009; 

Wang, Ni, and Zeng, 2021), it has only been gaining wider attention in 

the ship and ocean engineering in recent years. Mackman and Allen 

(2010) developed an adaptive sampling strategy based on the 

nonlinearity degree in the design space. The strategy took the position 

with the highest nonlinearity in the initial design space as the position 

where the next sample point should be added, and so on repeatedly until 

the highest nonlinearity in the design space was less than the nonlinearity 

convergence threshold. Rafiee, Haase and Malcolm (2022) proposed a 

multi-objective Bayesian optimization method for high-speed craft. In 

order to verify the effectiveness of the proposed framework, the total 

resistance of a conceptual high-speed catamaran at two speeds was 

optimized. It’s concluded that the proposed method could design hull 

forms efficiently along the multi-objective Pareto front. Volpi, Diez and 

Gaul (2015) proposed an adaptive sampling strategy based on the 

prediction uncertainty of the surrogate model, which selected the 

position with the largest uncertainty in the prediction of the dynamic 

surrogate model as the next sample point should be added until the 

maximum uncertainty in the prediction of the surrogate model was less 

than the uncertainty convergence threshold. 

 

In this paper, we used a Bayesian optimization method for hull form 

optimization as it could make a tradeoff between exploration and 

exploitation with less expensive function evaluations. We proposed an 

automated framework for hull optimization with a series of objectives 

and constraints. Finally, we test our framework on optimizing the total 

resistance of Wigley at Fr=0.3. 

 

METHODOLOGY 

 
In this section, we introduce the Kriging model which is used as a data 

mining tool to lead the addition of sample points, the Bayesian 

optimization method, the method for hull surface deformation, and the 

automated framework for hull form optimization. 

 

Kriging model 
 

The Kriging method, first proposed in 1951, is originally used for 

mineral reserve estimation. Sacks, Welch and Mitchell (1989) use it to 

approximate computer calculation, and the Kriging model become more 

and more popular in optimization problems. Here is a brief introduction 

to the Kriging model, the concrete derivation can be found in (Sacks, 

Welch and Mitchell, 1989). 

 
A simple Kriging model is constructed as: 

 

( ) ( )y x x = +  (1) 

where   is the average value of Gaussian process, ( )x  is the error 

term that satisfies the normally distributed ( )20, , and the covariance 

is non-zero. The correlation of the deviations can be expressed as follows: 
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where R denotes the matrix of correlation functions between samples, 

which is presented as Eq.4 , m is the dimension of the design parameters, 

k  and kp  are the parameters to be determined.  

 

In the Kriging model, the predicted values of the ( )2 2m + parameters: 

2

1 1, , , , , , ,m mp p     are obtained by maximizing the likelihood 

function of the sample points. I denotes the n-dimensional unit vector 

and the likelihood function is presented as follows: 
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The values of  and 
2  can be gotten by specifying the correlation 

parameters k  and kp : 
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For any unknown point x
, the prediction value as well as the mean 

squared error are calculated by the Kriging model: 
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where r is an n-dimensional column vector that represents the correlation 

between the observation point x
 and the sample points. 

Bayesian optimization 
 

Bayesian optimization (Jones, Schonlau and Welch, 1998) is an efficient 

global optimization algorithm for solving time-consuming optimization 

problems. It uses the Kriging model as a tool for data mining to update 

the Kriging model dynamically. The fundamental idea of Bayesian 

optimization is to construct an initial Kriging model based on the design 

of experiment, and add sample points iteratively by using infill sampling 

criteria to finally converge to the optimal solution (Shahriari, Swersky 

and Wang, 2015). A classical choice for infill sampling criteria is 
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Expected Improvement (EI) that is the core of the efficient global 

optimization (EGO) algorithm and is expressed as follows: 

 

( )min[ ( )] E[max( ,0)]E I x f Y x −  (10) 

 

where the ( )Y x  is regarded as normal distribution with mean ŷ and 

variance 2s .The right-hand term of the Eq.10 can be expressed in 

integral form, and then a lengthy series of derivations leads to the 

following expression in closed form: 

 

( ) min min
min

ˆ ˆ
ˆ[ ( )] Φ

f y f y
E I f y s

s s


− −   
= − +   

   
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where ( )x and ( )x is the standard normal density function and the 

standard normal distribution function. 

