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ABSTRACT 

 
Air-layer drag reduction is a highly efficient and low-energy-consuming 

ship drag reduction method. It involves complex air-liquid two-phase 

flow, making it hard to obtain quantitative flow field data through model 

tests but numerical simulation can address this issue. However, 

accurately simulating such complex flow is challenging. This study 

focuses on numerical simulation methods for air-layer drag reduction 

ships. By using the Euler-Euler two-fluid method on the OpenFOAM 

platform, a numerical simulation is carried out for a specially designed 

VLCC ship model with a bottom air-layer device using the air-layer drag 

reduction method. The method can simulate air injection from the ship 

bottom to form a two-phase flow, as well as the air-layer and water-air 

mixed flow development. From the results, it can be summed up that the 

Euler-Euler method can well simulate the air-liquid two-phase flow at 

the bottom, with good accuracy for air-layer formation, mixing, 

evolution and diffusion. This method is of great significance for the 

numerical simulation of such air-layer drag reduction ships. 

 

KEY WORDS: Air Drag Reduction; Numerical Simulation; Euler-

Euler Method; Air-Liquid Flow. 

 

INTRODUCTION 
 

Energy conservation and drag reduction are perennially significant 

objectives in the shipping industry. Firstly, reducing resistance is a 

crucial approach to lowering the operational costs of ships. For large 

transport vessels, the engine power generated from fuel consumption is 

primarily used to overcome the navigational resistance and maintain the 

forward motion of ship at a certain speed. Fuel costs account for a 

substantial proportion of the total operational costs of a ship, and fuel 

savings are of great importance in reducing these costs. By reducing the 

resistance of a ship, the engine power required to maintain its speed can 

be decreased, thereby achieving the effect of saving fuel and improving 

efficiency. 

For various methods of ship drag reduction, the air-layer drag reduction 

method is a new method of ship drag reduction this year, and the 

feasibility of this technology has been verified on some experimental 

ships. The fundamental concept of air-layer drag reduction is injecting 

an appropriate amount of air from the bottom of the ship. With the 

auxiliary function of gas cavity structures such as side plates and bow 

and stern blocks, the air is retained within the cavities, forming a 

complete air layer of a certain thickness. This air layer completely 

separates the ship's bottom surface from the water, effectively reducing 

the wetted surface area of the vessel, thereby achieving the goal of 

reducing frictional resistance. At present, a few countries such as the 

Netherlands, Japan and the United States have achieved preliminary 

demonstration applications. Including the gas drag reduction system 

(ACS) developed by the Dutch DK Group company, gas drag reduction 

system (ALS) developed by Mitsubishi Heavy Industries, Japan 

(Mizokami, et al, 2010; Kawabuchi, et al, 2011; Kawakita, et al, 2013), 

and its application in Yamatai ocean transport ship (Makiharju, et al, 

2012; Hoang, et al, 2009). More and more experimental studies have 

shown that the air-layer drag reduction technology has a significant 

effect on reducing ship resistance. 

At present, the research on the air-layer drag reduction mainly includes 

experimental and numerical simulation methods. The experiment mainly 

has the axisymmetric body experiment (Michael, et al ,1973) and plate 

experiment (Pal et al, 1988; Merkle et al, 1992). In these experimental 

studies, the drag reduction effect of bubbles or air-layer has been verified. 

At the same time, the factors affecting the drag reduction effect, such as 

bubble size, air rate and injection position, are also analyzed (Gao, et al, 

2023). In addition, various ship model experiments have also verified the 

drag reduction effect of air-layer drag reduction. However, due to the 

complex two-phase flow in the drag reduction of bubbles or air-layer, as 

well as the deformation and coalescence of bubbles, it is difficult to 

obtain quantitative experimental data such as near-wall porosity, gas 

coverage area, gas layer thickness and so on. In order to change a variable 

such as the injection position in the experiment for different working 

conditions, the model needs to be adjusted or remade, which leads to a 

large error and low repeatability of the experiment, making it difficult to 

study the drag reduction problem of the air-layer through physical 

experiments. And numerical simulation can solve this problem well.  

