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ABSTRACT  
 

In this paper, the research of S175 ship sailing under long-crested 

irregular waves is conducted with the application of coupling CFD solver 

naoe-FOAM-SJTU-os and HOS method. The encountering of the bow 

with largest wave trough, largest wave crest and largest wave height is 

considered. The verification of the present method is carried out through 

the ship motion under regular wave, compared with available 

experimental results. Then, the motion and slamming load results of the 

CFD simulation is analyzed. For the ship motion, the encounter of S175 

ship and extreme wave moments enlarges heave and pitch motion, the 

latter shows better stability and larger amplitude after the encounter. For 

the slamming load, two slamming peaks are captured in the whole 

slamming process and the two peaks show distinguished differences in 

both spatial dimension and time dimension. Moreover, green water 

phenomenon is observed which is most severe under the encounter of the 

largest wave crest and the S175 ship. The conclusion is drawn that the 

encounter of the largest wave crest and bow should be paid great 

attention to when ship sails in long-crested irregular wave. 

 

KEY WORDS: Irregular wave; HOS-CFD method; slamming load; 

ship motion. 

 

INTRODUCTION 

 

The globalization advances the global sailing industry that the design of 

voyage and load ability of container ships continuously increases to 

satisfy the demand of global trade. The safety of large ships is of great 

concern since the scale of ships themselves affect their seakeeping and 

the complex sea conditions poses threats to the sail safety as well. For 

example, the long-crested waves are risky for large container ships since 

the wave length is on the same scale as the ship length, and the slamming 

loads demonstrate strong nonlinearity. Official standards, model 

experiments and numerical simulations are comprehensively applied in 

the evaluation of the sailing safety. To name just a few, ABS (American 

Bureau of Shipping) published standard for slamming loads and strength 

assessment for vessels. Kim et al. (2019) conducted experiments of a 

10,000 TEU under comprehensive wave conditions. Wang et al. (2023) 

simulated motions and slamming loads under oblique regular waves 

using solver naoe-FOAM-SJTU. To be mentioned, the numerical 

simulation is undergoing rapid development due to the progress of 

calculation hardware and the flexibility and advantages in time and fund 

cost itself.  

For ship motion simulation in complicated sea conditions, three main 

technique routes are popular in naval CFD industry: potential method 

(Shi et al. ,2024), viscous method (Tezdogan et al., 2016) and potential-

viscous-coupled method (Yu et al., 2023). The coupling of potential and 

viscous method combines the rapid of complicated wave generation of 

potential method and the accuracy of viscous method in fluid field 

simulation.  

For wave generation, besides the original wave generation module of 

OpenFOAM, waves2Foam (Jacobsen et al., 2012) is applied in 

numerous researches. The wave generation and absorption are realized 

with either relaxation zone (Karola et al., 2024) or generating-absorbing 

boundary condition (GABC) (Zhao et al., 2024).  

For irregular wave conditions, the HOS method which is utilized in this 

research is more frequently applied. HOS method is based on the 

potential theory of wave, which can simulate the waves accurately and 

fast since the potential theory calculation of waves is much more rapid 

than the viscous calculation of waves, which saves considerable time in 

simulation. Xiao et al. (2019) analyzed the nonlinearities of focused 

waves, irregular waves and the subsequent nonlinear effects to ship 

motions with the utilization of HOS. Zhuang et al. (2023a; 2023b) 

coupled HOS method with naoe-FOAM-SJTU and verified the method 

with the interaction of focused wave and a moving cylinder and FPSO in 

model scale and full scale. Xie et al. (2023) combined HOS method with 

Smoothed Particle Hydrodynamics (SPH) method, realizing the 

improvement of computational efficiency and extensive reduction of the 

numerical dissipation. 