 

( ) min 0
E I y y

sy





  − = − 
 

  

 (12) 

( ) min 0
E I f y

s s


  − = 
 
 

 (13) 

 

The highlight of the EGO algorithm is that it can achieve a tradeoff 

between local search and global search. As can be seen from Eq. 12 and 

Eq.13, when the prediction value at a point is very small, 
miny y

 
− 

 
is 

large, leading the search to iterate towards the very small prediction 

value. When the prediction error at a point is large, it will lead the search 

to iterate towards the prediction error where it is very small to find the 

best. 

 

The EGO algorithm is summed as Algorithm 1 

Algorithm 1 The framework of the EGO algorithm 
1: Initial sample points and their objection function value 

2: The optimal solution of current sample set 

3: While the stop condition is not met do 

4:     Constructing a Kriging model based on the initial sample set 

5:     ( )argmaxnewx EI x=  

6:    Calculating the real function value at newx  

7:    Adding a new sample point to the initial sample point set 
8:   Getting the optimal solution by using optimization algorithm 

9: end While 
 

The parallel efficient global optimization algorithm 
 

The EGO algorithm mentioned above can only obtain one sample point 

with the highest EI value per iteration to update the Kriging model and 

sample point set. It can’t get the second additional sample point without 

evaluating the first additional sample point, which constrains its 

application in hull form optimization. Thus, it’s necessary to develop a 

parallel efficient global optimization algorithm. Scholars have conducted 

lots of work on parallel efficient global optimization algorithms 

(Ginsbourger, Le and Carraro, 2010; Sóbester, Leary and Keane, 2004). 

However, the parallel efficient global optimization algorithm developed 

by the above scholars is complex and time-consuming. Zhan, Qian and 

Cheng (2017) propose a parallel efficient global algorithm (PEGO) that 

is simple and easy to derive. Here will give a brief introduction to parallel 

efficient global algorithms and the concrete principle can be found in 

Zhan, Qian and Cheng (2017).  

 

Fig. 1(a) is the initial EI function of the Forrester function (Sobester, 

Forrester and Keane, 2008). The EI value is highest at x=0.676, therefore, 

the x = 0.676 is selected as the new sample point to update the Kriging 

model and EI function which is shown in Fig. 1(b). It can be seen from 

Fig. 1(b) that the updated EI function decreases sharply around the new 

sample point and the change is slower far away from the new sample 

point. That’s to say, the new sample point will have affect the EI function, 

the closer the distance, the greater the effect.  

 

 
 

Fig. 1. The initial expected improvement function (a) and the updated 

expected improvement function (b) (Zhan, Qian and Cheng, 2017) 

 

Thus, in order to approximate the updated EI function to tune the initial 

EI function, Zhan, Qian and Cheng (2017) propose that an influence 

function is multiplied by the EI function. By multiplying the influence 

function, the approximated EI function can be obtained without 

evaluating the new sample point. The second sample point can be 

selected according to the highest approximated EI function. In this way, 

the sample points are obtained continuously. The approximated EI 

function whose core is the pseudo expected improvement (PEI) can 

be expressed as follows: 

( ) ( ) ( )( ),
N i

PEI x EI x IF x x
+

=   (14) 

According to Zhan, Qian and Cheng (2017), the influence can be any 

form with follows features: 

(1) In the entire design space, the influence function should be 

continuous. 

(2) At the updating sample point, the value of influence function should 

be zero. At the position far away from the updating point, the value 

of influence function should be one. 

(3) The value of the influence function can only be related to the 

position of the update point. 

 

 
Fig. 2. The correlation function when 2 =  and 2p =  
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Zhan, Qian and Cheng (2017) propose that the correlation function in the 

Kriging model can be selected as an influence function. As can be seen 

in Fig. 2, it’s the correlation function that is described in the Kriging 

model mentioned above between 
( )i

x  and 
( )j

x  when 2 =  and 2p = . 

From Fig. 2 we can conclude that the correlation can satisfy the features 

mentioned above. 

 

Thus, the influence function proposed by Zhan, Qian and Cheng (2017) 

can be expressed as: 

 
( )( ) ( ) ( ), 1 [ , ]
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If we want to select n sample points at one cycle, the PEI function can 

be presented as follows: 
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Once the n sample points are selected, we can make full use of computing 

resources and start numerical simulations. The PEGO is summed up in 

Algorithm 2. In this work, the parallel EGO (Zhan, Qian and Cheng, 

2017) is used for Bayesian optimization. 