Air-Liquid flow is a typical continuous liquid-discrete gas coupled two-

phase flow. Considering its complexity, it is difficult to directly solve the 

large-scale discrete bubbles contained in it based on grids. Therefore, it 

is necessary to establish mathematical models for microbubbles and 

continuous liquid flow respectively (Sundaresan, et al, 2018). The 

numerical simulation methods for such problems can be divided into 

Euler-Euler method and Euler-Lagrange method according to the 

description of discrete phase. For the numerical simulation of large scale 

such as model scale or full scale, the Euler-Lagrange method requires a 

lot of calculation. It is difficult to achieve in practice, so it is appropriate 

to use the Euler-Euler method. The Euler-Euler method establishes the 

governing equations for the liquid phase and the gas phase respectively, 
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and uses the phase fraction   as the data transmission medium to solve 

the two-phase flow problem, and This method has been widely applied 

to the industrial simulation of some bubble plume problems (Elena Díaz, 

et al, 2008). The coupling between the continuous phase and the discrete 

phase is realized by the force source term, which also includes drag force, 

lift force, virtual mass force, fluid inertia force and other models (Schiller, 

et al, 1935; Ishii, et al, 1979; Tomiyama, et al, 2004). In the early 

research, the accuracy of the method was verified by the problems of 

one-dimensional air-liquid boundary layer, two-dimensional flat bubble 

drag reduction and three-dimensional hydrofoil bubble drag reduction, 

and good accuracy results were obtained (Kunz, et al, 2003; Skudarnov, 

et al, 2006). For complex bubble kinematics problems such as bubble 

coalescence and breakup, the Population Balance Model (PBM) can be 

introduced to solve them (Hulburt, et al, 1964). Mohanarangam (2009) 

simulated the drag reduction process of turbulent boundary layer with 

bubbles based on the Euler-Euler method. The breakup and coalescence 

of bubbles are considered based on the PBM and the results are in good 

agreement with the experimental results (Xiang, et al, 2011). 

In this study, the numerical simulation of air-layer drag reduction is 

carried out for a specially designed VLCC model scale ship model with 

air drag reduction devices. Based on the Euler-Euler method, using the 

open source CFD platform OpenFOAM, process of jetting air from the 

bottom of the ship to the water to form an air-liquid mixed flow is 

simulated. At the same time, the flow condition of air-liquid mixed flow 

in the boundary layer at the bottom of the ship, the flow development 

process of air-liquid mixed flow and the evolution and development 

process of air layer are concerned. 

 

NUMERICAL METHODS 

 

Governing Equations 
 

The governing equations of the Euler-Euler two-fluid model consist of 

the following two-phase continuity equations and momentum equations: 
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The subscripts of each parameter ,a b = in the formula represent the 

dispersed phase and the continuous phase,  is the viscous stress term, 

R is the Reynolds stress term, M is the interphase force, and U is the 

velocity of each phase, respectively. The above equation is a conserved 

form, but the result obtained by solving the equation is the momentum 

value of each time step. If the solution speed is required, the momentum 

value needs to be divided by the product of the volume fraction 

/U       ）（ . when the phase fraction of the discrete phase is small, 

that   is ,, the method will have numerical errors, so the equation 

needs to be improved. This problem is solved by constructing a “Phase-

Intensive” momentum equation. The form is as follows: 
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The left and right sides of the above formula are added and the improved 

equation is obtained: 
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The second bracket at the right end of the above equation is the continuity 

equation (1), and its value is ,, so the equation is obtained: 
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The right side of the above equation is replaced by the first term on the 

left side of equation (2), and the final momentum equation is obtained. 

The viscous stress term and the Reynolds stress term can be expressed 

as follows: 
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Where the eff,R  is combined form of viscous stress and Reynolds stress, 

which is expressed by the following formula: 
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Where ,cR  is: 
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If the compressibility of the fluid is not considered, that is, the density is 

constant, the incompressible Euler-Euler two-fluid model equations can 

be obtained as follow: 
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Turbulence Model 
 

The turbulence model used in the Euler-Euler two-fluid solution adopts 

the large eddy simulation (LES) model. The motion is divided into two 

categories: large-scale and small-scale vortices by filtering. The large-

scale is calculated directly, and the small-scale is solved by modeling. 