In this research, the S175 container ship is chosen as the research target 

and the ship motion and slamming characteristics under long-crested 

irregular waves are analyzed. The wave generation is firstly realized 

through the HOS software HOS-NWT. Then, the wave generation 

through the coupling of HOS method and naoe-FOAM-SJTU shows 

good agreement and the results of motion and slamming load 
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demonstrates distinct features under three wave incident moment: the 

bow encounters the largest trough, crest and wave height. 

 

NUMERICAL METHOD 
 

naoe-FOAM-SJTU Solver 

 

In this research, the viscous fluid field is simulated by self-developed 

CFD solver naoe-FOAM-SJTU, which contains modules of 6-DOF 

motion, wave generation and absorption, and overset method. It is worth 

noting that the overset module applied in this research utilizes 

SUGGAR++(Noack, 2005), to create the overset composite grid and 

realize the interpolation among separate sections of grids with Domain 

Connectivity Information (DCI).  

 

Governing Equations 

 

The governing equations in this research unsteady incompressible two-

phase fluid, the continuity and momentum equations can be written as 

follows: 

U=0                                                                                        (1) 

U
( UU) p+ g+ ( U)

t


  


+  = −   


                                        (2) 

 
where U  is the velocity field,   is the density of the liquid, g is the 

gravitational acceleration and  is the viscosity coefficient. For the 

turbulence model, k-ω SST, introduced by Mentor(1994), is chosen for 

the calculation. 

 

HOS-CFD Method 

 

In this research, the HOS software HOS-NWT, developed by Ducrozet 

et al. (2012), is applied, which can simulate the waves conditions in 

physical wave tank. The potential method HOS solves potential only 

around free surface by Laplace equation and represents the nonlinearity 

by Taylor expansion and the perturbation method. The coupling of HOS 

and naoe-FOAM-SJTU is realized by Grid2Grid (Choi et al., 2017), an 

open source package software for HOS which transfer the spectrum 

result of HOS to time domain result for CFD simulation. Zhuang et al. 

(2023a) compared the efficiency of the HOS-CFD method with the CFD 

method in the research of interaction between FPSO and focused wave, 

indicating that HOS-CFD method can reduce the CPU time to almost ten 

times less than CFD method. 

 

Fig. 1 is the diagram of the calculation field of HOS and CFD method. 

The wave information is transformed trough relaxation zone. In terms of 

overset method, the CFD field can be comprehended that the CFD field 

moves with the object (S175 ship in this research) while the CFD field 

moves inside the HOS field which is static. 

 

 
 

Fig. 1 Diagram of the calculation field of coupling HOS and CFD 

method 

 

SIMULATION MODEL AND CASES 
 

Geometry 

 

The S175 container ship is chosen as the research object, whose 

dimension is listed in the following table. In the present research, the 

scale of the S175 ship model is 1:40. 

 

Table 1 Dimension of S175 container ship 

Main dimension Full Scale Model 

Length Lpp (m) 175 4.375 

Beam B (m) 25.4 0.635 

Depth D (m) 19.5 0.488 

Draft T (m) 9.5 0.238 

Displacemen  (t) 23711 0.370 

Wetted  

area Sw (m2) 
5496 3.435 

LCG (m) 90.11 2.25 

KG (m) 8.5 0.213 

Kxx/B, Kyy/Lpp, 

Kzz/Lpp 

(0.380,0.240,0.24

0) 

(0.380,0.240,0.24

0) 

Moment  

of inertia (kg·m2) 

(0.217,4.417,4.41

7)e10 

(21.158,431.34.4

31.34) 

 

Numerical Setup and Cases 

 

The simulation domain setup is a composition of HOS field and CFD 

field, as mentioned in HOS-CFD Method section. The HOS and CFD 

layout are shown in Table 2 and Fig. 2.To satisfy the requirement of both 

sufficient propagation of wave and adequate distance for the sail of S175 

ship model, the distance of HOS field in x direction is extended to 100m. 