 

 

Algorithm 2 The framework of the parallel EGO algorithm 

1: Initial sample set ( ),X Y  

2: minf  of current sample set 

3: While the stop condition is not met do 

4:     Constructing a Kriging model  

5:     for i=1 to n do 

6:          
( ) ( )argmax , 1
m n

newx PEI x n
+

= −  

7:     end for 

8:    Calculating the real function of 
( ) ( )( )1

, ,
new new

m m n
x x

+ +
 

9:    Adding n sample point to the initial sample point set 

10:   Getting the optimal solution by using optimization algorithm 

11: end While 

 

 

Fully automated workflow of hull form optimization 
 

Based on our in-house solver OPTShip-SJTU (Liu, Zhao and Wan, 2021), 

the parallel efficient global optimization algorithm (PEGO) is added to 

form the fully automated workflow for hull form optimization. The full 

optimization workflow is shown in Fig. 3. 

 

As can be seen from Fig. 3, to begin with, the initial sample points are 

obtained by the optimal Latin hypercube sampling (OLHS) method, and 

then the value of initial sample points is evaluated to build a Kriging 

model. Here, the genetic optimization algorithm (Whitley, 1994) is 

employed to find the new point 
1m

newx +
 with the highest EI value. In addition, 

the approximate EI function is computed by multiplying the initial EI 

function by the influence function instead of evaluating the real value of 
1m

newx +
 to update the EI function. The n new sample points are selected in a 

cycle. Next, the n new ships are generated by our in-house solver 

OPTShip-SJTU and simulated. The hydrodynamic performance of new 

ships are added to the database to update the Kriging model. In order to 
guarantee the accuracy of optimization, the convergence conditions are 

used to improve the efficiency of Bayesian optimization according to the 

theory of Zhao, Cheng and Ruan (2015). 

 

 
Fig. 3. The automated hull form optimization framework 

 

 

 

VALIDATIONS 

 

 
To verify the feasibility of Bayesian optimization in hull form 

optimization, test functions are employed. Then, three hull form 

optimization cases are set to show the strength of Bayesian optimization. 

 

 

Test function 

 
To test the reliability of the Bayesian optimization, test functions are 

used. Fig. 4 shows that new sample points are added continuously 

according to the pseudo expected improvement (PEI). The black line is 

the real function. The dotted line is the Kriging model and the red points 

are the initial sample points. The green points are the added new sample 

points and the blue points are the new points that will be added in one 

cycle. The yellow area is ŷ s .The number of initial sample points is 

five, and three sample points are added in one cycle. From Fig. 4, we can 

conclude that after 4 iterations, the optimal solution is obtained. The 

optimal solution by Bayesian optimization is -299.0519 and the true 

optimal solution is -299.0528, which shows the accuracy of Bayesian 

optimization is reliable.  
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(a) 1st iteration for three additional sample 

 

 
(b) 2nd iteration for three additional sample 

 

 
(c) 3rd iteration for three additional sample 

 

 
(d) 4th iteration for three additional sample 

Fig. 4. Optimization for a one-dimensional function based on Bayesian 

optimization 

 

 

Hull form optimization 
 

In this part, to evaluate the efficiency and accuracy of Bayesian 

optimization in hull form optimization. The total resistance of Wigley is 

optimized at Fr=0.3. The wave-making resistance coefficient wC  is 

calculated by our in-house solver NMShip-SJTU whose accuracy is fully 

proved (Liu, Zhao and Wan), and the fractional resistance coefficient fC  

is calculated by ITTC 1957 formula which is presented as: 

 

( )
2

0.075

lg Re 2
fC =

−
 (18) 

 

In this work, the Radial Basis Function (RBF) method (Liu, Zhao and 

Wan, 2021) is applied to deforming the hull.  Firstly, a bulbous bow is 

generated using the RBF method, and then the bow is further deformed 

on this basis, which is shown in Fig. 5. The main dimensions of Wigley 

are shown in Table 1 and the design variables are shown in Table 2. 