The filtering operation is as follows: 
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Where ( ),x r t −  is the filtered variable and ( ),G r x  is the filtered 

function. The N-S equation is obtained by filtering as follows: 
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Among them, the R
ij  term represents the residual stress, which is an 

unknown term and will cause the equation to be not closed. The equation 

is solved by the Smagorinsky model, as follows: 
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Where SC is the Smagorinsky coefficient, which is a fixed value in the 

whole basin; ijS is the deformation rate tensor of the solvable scale, and 

S is the size of the deformation rate tensor, which are calculated by the 

following equations : 
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SIMULATION CASES 
 

Model Scale Ship Model 
 

The ship model selected in this research is a KVLCC ship model, which 

has been specially designed and installed with an air-layer drag reduction 

device at the bottom. Through the air-layer device, the gas can form a 

gas layer with a certain thickness in a certain range of the bottom of the 

ship, which is shown in Fig. 1. 

 

 
(a) KVLCC ship model 

 

 
(b) Bow air-layer device 

 

 
(c) Stern air-layer device 

Fig. 1 Specially designed KVLCC ship model with air-layer devices 

 

In this study, the total length of the KVLCC ship model is 7 m, the 

draught is ,.4295 m, and the experimental speed is 1.117 m/s. There are 

three rows of injection air holes at the bottom of the ship, and the air-

liquid mixed flow is formed and the air layer is formed by continuous 

injection. The air holes is shown in Fig. 2. 

 

 
Fig. 2 Bottom air holes setting 

 

 

Among them, the size of all the air holes is 1 cm, the number of air holes 

in first row is 8, the second row is 12, the third row is 1,, and the air 

holes in each row are evenly spaced.  

 

 

Computational Domain and Mesh 
 

In this research, the numerical simulation of the ship model only 

considers the two-phase flow involved in the drag reduction process of 

the air-layer, without considering the two-phase flow of the free surface. 

Therefore, in the numerical simulation, the method of overlapping mode 

is adopted, that is, the calculation area of the hull is taken from the water 

line without considering the hull part and air above the water line. The 

length of the computational domain is 4 times the length of the ship, the 

bow to the entrance of the computational domain is once the length of 

the ship, and the stern to the exit of the computational domain is twice 

the length of the ship. The width and depth of the calculation domain are 

once the length of the ship, which is shown in Fig. 3. The left boundary 

of the computational domain is an inlet with uniform inflow. The left, 

right, top and bottom boundaries are symmetric boundary conditions. 

The right boundary is an outlet with a fixed velocity of zero. 

 

 
Fig. 3 The calculation domain setting 

 

 

Because the numerical simulation of two-phase flow requires more fine 

meshing, and in order to reduce the total number of grids as much as 

possible, the grid refinement near the hull is used for meshing, as shown 

in Fig. 4. 

 

The total number of grids used in the numerical simulation is about 12.5 

million, and the air layer device at the bottom of the hull is separately 

refined. For the numerical simulation of the air holes in the experiment, 

by setting the generated part of the hull surface corresponding to the 

position of each air holes as a special inlet boundary, the gas is injected 

into the water. The air hole mesh is shown in Fig. 5. 
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(a) The whole hull mesh 

 

 
(b) The bow mesh refinement 

 

 
(c) The stern mesh refinement 

 

Fig. 4 Hull mesh and boundary layer mesh refinement 

 

 
 

Fig. 5 The mesh of air holes (the left is the first row of holes, and the 

right is the second and third rows of holes) 

 

 

In the numerical simulation, the air injection velocity required in the 

numerical simulation is obtained by combining the injection volume of 

each hole in the experiment and converting the size of the hole mesh with 

the size of the real circular holes. The injection volume of each air hole 

in the experiment and the injection volume in the numerical simulation 

are shown in Table. 1. 

 

Table 1. The injection volume of each row in numerical simulation 

 

Term Row 1 Row 2 Row 3 

Injection volume in the 

experiment 
157 L/min 145 L/min 134 L/min 

Total size of air holes in 

numerical simulation 
8.96 cm2 44.88 cm2 37.4 cm2 

The injection velocity in 

numerical simulation 
1.915 m/s 0.5347 m/s 0.8377 m/s 

In the numerical simulation, according to the total size of the 

computational domain and the even inflow velocity, a total computing 

time of 2, s is calculated to stabilize the flow field in the computational 

domain. At the same time, the air-liquid mixing can reach a stable state. 

The calculation time step is ,.,,,1 seconds. This setting can ensure that 

the Courant number is about 1, so that the calculation is not easy to 

diverge, and can ensure the accuracy of the calculation results. 

