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ABSTRACT

An analytical model based on the linear potential flow theory is developed to study the diffraction problem of solitary wave interaction with
a combined structure of two thin concentric asymmetric porous arc walls. The two closed virtual circles, where the two arc walls are located,
are used to partition the entire fluid region into three sub-regions; the velocity potentials associated with each region are expanded in terms
of a series of appropriate eigenfunctions. Furthermore, a series of simultaneous equations are used to determine the unknown coefficients in
the expressions of the velocity potentials. The accuracy of the present model is verified by comparing its output with published results.
Meanwhile, the impact of various important parameters (i.e., annular spacing, incident angle, the orientation of two arc walls, and porosity
of walls) with respect to wave forces and relative wave height is examined. Numerical results reveal that dual-arc walls provide more signifi-
cant protection for the interior cylinder than single walls. The two cross-placed arc walls provide excellent protection for the interior cylinder
with their sheltered area extended. This research is anticipated to provide useful theoretical guidance for nearshore engineering design.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0087878

I. INTRODUCTION

Porous structures are widely used in marine engineering, because
they dissipate wave energy by allowing partial waves to pass through,
therefore protecting coastal and marine structures from direct wave
impact. Different types of porous structures are used in constructing
bridges, breakwaters, docks, etc. Among them, porous cylindrical
structures are very suitable for the construction of coastal and marine
structures. Accordingly, researchers in fluids physics and coastal/ocean
engineering have focused on wave motion by considering porous
cylindrical structures.

When water waves impinge on impermeable structures, strong
wave reflections and large wave loads appear on the structure surface,
posing a risk to the structures. To reduce the potential risks, many the-
oretical, numerical, and experimental studies regarding the diffraction
of water waves by porous cylindrical structures have been investigated
over the years. Several scholars have conducted studies on the interac-
tion between different kinds of waves such as short-crested waves

(Song and Tao, 2007; Tao and Chakrabarti, 2009; Liu and Lin, 2013),
Airy waves (Wang and Ren, 1994; Darwiche et al., 1994;
Vijayalakshmi et al., 2008), cnoidal waves (Weng et al., 2016; Zhai
et al., 2021b), solitary waves (Zhong and Wang, 2006; Sankarbabu
et al., 2008; Miao and Wang, 2021), and a concentric cylindrical sys-
tem. Through their research, in-depth understanding of the key char-
acteristics of concentric structures has been gained. These
characteristics, which include the coefficient of permeable walls and
the ratio of inner to outer radii, are the key factors affecting the protec-
tive effect of the outer permeable wall on the inner cylinder.
Additionally, water wave interaction with compound cylinders has
also drawn some researchers' attention. Sarkar and Bora (2020) inves-
tigated diffraction of Airy waves by a specific type of cylinders, i.e., a
floating surface-piercing truncated partial-porous cylinder and then a
surface-piercing bottom-mounted truncated partial-porous cylinder,
by treating both cases separately. More recently, Sarkar and Bora
(2021) examined the case of a train of linear water waves incident on a
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bottom-mounted surface-piercing compound partial-porous cylinder.
The cylinder consisted of two coaxial cylinders: the upper and lower
cylinders. The upper cylinder was hollow with a thin porous sidewall,
and the lower cylinder (with a radius greater than that of the upper
cylinder) was rigid. To cope with the more complex marine environ-
ment and better protect the internal structure, Liu et al. (2018b)
employed a semi-analytical solution method to solve the problem of
water wave interaction with a concentric structure having multiple
permeable outer walls. They found that by adjusting proportions of
the parameters and radius ratios of the protective walls, more protec-
tive walls can better balance the wave elevations and excitation forces
among them. Liu et al. (2018a) examined the diffraction of Airy waves
caused by combined cylindrical and perforated structures with arbi-
trary smooth cross-sections in both theory and experiment. Steiros
et al. (2020) analyzed the drag of various types of porous cylinders,
bars, and plates under steady laminar inflow. They found that the drag
decreases with increased porosity in most cases, while some special
types of perforations can increase the drag on both cylinders and bars,
either by enhancing the effect of the rear half of the models or by orga-
nizing the wake structures. Zheng et al. (2020b) investigated wave dif-
fraction from an array of structured cylinders, which are composed of
a number of thin plates deployed in parallel in the water of finite depth
based on a linear potential flow theory and an eigenfunction expansion
method. Under the assumption of small-amplitude water wave motion
and structural response, Zheng et al. (2020a) investigated the hydroe-
lastic interaction between water waves and multiple submerged porous
elastic disks with negligible thickness in water of a finite depth.
Zamponi et al. (2021) calculated the distortion of homogeneous isotro-
pic turbulence interacting with a porous cylinder by means of the
rapid distortion theory. They investigated the impact of porosity on
the velocity field through the analysis of the one-dimensional spectra
at different locations near the porous cylinder and the velocity variance
along the stagnation streamline. Li and Liu (2021) studied water wave
scattering by a submerged horizontal bottom-mounted semi-circular
barrier in a two-layer fluid based on the linear potential flow theory.
Liang et al. (2021) investigated the scattering of water waves by imper-
meable and perforated horizontal plates considering both circular and
elliptical plates within the framework of the linear potential flow the-
ory. Ma et al. (2022) proposed a new semi-analytical solution to study
the interactions between water waves and a thin porous shell net cage
that is submerged at different depths below the mean water level.

In deep and distant ocean locations, circular breakwaters are gen-
erally employed to protect the interior of the main structure while con-
fronting the incoming waves in all directions. Despite the circular
wall's excellent performance, its use as nearshore protection is exces-
sive and expensive. For these reasons, designers and engineers have
designed and built a number of unenclosed marine nearshore struc-
tures, such as arc-shaped and V-shaped breakwaters, to minimize the
construction cost and maintain adequate protection. One example of
these applications in offshore engineering is the arc-shaped breakwa-
ter, which has been successfully applied in the Caspian Sea (see Fig. 1).
Cheng et al. (2007) analyzed the wave surface variation in the perme-
able arc-shaped breakwater with a range of wave and breakwater
parameters. Chang et al. (2012) analyzed the water wave diffraction
caused by a V-type wall. Lin and Liu (2012) conducted a numerical
investigation of the interaction between a short-crested wave and a
concentric system with two arc walls. Christensen et al. (2018) studied

the effect of two different damping mechanisms of a floating breakwa-
ter through model test and numerical simulation. Han et al. (2021)
used a three-dimensional computational fluid dynamics model to sim-
ulate the oblique wave diffraction around an arc breakwater. They
experimentally measured the pressure distribution and wave forces at
different downstream sections of different waves to verify the accuracy
of their numerical calculations. Zhai et al. (2021a) compared the
hydrodynamic performance V-shaped and arc-shaped breakwater.
Most of the previous studies have been implemented with the assump-
tion of the action of waves with a small amplitude. However, the utili-
zation of shallow water wave theories, such as the solitary wave theory,
for structures in shallow water areas is more appropriate. The studies
on the interaction of solitary waves with arc-type structures are lim-
ited. To the best of the authors' knowledge, the interaction between
solitary waves and asymmetric porous arc walls has never been
studied.