 

 
Fig. 2 Simulation domain setup 

 
Table 2 Specific parameters of simulation domain 

Section Parameters (x*y*z) (m) 

HOS Field 100*30*4.375 

CFD Field (background mesh) 17.5*8.75*6.563 
Relaxation Zone (beginning and 

end of CFD Field in x axis) 4.375*8.75(at z=0m) 

Overset 5.906*2.188*1.313 

 
The wave generated by HOS is an irregular wave on the basis on 

JONSWAP spectrum with the duration of 1500 seconds. The time step 

of the HOS simulation is 0.01s. The result data of the HOS simulation is 

about 5.5GB. The peak period 𝑇𝑝  is 1.673s and the significant wave 

height 𝐻𝑠  is 0.175m (7 meters in full scale). In this research, it is 

supposed that the S175 ship arrives at the position of 55 meters in x-

direction of the HOS field at the CFD calculation time of 10 seconds and 
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at the speed of 0.813m/s (10 knots in full scale). The wave elevation 

history of position (55,0) with long-crest properties are selected for the 

present research. From them, fragments with the largest wave trough, 

crest and wave height (the difference of neighboring wave trough and 

crest) are the target wave fragments, originating three simulation cases. 

The trough and crest occur at the moment when the S175 ship reaches 

(55,0) while in terms of the largest wave height, the ship arrives at (55,0) 

when the wave elevation is zero, which is between the trough before and 

the following crest. The duration of each desired wave fragment is 15 

seconds in order to guarantee the fluid field is fully developed before the 

encountering moment. The wave cases are listed in Table 3. 

 

Table 3 Cases of present research 

Case Target HOS Time(s) Wave Feature 

1 896.07s Trough 

2 163.87 Crest 

3 402.30 Wave Height 
 

 
Fig. 3 HOS wave time history of position (55,0) in HOS field and the 

desired wave fragments 

 

Grid Distribution 

 

In terms of grids, the generation is based on the requirement of accurate 

capture of free surface. For the irregular wave in this research, 20 grids 

are arranged in vertical direction along the significant wave height while 

the vertical interval of fined free surface grids is arranged to cover the 

largest wave amplitude. The grids along x and y directions are arranged 

accordingly.  

Fig. 4 shows the grids near free surface of background mesh. After 

determining the background mesh, the arrangement of overset mesh is 

on the two basics: first, the grids around the hull patch are refined and 

layers are placed at the surface of the hull for better simulation of 

turbulence. Second, the grids on the boundary of overset mesh should 

match these of the background mesh in lengths, with the length ratio less 

than 1:2 according to the interpolation axis. Take x-y plane as example, 

the relationship between background mesh and overset mesh is shown in 

detail in Fig. 5.The grid distribution of the present research is shown in 

Fig. 6, in which black mesh stands for background mesh and red mesh 

stands for overset mesh. The final grid setup according to the wave cases 

in this research is listed in Table 4. The storage of the CFD results in a 

single time step (0.001s) is about 2.0GB. 

 

 
 

Fig. 4 Grids near free surface 

 

 
Fig. 5 The length relationship between background and overset 

mesh 

 

 
Fig. 6 Grid distribution 

 

Table 4 Grid setup under different wave cases 

Case Background Grid Overset Grid 

1 6.15 million 2.82 million 

2 6.60 million 2.88 million 

3 6.60 million 2.88 million 

 

Slamming Load Probes 

 

Several slamming load probes are set at bow, with the distribution form 

bow flare to the bottom of the bow. The position of slamming load probes 

is listed in Table 5 and shown in Fig. 7. 