 

 

RESULTS AND DISCUSSION 
 

Air-Liquid Mixed Flow Field 
 

Figure 6 shows the air phase fraction at the bottom of the ship in 0 to 20 

seconds. From the initial time of calculation to the calculation of 1 s, the 

three rows of holes can normally inject air, and move backward with the 

flow direction. The gas diffuses to both sides after injection, and fuses 

with the air of other holes to form a whole air layer. 
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Fig. 6 The air fraction at the bottom of the ship when time is 0 to 20 s 

 

When the calculation time reaches 2 s, the air injected from the first row 

has flowed to the second row, and the air injected from the third row of 

has flowed through the tail air-layer device to the tail of the ship and 

began to float. When the calculation time reaches 4 s, the air layer at the 

bottom of the ship has basically developed, and the air layer formed by 

the first two rows of holes has flowed to the third row of holes. At the 

same time, under the action of the air-layer device on both sides of the 

bottom of the ship, the gas is limited to diffuse from both sides, so that 

the obvious boundary between the gas and the air-layer device can be 

seen, so that the air inside the air-layer device continues to accumulate 

to form a thicker air layer. When the calculation time reaches 8 s, the 

development of the air layer at the bottom of the ship is basically stable, 

and the thickness of the air layer at each position basically maintains a 

dynamic balance. The excess air flows out of the bottom area of the ship 

through the air-layer device at the stern of the ship, and floats along the 

ship wall from both sides of the stern under the action of buoyancy. 

Another part of the air with low phase fraction (actually tiny bubbles) 

will continue to flow backward and float slowly when leaving the stern 

of the ship due to its small influence of buoyancy, forming a small air-

phase mixed flow area dispersed in a certain range of the stern flow area. 

Figure 7 shows the air fraction at the bottom of the ship when the 

calculation time is 0 to 20 s. The evolution of the air phase fraction 

contour with time is basically the same as that of Fig. 6. When the air 

fraction threshold is adjusted to 0.01, a large number of air fraction 

contour surface can be seen at the stern of the ship. 

 

 

 

 

 

 
 

Fig. 7 Low air fraction distribution at the bottom of the ship when time 

is 0 to 20 s 

 

 

Since the air fraction threshold set in the figure 7 is low (0.01), a large 

number of air fraction contours are shown at the stern of the ship, which 

can be understood as some microbubbles generated by the previous 

mixed flow in the actual experiment. Because of its small bubble size, 

the effect of buoyancy on bubbles is much smaller than that of water flow, 

so it can move with the flow for a long distance, forming the stern air 

cloud area. 

 

It can be seen from the Fig. 8 that when the air fraction threshold is set 

to 0.5, the air layer state near the wall at the bottom of the ship can be 

relatively clearly displayed. The air at the bottom of the ship is mainly 

concentrated in the inner side of the air-layer device and forms a 

continuous air layer. A small amount of air overflows from both sides of 

the hull. Most of the flowing air has basically diffused when it flows to 

the stern of the ship, and only a small part of the air will move to the 

vicinity of the stern propeller. 

 

 
 

Fig. 8 Air layer distribution at the bottom of the ship when time is 20 s 

 

 

Due to the effect of the air-layer device at the bottom and tail of the ship, 

when the air (a large number of microbubbles) in the air-liquid mixed 

flow flows to the stern, it will quickly move upward from the stern along 

the sides of the ship under the action of buoyancy, as shown in Fig. 9. A 

small number of microbubbles (low air fraction) will continue to move 

backward with the flow under the action of air-liquid mixed flow, leaving 

the air-layer device to reach the flow field of the propeller. 

 
3841



 

 

 
Fig. 9 Air phase fraction contour of stern when time is 14, 16 and 18 s 

 

Air Fraction in Air-Liquid Flow 
 

Figure 10 shows the distribution of air phase fraction along the flow 

direction from the maximum width of the tail device to the position of 

the first row of air holes within the range of drag reduction device at the 

bottom of the ship. The test line is 0.153 m away from the symmetry axis 

of the ship, and the distance between the test line and the bottom of the 

ship is 0.5 cm. The data of four moments: time= 4 s, 8 s, 16 s and 20 s 

were selected for comparison. For each group of data, a total of 5 time 

steps before and after the data were selected for average processing. 

From the Fig. 10, it can be seen that the temporal and spatial distribution 

of the air fraction at the bottom of the ship is roughly the same, indicating 

that the air-liquid mixing process has been basically completed from 8 s, 

and the air-liquid mixing flow gradually tends to be stable. At this time, 

the air phase fraction in the two-phase flow does not change much. 