The primary objective of this work is to theoretically investigate
the diffraction problem of solitary wave interaction with a combined
structure having two concentric asymmetric porous arc walls. By com-
paring the results of the current model with those of existing research,
its accuracy is confirmed. The total non-dimensional hydrodynamic
forces, wave run-ups on the solid cylinder, and relative wave heights in
the vicinity of the present structure are analyzed. This paper is laid out
as follows: The problem is formulated in Sec. II. The validity of the
proposed model is examined in Sec. III. Then, the analytical results are
presented in Sec. IV before the work is summarized in Sec. V.

II. THEORETICAL FORMULATION
A. Governing equations and boundary conditions

A schematic of a solitary wave interacting with an impermeable
cylinder and two concentric asymmetry arcs having negligible thick-
ness is shown in Fig. 2. The still water depth is h; the radii of arc walls
1 and 2 and the impermeable cylinder are denoted as a, b, and c,
respectively. A cylindrical coordinate system ðO; r; h; zÞ is employed
with the z-axis pointing upward from the flat water bottom. The cen-
tral angles of arc walls 1 and 2 are indicated as c1 and c2, respectively;
moreover, the angle from the positive direction of the x� axis to one
end of each arc wall is represented by a1 and a2, respectively.
Therefore, the position of arc walls in the coordinate system can be
consistently determined by means of c and a. Furthermore, the entire
fluid region may be divided into three regions: outside region

FIG. 1. Multiple arc-shaped breakwaters applied in the Kashagan Oilfield in
Caspian Sea, Kazakhstan.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 042103 (2022); doi: 10.1063/5.0087878 34, 042103-2

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


X1ðr � aÞ, annular region between the two arc walls X2ðb � r � aÞ,
and inside regionX3ðc � r � bÞ.

Assuming the fluid is inviscid, incompressible, and the motion
irrotational. The velocity potential is given by Uðr; h; z; tÞ ¼ Re
[/ðr; h; z; tÞ], where / is the complex velocity potential and t denotes
the time. The velocity potential in the three regions can also be
expressed as /ðjÞ ¼ /I þ /ðjÞ

s ðj ¼ 1; 2; 3Þ, where /I and /ðjÞ
s denote

the incident and scattered potentials, respectively.
For the combined system subjected to solitary waves of height H

and speed c0 propagating along the positive direction of the x� axis,
the free-surface elevation gI can be written in the following form
according to Isaacson (1983):

gI ¼ Hsech2
ffiffiffiffiffiffiffi
3H
4h3

r
ðx � c0tÞ

" #
; (1)

where c0 ¼
ffiffiffiffiffi
gh

p
and g denote wave speed and acceleration due to

gravity, respectively. Moreover, gI may be represented as a Fourier
integral

gI ¼
H
2p

ð1
�1

AðkÞeikðx�c0tÞdk; (2)

in which i ¼ ffiffiffiffiffiffi�1
p

. The Fourier transform AðkÞ ¼ Að�kÞ of gI is as
follows:

AðkÞ ¼ 4ph3k
3H

cosech pk

ffiffiffiffiffiffiffi
h3

3H

r" #
: (3)

Then, the corresponding incident potential /I can be expressed as
follows:

/I ¼
H

2p
ffiffiffiffiffiffiffiffi
h=g

p ð1
�1

AðkÞ
ik

eikðx�c0tÞdk ¼ H

p
ffiffiffiffiffiffiffiffi
h=g

p ð1
0

AðkÞ
ik

eikxe�ikc0tdk:

(4)

Furthermore, /I can be rewritten as follows:

/I ¼
ð1
0

/̂I kðx � c0tÞ½ �dk: (5)

Evidently, /̂I ½kðx � c0tÞ� satisfies the relationship: @/̂ I
@x � ik/̂I ¼ 0.

Meanwhile, the complex scattered potential is also rewritten as

/ð1Þ
s ¼ Ð1

0 /̂
ð1Þ
s dk. Clearly, /̂

ð1Þ
s must satisfy the following radia-

tion condition, i.e.:

lim
r!1

ffiffi
r

p @/̂
ð1Þ
s

@r
� ik/̂

ð1Þ
s

" #
¼ 0: (6)

Furthermore, Eq. (4) can be expanded into a Fourier complex
form using the following identity:

eikx ¼ eikrcosh ¼
X1

n¼�1
inJnðkrÞeinh ¼

X1
n¼0

nnJnðkrÞ cos ðnhÞ; (7)

in which n0 ¼ 1, and nn ¼ 2in for n � 1; Jnð:Þ denotes the Bessel
function of the first kind of order n.

For a solitary wave propagating at an angle b, the incident poten-
tial can be written as follows:

/I ¼
H

p
ffiffiffiffiffiffiffiffi
h=g

p ð1
0

AðkÞ
ik

e�ikc0t
X1
n¼0

nnJnðkrÞ cos nðh� bÞdk: (8)

According to the matching principle, the continuity conditions of
pressure and velocity must be satisfied on the arc walls and the virtual
dividing surfaces, i.e.,

/ð1Þ ¼ /ð2Þ for r ¼ a; a1 þ c1 � 2p � h � a1; (9)

@/ð1Þ

@r
¼ @/ð2Þ

@r
for r ¼ a; 0 � h � 2p; (10)

/ð2Þ ¼ /ð3Þ for r ¼ b; a2 þ c2 � 2p � h � a2; (11)

@/ð2Þ

@r
¼ @/ð3Þ

@r
for r ¼ b; 0 � h � 2p: (12)

FIG. 2. Definition sketch: (a) bird's-eye (b ¼ 0) and (b) plan view.
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In addition, the boundary conditions on the porous walls are given by
(Williams et al., 2000)

@/ð1Þ

@r
¼ @/ð2Þ

@r
¼ G1

c0

@/ð1Þ

@t
� @/ð2Þ

@t

� �
for r ¼ a; a1 � h � a1 þ c1;

(13)

@/ð2Þ

@r
¼ @/ð3Þ

@r
¼ G2

c0

@/ð2Þ

@t
� @/ð3Þ

@t

� �
for r ¼ b; a2 � h � a2 þ c2;

(14)

where Gjðj ¼ 1; 2Þ denote porous-effect parameter as used by
Chwang (1983), and it depends on the density of the holes deployed
on the wall and the size of each hole. Furthermore, G can be expressed
in the form Gr þ iGi as used by Yu (1995), where Gr and Gi, denote
the real part and the imaginary part, respectively. Physically, Gr and Gi

represent the drag term and the inertia term, which lead to the wave
energy loss and the phase change, respectively. The porous-effect
parameter can be expressed as G ¼ qc0L=l, where q, c0, l, and L are
fluid density, wave speed, coefficient of dynamic viscosity, and mate-
rial constants, which have the dimension of length, respectively. In
particular, two limiting cases for the porous-effect parameter must be
noted: (1) Gj ¼ 0 indicates that the arc walls are completely dense; (2)
Gj ! þ1 means that completely translucent (i.e., they can be
assumed to be inexistent).