 

Table 5 Slamming load probes setup 

Position Probe num. Coordinate 

Bow flare 
P1 (0.109,-0.062,0.1) 

P2 (0.219,-0.085,0.1) 

Waterline 
P3 (0.109,-0.022,0) 

P4 (0.219,-0.036,0) 

Beneath waterline 
P5 (0.109,-0.027,-0.1) 

P6 (0.219,-0.035,-0.1) 

Bottom 
P7 (0.109,0,-0.238) 

P8 (0.219,0,-0.238) 

 

 
Fig. 7 Slamming load probes setup 
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REGULAR WAVE VERIFICATION 

 
Before the simulation under irregular wave, the verification of the HOS 

method in this research is carried out. The simulation case refers to the 

experiment done by Fonseca & Soares (2004) which measured the 

motion of S175 ship model which is identical to the one in present 

research under regular waves. The verification is conducted under the 

regular wave with the wave length of 1.2 𝐿𝑝𝑝 and the wave steepness 

of1/120.The 𝐹𝑛  of the S175 container ship is 0.25. The grid of 

verification is under the standard that the grids of free surface should be 

no less than 12 in vertical direction in order to accurately capture the free 

surface. The generation of grids of the hull is done accordingly, whose 

process refers the procedure in the SIMULATION AND CASES section 

of this paper. The verification of heave and pitch motion in full scale is 

shown in Fig. 8. The verification results in Fig. 8 agree well with the 

experimental results, thus the HOS-CFD method in the present research 

is verified.  

 

 
(a) Pitch motion                           (b) Heave motion 

Fig. 8 Verification of ship motion 

 

 

RESULTS AND ANALYSIS 

 
Motion Responses 

 

The motion responses under three wave conditions are demonstrated in  

Fig. 9. It should be mentioned that the large motion amplitude at the 

beginning of Case 3 is due to the initial wave the S175 ship encounters 

whose wave height is about half of the significant wave height. The 

motion of S175 ship requires about 2 second to develop to its stable 

condition, so that the large motion at the beginning of Case 3 is not 

analyzed. From  

Fig. 9, rises of the amplitude of heave and pitch motion can be found 

after T=10s, which indicates that the largest wave trough, crest and 

amplitude strengthen the motion of ship. Moreover, the large amplitude 

of heave motion attenuates more rapid than pitch motion. The large 

amplitude duration of heave motion is less than that of pitch motion by 

a motion period. Also, the large motion amplitude stability of pitch 

motion is better. From T=10s to T=13s, in Case 1, the amplitude of pitch 

motion maintains at about 3 degrees while the amplitude of heave motion 

is changeable, similar phenomenon can be observed in Case 3. In Case 

2, despite the relatively stable amplitude of heave motion, it attenuates 

faster than pitch motion, especially the crest of time history. Briefly, 

under extreme wave conditions of irregular waves: the largest wave 

trough, crest and wave height, the ship motion enlarges and maintain for 

several period, meanwhile the influence to pitch motion lasts longer than 

heave motion.  

 

Slamming Loads 

 

Fig. 10 and Fig. 11 demonstrates the slamming load time history of 4 

positions of the bow in Case1 and Case3. In Case1, the slamming load 

rises to the largest after Time=10.5s while in Case3, the peak occurs at 

Time=10.15s, about 0.4s after the largest trough of wave, which 

indicates that slamming reaches the peak 0.5s after the largest trough of 

wave. However, the development of the slamming load is distinct, 

depending on not only position of the probes, but also the case. The 

statistics of slamming load peak are shown in Fig. 12. The 

distinguishments of the two slamming peaks after the S175 ship 

encountering the largest wave trough and wave height are summarized 

in Fig. 13. The peak pressure rises with the decrease of vertical position 

of probes in both cases. However, the peak pressure increases in Case1 

while decreases in Case3. The distinguishment of slamming peak 

decreases when the slamming probe becomes lower in Case 1, from -

404.7Pa in P1 to -36.5Pa in P7, the ratio is approximately 11 times. 

While in Case3, the distinguishment remains at about 155Pa.  