 
Fig. 5. The control points for Wigley deformation 

 

Table 1. The main dimensions of Wigley 

 

Ship Length (m) Width (m) Height (m) 

Wigley 4 0.4 0.25 

 

 

Table 2. Design variables 

 

 Deformation direction Range 

P1 
x [0.515,0.555] 

z [-0.042,-0.0348] 

P2 y [0.0045,0.024] 

 

 

A comparison is made with traditional simulation-based on design (SBD) 

optimization techniques. Based on the SBD method, 36 sample points 

are selected by OLHS. Then, the hydrodynamic performance is 

simulated by NMShip-SJTU. Based on the Bayesian optimization 

method, 15 initial sample points are obtained by OLHS, and 3 new 

sample points are added based on Bayesian optimization in one cycle.  

Herein, the optimal hull “Opt-K” is obtained based on the static Kriging 

model which belongs to the SBD method, while the optimal hull “Opt-

BO” is obtained based on Bayesian optimization. A comparison of 

transverse hull lines between the two optimal and the initial hulls is 

shown in Fig. 6. It can be seen that for optimal hulls “Opt-K” and “Opt-

BO”, a relatively large bulbous bow is generated. The bulbous bow of 

“Opt-BO” has a wide range of variations along the ship length. 

 

 
(a) Opt-K 
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(b) Opt-BO 

Fig. 6. The transverse hull lines comparison between the initial and the 

optimal hulls 

 

 

Table 3 shows that the Bayesian optimization method has a better result 

with a drag of 18.087N than the SBD method with a drag of 18.499N. 

Besides, only 24 sample points are needed to obtain a more optimal result, 

and the efficiency is improved by more than 33.33% compared with the 

conventional SBD optimization method. 

 

Table 3. Design variables 

 

 
Number of Sample 

points 
Rt (N) 

Reduction 

ratio 

Initial - 20.512 - 

Opt-K 36 18.499 10.35% 

Opt-BO 24 18.087 11.82% 

 

 

Fig. 7 shows the comparison of the free surface wave evaluation of the 

initial hull and optimal hull which is obtained by the Bayesian 

optimization method. On the whole, the amplitudes of the peaks and 

troughs decline obviously with the generation of the bulbous bow. 

 
Fig. 7. Comparison of the free surface wave evaluation between initial 

hull and optimal hull  

 

 

CONCLUSIONS 
 

For the hull form optimization based on SBD, it’s noted that the static 

surrogate models are popular while the dynamic surrogate models are 

paid less attention to. The sample points and structure of static surrogate 

models are fixed in the process of hull optimization. For a complex hull 

form optimization problem, more sample points are required, which 

can’t guarantee the efficiency. On the contrary, the dynamic surrogate 

models update the sample points with proper infill sampling criteria is 

preferable in terms of both accuracy and efficiency.  

 

In this paper, the Bayesian optimization method is applied to hull form 

optimization to update the Kriging model during each iteration. A fully 

automated hull form optimization framework is proposed based on 

Bayesian optimization. The accuracy and efficiency of the Bayesian 

optimization method are verified based on test functions firstly. The 

results show that the framework proposed can get the optimal solution 

with fewer iterations. 

 

In order to verify the accuracy and efficiency of the proposed framework, 

the total resistance of Wigley at Fr=0.3 is optimized. The wave-making 

resistance coefficient is simulated by NMShip-SJTU and the fractional 

resistance coefficient is calculated by ITTC 1957 formula. The initial 

samples are 15, and 3 new samples are added in one cycle. Finally, the 

number of total samples is 24. Compared to the SBD method, the 

efficiency of hull optimization is improved by more than 33.33% with a 

better resistance performance. 

  

This paper only studies the principle of Bayesian optimization and its 

simple application in hull form optimization and does not pay attention 

to the application in more complex optimization problems. In the future, 

the Bayesian optimization will be improved and applied to multi-

objective hull form optimization to further prove its accuracy and 

efficiency. Besides, how many sample points to add in each iteration is 

needed to be further discussed. 

 

 

ACKNOWLEDGEMENTS 

 

This work was supported by the National Natural Science Foundation of 

China (52131102), and the National Key Research and Development 

Program of China (2019YFB1704200), to which the authors are most 

grateful. 