B. Analytical solution

In region X1; /
ð1Þ is composed of the incident potential /I and

scatter potential /ð1Þ
s , where /ð1Þ

s must satisfy the radiation and
boundary conditions in Eqs. (6), (9), (10), and (13), respectively. It
may be written in the following form:

/ð1Þ
s ¼ Hffiffiffiffiffiffiffiffi

h=g
p 1

p

ð1
0

AðkÞ
ik

e�ikc0t
X1
n¼0

Að1Þ
n cos ðnhÞHnðkrÞ

h

þBð1Þ
n sin ðnhÞHnðkrÞ

i
dk; (15)

where Að1Þ
n and Bð1Þ

n are the potential coefficients to be determined and
Hnð:Þ denotes the first kind Hankel function of the n th order. Thus,
by combining Eqs. (8) and (15), /ð1Þ can be expressed as follows:

/ð1Þ ¼ /I þ /ð1Þ
s ¼ Hffiffiffiffiffiffiffiffi

h=g
p 1

p

ð1
0

AðkÞ
ik

e�ikc0t
X1
n¼0

nnJnðkrÞ cos ðnbÞ½�

þAð1Þ
n HnðkrÞ

i
cos ðnhÞ þ nnJnðkrÞ sin ðnbÞ½

þBð1Þ
n HnðkrÞ

i
sin ðnhÞ

o
dk: (16)

In the two regions X2 and X3, the diffracted potentials can be expressed
as follows:

/ð2Þ ¼ Hffiffiffiffiffiffiffiffi
h=g

p 1
p

ð1
0

AðkÞ
ik

e�ikc0t
X1
n¼0

Að2Þ
n JnðkrÞ þ CnHnðkrÞ

h i
cos ðnhÞ

n

þ Bð2Þ
n JnðkrÞ þ DnHnðkrÞ

h i
sin ðnhÞ

o
dk; (17)

/ð3Þ ¼ Hffiffiffiffiffiffiffiffi
h=g

p 1
p

ð1
0

AðkÞ
ik

e�ikc0t
X1
n¼0

Að3Þ
n cos ðnhÞ þ Bð3Þ

n sin ðnhÞ
h i

� EnðkrÞdk; (18)

in which

EnðkrÞ ¼
JnðkrÞ � J 0nðkcÞ

H0
nðkcÞ

HnðkrÞ for c 6¼ 0;

JnðkrÞ for c ¼ 0;

8><
>: (19)

in which Að2Þ
n ; Bð2Þ

n ; Að3Þ
n ; Bð3Þ

n , Cn, and Dn are the unknown potential
coefficients to be determined.

By substituting the expressions of the velocity potentials in each
region, i.e., Eqs. (16)–(18), into the boundary conditions as given in
Eqs. (10) and (12), and applying the orthogonality properties of
cos ðmhÞ and sin ðmhÞ over ½0; 2p�, the following is derived:

nm cos ðmbÞJ 0mðkaÞ þ Að1Þ
m H0

mðkaÞ
¼ Að2Þ

m J 0mðkaÞ þ CmH0
mðkaÞ; m ¼ 0; 1;…;

nm sin ðmbÞJ 0mðkaÞ þ Bð1Þ
m H0

mðkaÞ
¼ Bð2Þ

m J 0mðkaÞ þ DmH0
mðkaÞ; m ¼ 1; 2;…;

Að2Þ
m J 0mðkbÞ þ CmH0

mðkbÞ ¼ Að3Þ
m E0

mðkbÞ; m ¼ 0; 1;…;

Bð2Þ
m J 0mðkbÞ þ DmH0

mðkbÞ ¼ Bð3Þ
m E0

mðkbÞ; m ¼ 1; 2;…:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(20)

Next, substituting the velocity potentials in each region in Eqs.
(16)–(18) into other boundary conditions in Eqs. (9), (11), (13), and
(14) yields the following:

p1ðhÞ ¼
X1
n¼0

nn cos ðnbÞJnðkaÞ þ Að1Þ
n HnðkaÞ

h i
cos ðnhÞ

n

þ nn sin ðnbÞJnðkaÞ þ Bð1Þ
n HnðkaÞ

h i
sin ðnhÞ

� Að2Þ
n JnðkaÞ þ CnHnðkaÞ

h i
cos ðnhÞ

� Bð2Þ
n JnðkaÞ þ DnHnðkaÞ

h i
sin ðnhÞ

io
¼ 0; a1 þ c1 � 2p � h � a1; (21a)

p2ðhÞ ¼
X1
n¼0

nniG1JnðkaÞ cos ðnbÞ cos ðnhÞ þAð1Þ
n iG1HnðkaÞ cos ðnhÞ

n

þAð2Þ
n J 0nðkaÞ � iG1JnðkaÞ
� �

cos ðnhÞ þCn H0
nðkaÞ

�
� iG1HnðkaÞ� cos ðnhÞ þ nniG1JnðkaÞ sin ðnbÞ sin ðnhÞ
þ Bð1Þ

n iG1HnðkaÞ sin ðnhÞ þ Bð2Þ
n J 0nðkaÞ � iG1JnðkaÞ
� �

� sin ðnhÞ þDn H0
nðkaÞ � iG1HnðkaÞ

� �
sin ðnhÞ�

¼0; a1 � h� a1 þ c1; (21b)

q1ðhÞ ¼
X1
n¼0

Að2Þ
n JnðkbÞ þ CnHnðkbÞ � Að3Þ

n EnðkbÞ
h i

cos ðnhÞ
n

þ Bð2Þ
n JnðkbÞ þ DnHnðkbÞ � Bð3Þ

n EnðkbÞ
h i

sin ðnhÞ
io

¼ 0; a2 þ c2 � 2p � h � a2; (21c)
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q2ðhÞ ¼
X1
n¼0

fAð3Þ
n E0

nðkbÞ � iG2EnðkbÞ
� �

cos ðnhÞ þ Að2Þ
n iG2JnðkbÞ cos ðnhÞ þ CniG2HnðkbÞ cos ðnhÞ

þ Bð3Þ
n E0

nðkbÞ � iG2EnðkbÞ
� �

sin ðnhÞ þ Bð2Þ
n iG2JnðkbÞ sin ðnhÞ þ DniG2HnðkbÞ sin ðnhÞg ¼ 0; a2 � h � a2 þ c2; (21d)

where the custom functions pjðhÞ and qjðhÞ (j¼ 1, 2) can be combined into two piecewise functions PðhÞ and QðhÞ, respectively, as follows:

PðhÞ ¼ p1ðhÞ ða1 þ c1 � 2p � h � a1Þ
p2ðhÞ ða1 � h � a1 þ c1Þ

¼ 0;

(
(22)

QðhÞ ¼ q1ðhÞ ða2 þ c2 � 2p � h � a2Þ
q2ðhÞ ða2 � h � a2 þ c2Þ

¼ 0;

(
(23)

ð2p
0

cos ðmhÞPðhÞdh ¼ 0; m ¼ 0; 1;…;ð2p
0

sin ðmhÞPðhÞdh ¼ 0; m ¼ 1; 2;…;ð2p
0

cos ðmhÞQðhÞdh ¼ 0; m ¼ 0; 1;…;ð2p
0

sin ðmhÞQðhÞdh ¼ 0; m ¼ 1; 2;…:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(24)