However, it can be seen that with the increase of time, the high air 

fraction area at the rear of the ship gradually moves forward. The reason 

for this phenomenon is that due to the effect of the air-layer device, all 

air have a tend to converge at the tail of the ship. At this time, the air in 

the two-phase flow from the front to the tail will gradually accumulate at 

the tail to form a continuous air layer. When the thickness of the air layer 

reaches the designed threshold, the excess air will overflow from the rear 

side of the air-layer device, so that the thickness and coverage area of the 

inner air layer of the air-layer device remain dynamically balanced. 

Figure 11 shows the spatial distribution of the air fraction at the bottom 

of the ship at three different test positions at time is 20 s. The three test 

positions are 0.0387 m, 0.153 m, and 0.385 m from the ship symmetry 

axis, respectively. 

Where line 2 is the position tested in Figure 10. The third test position 

is the widest position of the air-layer device. For each group of data, a 

total of 5 time steps before and after the data were selected for average 

processing. 

 

 

 

 
 

Fig. 10 The spatial distribution of air fraction along the flow direction at different times of ship bottom
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From the Fig. 11, it can be seen that in the case that the air-liquid mixed 

flow has been fully developed, the air fraction at the three locations has 

a similar spatial distribution. However, through regional comparison, it 

is found that the air phase distribution of the three is different. Between 

the first row and the second row of air holes, the air fraction at line 3 is 

smaller, while the air fraction at line 1 near the outside is higher. The 

reason is that the air has a tend to diffuse to both sides during the flow 

movement, so the air at the bottom of the ship has a tend to diffuse to 

both sides of the ship from the beginning of the injection. From the 

second row to the third row of holes, because the previous air has 

accumulated, and under the action of the air layer devices on both sides, 

the trend of air diffusion in the mixed flow is suppressed. Therefore, at 

this stage, the air phase fraction distribution at the three test positions is 

basically the same. When the mixed flow reaches the stern of the ship 

through the third row of air holes, the air has gradually accumulated and  

 
Fig. 11 The spatial distribution of air fraction along the flow direction at different test positions when time is 20 s 

 

formed a continuous air layer under the action of the air layer device. 

Therefore, in this part, the air fraction of the three test positions is 

generally higher. Due to the air accumulation effect of the air-layer 

device, the air fraction at line 2 and line 3 near the middle of the ship is 

higher. At this time, it can be considered that a relatively continuous thin 

air layer can be formed after the third row of air holes. 

 

 

CONCLUSIONS 
 

In this paper, a numerical simulation study is carried out for a specially 

designed VLCC ship equipped with an air-layer drag reduction device. 

For the complex air-liquid mixed flow, the Euler-Euler two-fluid model 

is used as the basic method of numerical simulation to study the air-liquid 

mixed flow of the air-layer drag reduction ship, and the following 

conclusions are obtained: 

The Euler-Euler two-fluid model can better simulate the air-liquid 

mixed flow at a large scale, including the injection of air into the 

liquid and the formation of mixed two-phase flow, as well as the 

flow process of mixed flow along the wall. At the same time, it 

can better simulate the motion state of air under the action of 

liquid in the mixed flow. Although the capture of the bubble 

boundary cannot be achieved, the complex interaction between 

the two phases can also be achieved by increasing the interphase 

force model. 

Through the numerical simulation of the experimental conditions, 

it is found that the simulation results of the numerical simulation 

are similar to the experimental results. The temporal and spatial 

distribution of the air fraction at different positions at the bottom 

of the ship is analyzed, and it is found that due to the diffusion of 

air in the fluid, the air in the mixed flow always has a tend to 

diffuse along the direction perpendicular to the flow direction. 

The air fraction in the mixed flow decreases rapidly after leaving 

the air hole, and the air fraction on both sides behind the hole 

increases gradually and reaches a state of dynamic equilibrium. 

Under the action of the air-layer device, the air in the mixed flow 

cannot diffuse from the bottom of the ship to both sides, and as 

the device gathers at the stern of the ship, the air in the two-phase 

flow further accumulates at the stern of the ship and gradually 

forms a continuous air layer. From the numerical simulation 

results, it can be seen that when the air-liquid mixed flow reaches 

a stable state, the continuous air layer coverage at the stern of the 

ship can basically reach the position of the third air hole, thus 

producing a certain drag reduction effect. 
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