 

 

REFERENCES 
 

Forrester, A. I., & Keane, A. J. (2009). Recent advances in surrogate-based 

optimization. Progress in aerospace sciences, 45(1-3), 50-79. 

Ginsbourger, D., Le Riche, R., & Carraro, L. (2010). Kriging is well-suited 

to parallelize optimization. Computational intelligence in expensive 

optimization problems, 131-162. 

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global 

optimization of expensive black-box functions. Journal of Global 

optimization, 13(4), 455. 

Lin, Y., Yang, Q., & Guan, G. (2019). Automatic design optimization of 

SWATH applying CFD and RSM model. Ocean Engineering, 172, 146-

154. 

Liu, J., Han, Z. H., & Song, W. (2012, September). Comparison of infill 

sampling criteria in kriging-based aerodynamic optimization. In 28th 

congress of the international council of the aeronautical sciences (pp. 

23-28). 

Liu, X., Zhao, W., & Wan, D. (2021). Hull form optimization based on 

calm-water wave drag with or without generating bulbous bow. Applied 

Ocean Research, 116, 102861. 

Liu, Z., Zhao, W., & Wan, D. (2022). Resistance and wake distortion 

optimization of JBC considering ship-propeller interaction. Ocean 

Engineering, 244, 110376. 

Mackman, T. J., & Allen, C. B. (2010). Investigation of an adaptive 

sampling method for data interpolation using radial basis functions. 

3661



International journal for numerical methods in engineering, 83(7), 915-

938. 

Peri, D., Rossetti, M., & Campana, E. F. (2001). Design optimization of 

ship hulls via CFD techniques. Journal of ship research, 45(02), 140-

149. 

Peri, D., & Campana, E. F. (2003). Multidisciplinary design optimization 

of a naval surface combatant. Journal of Ship Research, 47(01), 1-12. 

Rafiee, A., Haase, M., & Malcolm, A. (2022). Multi-objective Bayesian 

hull form optimisation for high-speed craft. Ocean Engineering, 266, 

112688. 

Sacks, J., Welch, W. J., Mitchell, T. J., & Wynn, H. P. (1989). Design and 

analysis of computer experiments. Statistical science, 4(4), 409-423. 

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., & De Freitas, N. 

(2015). Taking the human out of the loop: A review of Bayesian 

optimization. Proceedings of the IEEE, 104(1), 148-175. 

Sóbester, A., Leary, S. J., & Keane, A. J. (2004). A parallel updating 

scheme for approximating and optimizing high fidelity computer 

simulations. Structural and multidisciplinary optimization, 27(5), 371-

383. 

Sobester, A., Forrester, A., & Keane, A. (2008). Engineering design via 

surrogate modelling: a practical guide. John Wiley & Sons. 

Viana, F., & Haftka, R. (2010, September). Surrogate-based optimization 

with parallel simulations using the probability of improvement. In 13th 

AIAA/ISSMO multidisciplinary analysis optimization conference (p. 

9392). 

Volpi, S., Diez, M., Gaul, N. J., Song, H., Iemma, U., Choi, K. K., & Stern, 

F. (2015). Development and validation of a dynamic metamodel based 

on stochastic radial basis functions and uncertainty quantification. 

Structural and Multidisciplinary Optimization, 51, 347-368. 

Wang, P., Chen, Z., & Feng, Y. (2021). Many-objective optimization for a 

deep-sea aquaculture vessel based on an improved RBF neural network 

surrogate model. Journal of Marine Science and Technology, 26, 582-

605. 

Wang, X., Ni, B., Zeng, L., & Liu, Y. (2021). An adaptive sampling 

strategy for construction of surrogate aerodynamic model. Aerospace 

Science and Technology, 112, 106594. 

Whitley, D. (1994). A genetic algorithm tutorial. Statistics and computing, 

4, 65-85. 

Zhan, D., Qian, J., & Cheng, Y. (2017). Pseudo expected improvement 

criterion for parallel EGO algorithm. Journal of Global Optimization, 

68, 641-662. 

Zhao, J., Cheng, G., Ruan, S., & Li, Z. (2015). Multi-objective 

optimization design of injection molding process parameters based on 

the improved efficient global optimization algorithm and non-

dominated sorting-based genetic algorithm. The International Journal 

of Advanced Manufacturing Technology, 78, 1813-1826. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3662