The substitution of the self-defining functions pjðhÞ and qjðhÞ (j¼ 1, 2) into Eq. (24) yields the following:

X1
n¼0

nnJnðkaÞ cos ðnbÞ T11
nm þ iG1T

13
nm

� �þ nnJnðkaÞ sin ðnbÞ T12
nm þ iG1T

14
nm

� �� �þ
X1
n¼0

Að1Þ
n HnðkaÞ� T11

nm þ iG1T
13
nm

� �

þ
X1
n¼1

Bð1Þ
n HnðkaÞ� T12

nm þ iG1T
14
nm

� �þX1
n¼0

Að2Þ
n J 0nðkaÞT13

nm � iG1JnðkaÞT13
nm � JnðkaÞT11

nm

� �

þ
X1
n¼1

Bð2Þ
n J 0nðkaÞT14

nm � iG1JnðkaÞT14
nm � JnðkaÞT12

nm

� �þX1
n¼0

Cn H0
nðkaÞT13

nm � iG1HnðkaÞT13
nm �HnðkaÞT11

nm

� �

þ
X1
n¼1

Dn H0
nðkaÞT14

nm � iG1HnðkaÞT14
nm � HnðkaÞT12

nm

� � ¼ 0; m ¼ 0; 1; 2;…;

(25a)

X1
n¼0

nnJnðkaÞ cos ðnbÞ T15
nm þ iG1T

17
nm

� �þ nnJnðkaÞ sin ðnbÞ T16
nm þ iG1T

18
nm

� �n o
þ
X1
n¼0

Að1Þ
n HnðkaÞ� T15

nm þ iG1T
17
nm

� �

þ
X1
n¼1

Bð1Þ
n HnðkaÞ� T16

nm þ iG1T
18
nm

� �þX1
n¼0

Að2Þ
n J 0nðkaÞT17

nm � iG1JnðkaÞT17
nm � JnðkaÞT15

nm

� �

þ
X1
n¼1

Bð2Þ
n J 0nðkaÞT18

nm � iG1JnðkaÞT18
nm � JnðkaÞT16

nm

� �þX1
n¼0

Cn H0
nðkaÞT17

nm � iG1HnðkaÞT17
nm � HnðkaÞT15

nm

� �

þ
X1
n¼1

Dn H0
nðkaÞT18

nm � iG1HnðkaÞT18
nm �HnðkaÞT16

nm

� � ¼ 0; m ¼ 1; 2; 3;…;

(25b)

X1
n¼0

Að2Þ
n JnðkbÞ T21

nm þ iG2T
23
nm

� �þX1
n¼0

Að3Þ
n E0

nðkbÞT23
nm � iG2EnðkbÞT23

nm � EnðkbÞT21
nm

� �þX1
n¼1

Bð2Þ
n JnðkbÞ T22

nm þ iG1T
24
nm

� �þX1
n¼1

Bð3Þ
n E0

nðkbÞT24
nm

�

� iG2EnðkbÞT24
nm � EnðkbÞT22

nm� þ
X1
n¼0

CnHnðkbÞ T21
nm þ iG2T

23
nm

� �þX1
n¼1

DnHnðkbÞ T22
nm þ iG2T

24
nm

� � ¼ 0; m ¼ 0; 1; 2;…; (25c)

X1
n¼0

Að2Þ
n JnðkbÞ T25

nm þ iG2T
27
nm

� �þX1
n¼0

Að3Þ
n E0

nðkbÞT27
nm � iG2EnðkbÞT27

nm � EnðkbÞT25
nm

� �þX1
n¼1

Bð2Þ
n JnðkbÞ T26

nm þ iG1T
28
nm

� �þX1
n¼1

Bð3Þ
n E0

nðkbÞT28
nm

�

� iG2EnðkbÞT28
nm � EnðkbÞT26

nm� þ
X1
n¼0

CnHnðkbÞ T25
nm þ iG2T

27
nm

� �þX1
n¼1

DnHnðkbÞ T26
nm þ iG2T

28
nm

� � ¼ 0; m ¼ 1; 2; 3;…; (25d)

where
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Tðt1Þ
nm ¼

ðat
atþct�2p

cos ðmhÞ cos ðnhÞdh; Tðt2Þ
nm ¼

ðat
atþct�2p

cos ðmhÞ sin ðnhÞdh;

Tðt3Þ
nm ¼

ðatþct

at

cos ðmhÞ cos ðnhÞdh; Tðt4Þ
nm ¼

ðatþct

at

cos ðmhÞ sin ðnhÞdh;

Tðt5Þ
nm ¼

ðat
atþct�2p

sin ðmhÞ cos ðnhÞdh; Tðt6Þ
nm ¼

ðat
atþct�2p

sin ðmhÞ sin ðnhÞdh;

Tðt7Þ
nm ¼

ðatþct

at

sin ðmhÞ cos ðnhÞdh; Tðt8Þ
nm ¼

ðatþct

at

sin ðmhÞ sin ðnhÞdh;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(26)

where t ¼ 1 and t ¼ 2 correspond to arc walls 1 and 2, respectively.
To obtain the hydrodynamic loads and wave run-ups, the potential coefficients must be determined. By solving a system of equations involv-

ing Eqs. (20) and (25), the potential coefficients Að1Þ
n ; Að2Þ

n ; Að3Þ
n ; Bð1Þ

n ; Bð2Þ
n ; Bð3Þ

n , Cn, and Dn can be obtained. The series is truncated after N, i.e., n
is from 0 to N. To derive the potential coefficients, Eqs. (20) and (25) can be truncated to a finite set of equations with 4ð2M þ 1Þ potential coeffi-
cients (depending on the required numerical accuracy).

Once the velocity potentials are known, the subsequent physical quantities (e.g., pressure distribution, overturning moments, and relative
wave height) can be instantly determined. By considering the dynamic free surface condition, the water wave elevation for the three regions can be
evaluated as follows:

gðjÞ ¼ � 1
g
@/ðjÞ

@t
ðz ¼ h; j ¼ 1; 2; 3Þ: (27)

In practical calculations, the maximum dimensionless wave run-up around the interior cylinder is denoted by �gcyl , in which the dimensionless fac-
tor isH.