 

 
(a) Case1                                        (b) Case2 

 
(c) Case3 

 

Fig. 9 Ship motion time history 

 
 

 
(a) Bow flare                       (b) Waterline 

 
(c) Beneath waterline               (d) Bottom 

 

Fig. 10 Slamming load time history of Case1 
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(a) Bow flare                     (b) Waterline 

 
(c) Beneath waterline              (d) Bottom 

 

Fig. 11 Slamming load time history of Case3 
 

 
 

Fig. 12 The statistics of slamming peak 

 

 
 

Fig. 13 The difference of slamming peak 

 

 

Flow Field Analysis 

 

Fig. 13 can be explained by Fig. 14 and Fig. 15, which compare the wave 

elevation and pressure distribution under two slamming peak moment. 

For Case 1, the wave elevation at the front of S175 ship is higher under 

1st slamming peak moment, which explains the decrease of slamming 

load at 2nd slamming peak moment. The pitch motions at two peak 

moments are close, while at 1st peak moment, the S175 ship is near the 

trough and the free surface near the hull at 2nd peak moment is flat, 

which results in the inconsistent pressure gradient in the vertical 

direction of the ship. That phenomenon is the consequence of different 

encounter case of the ship, which causes the variation of slamming load 

difference of two peaks in Case1.  

 

 
(a) First slamming peak 

 
(b) Second slamming peak 

 

Fig. 14 The wave elevation and pressure distribution in Case 1 at the 

peak moment of slamming 

 

 

For Case 3, the S175 ship encounters the large wave crest at the first peak 

moment while its surrounding free surface is flat at the second peak 

moment. However, the water elevation is more severe at the second one, 

which compensates the difference of waterline shape around the bow, 

resulting in the constant increase of slamming pressure of the 4 probes. 

The increase in slamming load peak can be explained by the larger wave 

elevation around the hull.  

 

 
(a) First slamming peak 

 
(b) Second slamming peak 

 

Fig. 15 The wave elevation and pressure distribution in Case 3 at the 

peak moment of slamming 

 

 

For Case 2, the results are quite distinct from the 2 cases analyzed above, 

since the most severe green water phenomenon is observed when the 

S175 ship encounters the largest crest. The whole ship bottom is above 

the free surface when the trough comes. However, the pressure 

distribution around the hull is similar to that in Case 3. 

 

Comparing the wave elevation and the pressure distribution above, three 

cases demonstrate different properties: (1) Case 1 demonstrates the most 

oblique gradient of pressure trough vertical direction of the ship at the 

first slamming peak moment. (2) Case 2 demonstrates the most severe 

green water phenomenon; thus, this case is the riskiest case when the 

ship sails in long-crested irregular wave. 
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Fig. 16 Severe wave-ship interaction in Case2 

 

 

CONCLUSION 

 

In this research, the motion and slamming load properties of S175 ship 

sailing in long-crested irregular wave are simulated and analyzed by the 

combination of naoe-FOAM-SJTU-os and HOS method. Three different 

wave conditions during irregular wave evolution are selected as 

simulation cases. The bow encounters the largest wave trough, wave 

crest and largest wave height in three cases, named as Case 1, 2, 3 

respectively. Wave generation verification of the HOS method is carried 

out before simulation and the accuracy of the coupling HOS and CFD 

method is certificated.  

The motion of S175 ship is firstly analyzed. The long-crest period of 

encountering wave strengthens the heave and pitch motions. The pitch 

motion demonstrates stability and large amplitude longer than the heave 

motion. 

Moreover, in terms of the slamming load, the long-crested waves result 

in rise of the pressure of the bow. The difference of the first peak and 

second peak is observed and analyzed. When the S175 ship interacts with 

the large wave trough, the second peak of slamming shows decrease to 

the first one, with distinguished difference of slamming load in the 

vertical direction of the hull. While in the case of encountering large 

wave height, the second slamming peak shows increase which is mostly 

consistent in the probes set along the vertical direction of the bow. The 

encounter of the large wave crest and the S175 ship is the most massive, 

with the most severe green water phenomenon than the other two wave 

cases. Thus, it can be concluded that when a ship sails under long-crested 

irregular waves, the encounter of bow and large wave crest should be 

most considered and paid attention to. 
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