The wave forces (the subscript, arc 1, arc 2, and cyl denote arc wall 1, arc wall 2, and the interior cylinder, respectively) acting on the arc walls
and interior cylinder along the orthogonal directions are as follows:

Farc1;x
Farc1;y

	 

¼ �

ðh
0
dz

ða1þc1

a1

Pð1Þ � Pð2Þ½ �
����
r¼a

a
cos ðhÞ
sin ðhÞ

	 

dh ¼ Reð farc1;xÞ

Reð farc1;yÞ
	 


; (28)

Farc2;x
Farc2;y

	 

¼ �

ðh
0
dz

ða2þc2

a2

Pð2Þ � Pð3Þ½ �
����
r¼b

b
cos ðhÞ
sin ðhÞ

	 

dh ¼ Reð farc2;xÞ

Reð farc2;yÞ
	 


; (29)

Fcyl;x
Fcyl;y

	 

¼ �

ðh
0
dz

ð2p
0

Pð3Þ½ �
����
r¼c

c
cos ðhÞ
sin ðhÞ

	 

dh ¼ Reð fcyl;xÞ

Reð fcyl;yÞ
	 


; (30)

where the hydrodynamic pressure can be obtained based on the Bernoulli equation

PðjÞ ¼ �q
@UðjÞ

@t
ðj ¼ 1; 2; 3Þ: (31)

Furthermore, calculating the integrals in Eqs. (28)–(30) yields the following:

farc1;x ¼ � qgaHh
p

ð1
0
AðkÞe�ikc0t

X1
n¼0

bn cos ðnbÞJnðkaÞ þ Að1Þ
n HnðkaÞ � Að2Þ

n JnðkaÞ � CnHnðkaÞ
h i

Tð13Þ
n1

n

þ bn sin ðnbÞJnðkaÞ þ Bð1Þ
n HnðkaÞ � Bð2Þ

n JnðkaÞ � DnHnðkaÞ
h i

Tð14Þ
n1



dk;

farc1;y ¼ �qgaHh
p

ð1
0
AðkÞe�ikc0t

X1
n¼0

bn cos ðnbÞJnðkaÞ þ Að1Þ
n HnðkaÞ � Að2Þ

n JnðkaÞ � CnHnðkaÞ
h i

Tð17Þ
n1

n

þ bn sin ðnbÞJnðkaÞ þ Bð1Þ
n HnðkaÞ � Bð2Þ

n JnðkaÞ � DnHnðkaÞ
h i

Tð18Þ
n1



dk;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(32)

farc2;x ¼�qgHbh
p

ð1
0
AðkÞe�ikc0t

X1
n¼0

Að2Þ
n JnðkbÞþCnHnðkbÞ�Að3Þ

n EnðkbÞ
h i

Tð23Þ
n1 þ Bð2Þ

n JnðkbÞþDnHnðkbÞ�Bð3Þ
n EnðkbÞ

h i
Tð24Þ
n1

n o
dk;

farc2;y ¼�qgHbh
p

ð1
0
AðkÞe�ikc0t

X1
n¼0

Að2Þ
n JnðkbÞþCnHnðkbÞ�Að3Þ

n EnðkbÞ
h i

Tð27Þ
n1 þ Bð2Þ

n JnðkbÞþDnHnðkbÞ�Bð3Þ
n EnðkbÞ

h i
Tð28Þ
n1

n o
dk;

8>>>>><
>>>>>:

(33)
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fcyl;x ¼ �qgHch
ð1
0
AðkÞe�ikc0tAð3Þ

1 E1ðkcÞdk;

fcyl;y ¼ �qgHch
ð1
0
AðkÞe�ikc0tBð3Þ

1 E1ðkcÞdk:

8>>><
>>>:

(34)

The total wave forces on the two walls and the interior cylinder
can be written as follows:

Farc1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFarc1;xÞ2 þ ðFarc1;yÞ2

q
;

Farc2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFarc2;xÞ2 þ ðFarc2;yÞ2

q
;

Fcyl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFcyl;xÞ2 þ ðFcyl;yÞ2

q
:

8>>>>>><
>>>>>>:

(35)

In addition, dimensionless factors qgHah, qgHbh, and qgHch are
employed to determine the dimensionless wave forces acting on arc 1,
arc 2, and the interior cylinder, respectively. Here, the symbols
j�Farc1j; j�Farc2j, and j�Fcylj denote the maximum dimensionless hydro-
dynamic loads acting on arc 1, arc 2, and the interior cylinder, as
follows:

j�Farc1j ¼ Fmax
arc1

qgHah
; j�Farc2j ¼ Fmax

arc2

qgHbh
; j�Fcylj ¼

Fmax
cyl

qgHch
; (36)

where Fmax
arc1 ; F

max
arc2 , and Fmax

cyl denote the amplitudes of the correspond-
ing Farc1; Farc2, and Fcyl, respectively.

In practice, for shallow water waves, a simple linear relationship
between the overturning moment and wave loads exists (i.e., the over-
turning moment acting on the structure is exactly half of the corre-
sponding force, indicating that they are experiencing similar changes).
Moreover, because the wavelength of a solitary wave is infinite, the
wave diffraction parameter kh tends to zero and becomes unimpor-
tant. Nevertheless, diffraction is a key feature of wave–structure inter-
actions (Sankarbabu et al., 2008). Thus, to describe the diffraction
characteristics of solitary waves, parameter v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Hc2=h3
p

was intro-
duced (Isaacson, 1983).

III. MODEL VALIDATION

To validate the present analytical model, the present numerical
results are compared with a number of published results. When
c1 ¼ 2p and G1 ¼ 0, the current structure transforms into an imper-
meable cylinder. The hydrodynamic loads on an impermeable cylinder
obtained by the present study and the work of Isaacson (1983) are
shown in Fig. 3: (a) is the plot of non-dimensional wave forces
with the corresponding time

ffiffiffiffiffiffi
gH

p
t=h for different values of �v

(�v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ha2=h3

p
), and (b) is the plot of non-dimensional wave forces

with the wave parameter �v. When c1 ¼ 2p; c2 ¼ 0, and c¼ 0, the
current structure becomes a permeable cylinder. The hydrodynamic
loads on a permeable cylinder for different wave-porous parameters
obtained by the present study and the work of Basmat (2002) are
shown in Fig. 4: (a) �v ¼ 1, a¼ 1 m and (b) �v ¼ 2, a¼ 2 m. Excellent
agreement between the present results and the published data (Figs. 3
and 4) gives confidence in the present model for solving the problem
of solitary waves interaction with a combined structure of two concen-
tric porous arc walls.

IV. NUMERICAL RESULTS AND DISCUSSION

To investigate the effects of different parameters on the
hydrodynamic performance of solitary waves using the structure
considered in this work, a numerical calculation program was
developed based on the formulas derived in this study. To facilitate
the illustration of the distance of arc 2 from arc 1 and from the cyl-
inder, a new parameter, k ¼ ðb� cÞ=ða� cÞ, is introduced. Note
that the purpose of this study is to investigate the effect of different
parameters on the interior cylinder that must be protected and
provide reference for future practical engineering design. As com-
putational examples, the radius of arc wall 1 is set to a¼ 40 m, the
radius of the interior cylinder is c¼ 20 m, and the wave height is
H¼ 1 m. Notably, since the water height H and the radius of
the interior cylinder c are constants, the water depth h can be
calculated for different diffraction parameters v according to the
formula h ¼ ðHc2=v2Þ1=3.

FIG. 3. Comparison of the dimensionless wave force on an impermeable cylinder with G1 ¼ 0; c1 ¼ 2p, and b ¼ 0: (a) plot of non-dimensional wave forces with the corre-
sponding time

ffiffiffiffiffiffi
gH

p
t=h for different values of �v and (b) plot of non-dimensional wave forces with the wave parameter �v.
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A. Effect of arc wall 2 location

Figure 5 shows the influence of the location of arc wall 2 on the
force j�Fcylj and run-up �gcyl on the solid cylinder with c1 ¼ c2
¼ 2p=3; a1 ¼ a2 ¼ 2p=3; G1 ¼ G2 ¼ 1, b ¼ 0, and c=a ¼ 0:5. As
shown in Fig. 5(a), for the different k, the force acting on the cylinder
first monotonically increases to a maximum around v ¼ 1:2 and then
decreases gradually with increasing v. When k > 0:4, the force on the
interior cylinder does not change much for different k. In addition, the
wave force marginally increases when k increases from 0.6 to 0.8. This
occurs because not enough physical space remains for the solitary
waves transmitted into the annular region between arc walls 1 and 2 to
develop, partially preventing the wave passage through the annular
region and the direct interaction with the cylinder. As indicated in
Fig. 5(b), the wave run-up around the cylinder monotonically
decreases with increasing k. This is because when arc 2 moves toward
arc 1, the protection area of arc 2 expands with its radius providing a

smoother water area for the cylinder. The peak and trough values of
wave run-up occur at h=p � 0:2 and 0.6, respectively. Moreover, the
main peak of the wave run-up curves slightly moves toward the
smaller h with increasing k.

B. Effect of wave incident angle

Figure 6 illustrates the influence of the incident angle on the force
j�Fcylj and run-up �gcyl on the solid cylinder with c1 ¼ c2 ¼ 2p=3;
a1 ¼ a2 ¼ 2p=3; G1 ¼ G2 ¼ 1; k ¼ 0:5, and c=a ¼ 0:5. As shown in
Fig. 6(a), the hydrodynamic forces on the cylinder increase to a peak
and then decrease gradually with increasing v. As b increases, the
wave loads acting on the cylinder gradually increase. This is because as
b increases, part of the wave is not affected by arc walls 1 and 2; how-
ever, this partial wave directly impinges on the cylinder. In other
words, the protection of the cylinder provided by the two arc walls
gradually diminishes. This means that the use of arc structures to

FIG. 4. Comparison of the dimensionless wave force on a porous cylinder vs corresponding time
ffiffiffiffiffiffi
gH

p
t=h for various values of G1 with c1 ¼ 2p; c2 ¼ 0, c¼ 0, and b ¼ 0:

(a) �v ¼ 1, a¼ 1 m and (b) �v ¼ 2, a¼ 2 m.

FIG. 5. Variation of the non-dimensional wave force and run-up on the solid cylinder for different values of k with c1 ¼ c2 ¼ 2p=3; a1 ¼ a2 ¼ 2p=3, b ¼ 0, G1 ¼ G2 ¼ 1,
and c=a ¼ 0:5: (a) wave force and (b) wave run-up, v ¼ 1.
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protect offshore structures must suit the particular environment, i.e.,
the direction of incoming waves is relatively stable. In Fig. 6(b), when
b > 0, the wave run-up around the cylinder loses its symmetry about
the x� axis; it distinctly increases with b, which is the same reason for
the increase in wave loads. The approximate maximum values of wave
run-up occur around h=p ¼ �0:5, and the main peak of the �gcyl � h
curve gradually moves toward the large h with increasing b, owing to
the position shift where the wave directly impinges on the cylinder.

C. Effect of porous-effect parameters

In this section, the real physical meaning of the porous-effect
parameter is visually described to improve reader understanding. The
porous-effect parameter is related to the density and radii of thin-
walled holes, indicating that, for the same pressure jump across the
porous arc wall, the more densely packed holes and larger hole radii,
the larger the radial flow velocity of the fluid passing across the wall.

Figure 7 shows the influence of the porous-effect parameters, G1 and
G2 on the force j�Fcylj on the solid cylinder for different b values with
c1 ¼ c2 ¼ 2p=3; a1 ¼ a2 ¼ 2p=3; k ¼ 0:5, v ¼ 1, and c=a ¼ 0:5.
Figure 7(a) shows that, as G1 increases, the force acting on the cylinder
monotonically increases toward its asymptotic value. Moreover, the
larger value of b, the larger is the value of the wave force acting on the
interior cylinder. As b increases, j�Fcylj turns insensitive to the change
of G1. A similar observation is presented in Fig. 7(b). The force acting
on the cylinder first slightly decreases and then monotonically
increases, indicating that there is an optimal G2 value that can reduce
the wave force on the interior cylinder. As shown in Fig. 7(b), an
inflection point occurs in the wave load acting on the interior cylinder.
When arc wall 2 is transformed from an impermeable structure to a
permeable structure, the surge waves formed in region 3 begin to flow
through the permeable arc wall 2 into region 2, which causes a reduc-
tion in wave elevation in region 3. Physically, the hydrodynamic forces
acting on the interior cylinder are related to the pressure difference

FIG. 6. Variation of the non-dimensional wave force and run-up on the solid cylinder for different values of b with c1 ¼ c2 ¼ 2p=3; a1 ¼ a2 ¼ 2p=3; G1 ¼ G2
¼ 1; k ¼ 0:5, and c=a ¼ 0:5: (a) wave force and (b) wave run-up, v ¼ 1.

FIG. 7. Variation of the non-dimensional wave force on the cylinder for different values of b with c1 ¼ c2 ¼ 2p=3; a1 ¼ a2 ¼ 2p=3, v ¼ 1, k ¼ 0:5, and c=a ¼ 0:5: (a)
G2 ¼ 1 and (b) G1 ¼ 1.
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around the body, i.e., when the pressure difference between the wind-
ward and leeward side of the cylinder decreases, the wave load also
decreases. However, with the increase in G2, the protective effect of arc
wall 2 on the interior cylinder gradually disappears, leading to a grad-
ual increase in the wave run-up around the windward side of the
body, i.e., the wave loads gradually increase.

Because arc walls 1 and 2 can adapt to different porous-effect
coefficients, the discussion of the situation in which both impermeable
and permeable arcs exist is necessary. Thus, four typical combinations
of porous-effect permeability factors are selected to compare the effec-
tiveness of protection for the interior cylinder. These factors are as fol-
lows: (1) G1 ¼ G2 ¼ 0, both arc walls are impermeable; (2) G1 ¼ 0;
G2 ¼ 1, arc 1 is impermeable, and arc 2 is permeable; (3) G1 ¼ 1;
G2 ¼ 0, arc 1 is permeable, and arc 2 is impermeable; (4) G1 ¼ G2

¼ 1, both arc walls are permeable. Figure 8 shows j�Fcylj � v and
�gcyl � h with v ¼ 1 for the four combinations of porous-effect param-
eters with c1 ¼ c2 ¼ 2p=3; a1 ¼ a2 ¼ 2p=3; k ¼ 0:5, and c=a
¼ 0:5. As shown in Fig. 8(a), the j�Fcylj � v curves for G2 ¼ 0 and 1
nearly overlap with one another, indicating that the wave forces acting
on the interior cylinder are insensitive to the porosity of arc 2.
However, once arc 1 is permeable, it becomes apparent that whether
arc 2 is permeable or not has a significant effect on the wave forces on
the cylinder. This shows that arc 1 plays a greater role in protecting
the cylinder than arc 2. As shown in Fig. 8(b), the wave run-ups
around the cylinder become more complex for the four cases. On the
leeward side of the cylinder, the wave run-up only slightly changes for
the four cases, whereas on the windward side of the cylinder, remark-
able changes in the amplitude of wave run-up can be observed. To
illustrate this phenomenon, the changes in the relative wave height
near the combined structure as G1 and G2 varies are shown in Fig. 9.
The calculation conditions are the same as those shown in Fig. 8(b).
As illustrated in Figs. 9(a) and 9(b), the amplitude of the relative wave
height around arc 1 is extremely large with a possible risk of overtop-
ping. Furthermore, as shown in Figs. 9(a) and 9(c), the amplitude of
the relative wave height around the cylinder is also extremely high,
even higher than that of a single cylinder without exterior wall protec-
tion. This is possibly because both arc 2 and the cylinder are

impermeable and wave resonance is likely to happen at the region
between arc 2 and the cylinder. In other words, gap resonance may
occur in region 2 when the annular spacing between arc 2 and the
interior cylinder is small, e.g., c=b > 0:5, and the arc 2 is impermeable
(G2 ¼ 0). The waves come from both ends of the channel between
arc 2 and the cylinder aggregate to form a surge inside the channel.
When both arc 1 and arc 2 are permeable [i.e., G1 ¼ G2 ¼ 1, see
Fig. 9(d)], the possible resonance among solid structures as observed
in Figs. 9(a)–9(c), particularly Figs. 9(a) and 9(c), disappears. A rela-
tively still water environment is created between the arc walls and
cylinder, demonstrating the effectiveness of permeable structures in
protecting the interior cylinder.

D. Effect of opening angles of two arc walls

The influence of the opening angles c1 and c2 on the force j�Fcylj
on the solid cylinder for different values of b with k ¼ 0:5, v ¼ 1, and
c=a ¼ 0:5 is shown in Fig. 10, (a) a1 ¼ p� c1=2; a2 ¼ c2 ¼ 2p=3,
and (b) a2 ¼ p� c2=2; a1 ¼ c1 ¼ 2p=3, respectively. As expected, a
clear trend of gradually decreasing wave force on the cylinder with
increasing c1 or c2 is observed. This is because the large opening angle
provides a large sheltered area for the interior cylinder. Moreover, the
wave force on the cylinder is virtually constant after the opening angle
exceeds a specific value. For instance, when c1=p > 0:8, the force act-
ing on the cylinder remains virtually the same for b ¼ 0. In addition,
the rate at which the wave force reaches its asymptotic value gradually
decelerates; it increases in amplitude with b.

Because the opening angles of both arc walls 1 and 2 can be mod-
ified, a multiplicity of structural configurations can be formed. Two
special cases are selected to be studied and discussed separately. Case
(1) involves the comparison of the hydrodynamic performance of a
single cylinder (c1 ¼ c2 ¼ 0), a cylinder with an arc outer wall
(c1 ¼ 2p=3; c2 ¼ 0), and a cylinder with dual-arc outer walls
(c1 ¼ c2 ¼ 2p=3). Case (2) considers the comparison of the hydrody-
namic performance of a single cylinder (c1 ¼ c2 ¼ 0), a cylinder with
a concentric outer wall (c1 ¼ 2p; c2 ¼ 0), and a cylinder with two
concentric outer walls (c1 ¼ c2 ¼ 2p). The force j�Fcylj and run-up

FIG. 8. Variation of the non-dimensional wave force and run-up on the cylinder for different values of G1 and G2 with c1 ¼ c2 ¼ 2p=3; a1 ¼ a2 ¼ 2p=3; k ¼ 0:5, and
b ¼ 0: (a) wave force and (b) wave run-up, v ¼ 1.
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FIG. 9. Distribution of the relative wave height for different values of G1 and G2 with b ¼ 0, v ¼ 1, a1 ¼ a2 ¼ 2p=3; c1 ¼ c2 ¼ 2p=3; k ¼ 0:5, and c=a ¼ 0:5: (a)
G1 ¼ 0; G2 ¼ 0, (b) G1 ¼ 0; G2 ¼ 1, (c) G1 ¼ 1; G2 ¼ 0, and (d) G1 ¼ 1; G2 ¼ 1.

FIG. 10. Variation of dimensionless wave forces on the exterior and interior arc-shaped walls for different values of b with G1 ¼ G2 ¼ 1; k ¼ 0:5; c=a ¼ 0:5, and v ¼ 1:
(a) a1 ¼ p� c1=2; a2 ¼ c2 ¼ 2p=3 and (b) a2 ¼ p� c2=2; a1 ¼ c1 ¼ 2p=3.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 042103 (2022); doi: 10.1063/5.0087878 34, 042103-11

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


�gcyl on the solid cylinder for case (1) with a1 ¼ a2 ¼ 2p=3; G1 ¼ G2

¼ 1, b ¼ 0, k ¼ 0:5, and c=a ¼ 0:5 are shown in Fig. 11, (a)
wave force and (b) wave run-up (v ¼ 1), respectively. As shown in
Fig. 11(a), for case (1) of the three different configurations, the peak
values of the force on the interior cylinder are 2.77, 1.86, and 1.41. In
other words, the amplitude of the wave force decreases by approxi-
mately 33% and 49% for the single-arc and dual-arc walls, respectively.
As shown in Fig. 11(b), for the cylinder with dual-arc walls, the wave
run-up on the windward side has a more significant decline than that
of the single-arc structure. However, the wave run-up on the leeward
side virtually does not change for the single-arc and dual-arc struc-
tures. The relative wave height variation around the combined struc-
ture for case (1) is shown in Fig. 12; the calculation conditions are
the same as those shown in Fig. 12(b). The comparison of the relative
elevations in case (1) intuitively shows that the wave surface around
the cylinder protected by the single-arc or dual-arc structure becomes
flat. Moreover, due to the existence of arc 2, further reduction in the
wave height around the cylinder is observed. The force j�Fcylj and run-
up �gcyl on the solid cylinder for case (2) with a1 ¼ a2 ¼ 0; G1 ¼ G2

¼ 1, b ¼ 0, k ¼ 0:5, and c=a ¼ 0:5 are shown in Fig. 13, (a)
wave force, and (b) wave run-up (v ¼ 1), respectively. As shown in

Fig. 13(a), for case (2) of the three different configurations, the maxi-
mum values of the force on the interior cylinder are 2.77, 1.85, and
1.32. This means that the wave force amplitude decreases by approxi-
mately 33% and 52% for the single outer wall and dual outer walls,
respectively. Interestingly, for the normal incident wave (b ¼ 0), the
single-arc and single concentric walls (or dual-arc and dual concentric
outer walls) are considerably similar in terms of protecting the interior
cylinder. In Fig. 13(b), on the windward side, a similar trend of wave
run-ups shown in Fig. 11(b) can be observed. However, on the leeward
side, the wave run-up occurs in the opposite trend with the increase in
the number of outer walls; this occurs because the waves are reflected
by arc 1. The relative wave height variation around the combined
structure for case (2) is shown in Fig. 14; the calculation conditions are
the same as those shown in Fig. 13(b). Clearly, the dual cylindrical
walls provide better protection to the cylinder than the single cylindri-
cal wall, indicating that a cylinder with dual cylindrical walls can deal
with more complex marine environments.

E. Effect of orientation of arc walls 1 and 2

The influence of the orientation of arcs 1 and 2 on the force j�Fcylj
on the solid cylinder for different b values with c1 ¼ c2 ¼ 2p=3;

FIG. 11. Comparison wave force and run-up on the solid cylinder for three kinds of structure for the case (1) with k ¼ 0:5; c=a ¼ 0:5, and b ¼ 0: (a) wave force and (b)
wave run-up, v ¼ 1.

FIG. 12. Distribution of the relative wave height for case (1) with b ¼ 0, v ¼ 1, k ¼ 0:5; G1 ¼ G2 ¼ 1, and c=a ¼ 0:5: (a) c1 ¼ c2 ¼ 0; (b)
a1 ¼ 2p=3; c1 ¼ 2p=3; c2 ¼ 0; and (c) a1 ¼ a2 ¼ 2p=3; c1 ¼ c2 ¼ 2p=3.
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k ¼ 0:5, v ¼ 1, and c=a ¼ 0:5 is shown in Fig. 15, (a) a2 ¼ 2p=3 and
(b) a1 ¼ 2p=3, respectively. The figure clearly shows that when a1 or a2
decreases from 2p=3 to �p=3, the position of arc 1 or arc 2 is rotated
from being symmetrically oriented on the negative half-axis of the
x�axis to being symmetrically placed about the positive half-axis of the
x�axis. In Fig. 15(a), with decreasing a1, the magnitude of the wave
force acting on the cylinder gradually increases. This is because the inte-
rior cylinder has switched from being protected by dual-arc walls to
being protected by a single-arc wall. A similar phenomenon can be
observed in Fig. 15(b), in which the wave load is not expected to vary
considerably when a2 < p=3. The relative wave height variation around
the combined structure for varying a1 and a2 with b ¼ 0, v ¼ 1,
c1 ¼ c2 ¼ 2p=3; k ¼ 0:5; G1 ¼ G2 ¼ 1, and c=a ¼ 0:5 is shown in
Fig. 16, (a) a1 ¼ 2p=3; a2 ¼ p=6, (b) a1 ¼ 2p=3; a2 ¼ 0, (c) a1
¼ 2p=3; a2 ¼ �p=3, (d) a2 ¼ 2p=3; a1 ¼ p=6, (e) a2 ¼ 2p=3;
a1 ¼ 0, and (f) a2 ¼ 2p=3; a1 ¼ �p=3. The figure shows that the
wave patterns become more complex when the two arc walls are not
symmetrical about the x� axis. Moreover, the rotation of arc 1 has a
more significant impact on the wave field around the structure than that
of arc 2. This is because arc 1 provides a larger sheltered area than arc 2;

this is attributed to the relatively stable water environment provided by
the presence of arc 1, which greatly diminishes the effect on the overall
wave field when arc 2 is rotated [Figs. 16(d) and 16(e)].

Although the asymmetrical placement of the arc structures ren-
ders, these arcs are less effective in protecting the interior cylinder, and
the area protected by the arc walls is extended. In practical engineer-
ing, the area of intersection between the two arcs can be applied as a
channel for ship navigation. Thus, the study of this cross-distributed
structure has considerable engineering value. Here, two typical cases
are selected to investigate the hydrodynamic performance of cross-
distributed structures. Case (1) consider the comparison of the hydro-
dynamic performance of a cylinder with a single-arc wall (a1 ¼ 2p=3;
c1 ¼ 2p=3; c2 ¼ 0), a cylinder with two crossed-arc outer walls
(a1 ¼ 2p=3; c1 ¼ p=2; a2 ¼ p; c2 ¼ p=3), and a cylinder with two
uncrossed-arc outer walls (a1¼2p=3;c1¼p=3;a2¼p; c2¼p=3). Case
(2) involves the comparison of the hydrodynamic performance of a
cylinder with a single-arc wall (a1¼p=2;c1¼p; c2¼0), a cylinder with
two crossed-arc outer walls (a1¼p=2; c1¼2p=3;a2¼p;c2¼p=2), and
a cylinder with two uncrossed-arc outer walls (a1¼p=2;c1¼p=2;
a2¼p;c2¼p=2). The force j�Fcylj and run-up �gcyl on the solid cylinder

FIG. 14. Distribution of the relative wave height for case (2) with b ¼ 0, v ¼ 1, k ¼ 0:5; G1 ¼ G2 ¼ 1, and c=a ¼ 0:5: (a) c1 ¼ c2 ¼ 0; (b) a1 ¼ 0; c1 ¼ 2p; c2 ¼ 0;
and (c) a1 ¼ a2 ¼ 0; c1 ¼ c2 ¼ 2p.

FIG. 13. Comparison wave force and run-up on the solid cylinder for three kinds of structure for the case (2) with c1 ¼ c2 ¼ 2p=3; a1 ¼ a2 ¼ 2p=3; k ¼ 0:5, and b ¼ 0:
(a) G2 ¼ 1 and (b) k ¼ 1.
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for case (1) with b ¼ 0, k¼0:5, and c=a¼0:5 are shown in Fig. 17, (a)
wave force and (b) wave run-up (v ¼ 1). Figure 17(a) indicates that
the wave forces acting on the interior cylinder with a single-arc are
close to those acting on the interior cylinder with two crossed arcs.
Nevertheless, the wave forces acting on both cylinders with a single-
arc are significantly smaller than that acting on the cylinder with two
uncrossed arcs. Moreover, an analogous phenomenon of wave run-up
on the cylinder can also be observed in Fig. 17(b). This may indicate

that a configuration with a cylinder having two crossed arcs is a viable
option. In contrast, caution is required in using a configuration with a
cylinder having two uncrossed arcs. The relative wave height change
near the combined structure for case (1) is shown in Fig. 18; the calcu-
lation conditions are the same as those shown in Fig. 17(b). The wave
field of a cylinder with two crossed arcs is more complex than that of a
cylinder with a single-arc, whereas the overall wave height amplitude
in the wave region does not considerably vary. However, the wave

FIG. 15. Variation of the non-dimensional wave force on the cylinder for different values of a1ða2Þ with c1 ¼ c2 ¼ 2p=3; G1 ¼ G2 ¼ 1; k ¼ 0:5; c=a ¼ 0:5, and b ¼ 0:
(a) a2 ¼ 2p=3 and (b) a1 ¼ 2p=3.

FIG. 16. Distribution of the relative wave height for different orientations of arcs 1 and 2 with b ¼ 0, v ¼ 1, c1 ¼ c2 ¼ 2p=3; k ¼ 0:5; G1 ¼ G2 ¼ 1, and c=a ¼ 0:5: (a)
a1 ¼ 2p=3; a2 ¼ p=6, (b) a1 ¼ 2p=3; a2 ¼ 0, (c) a1 ¼ 2p=3; a2 ¼ �p=3, (d) a2 ¼ 2p=3; a1 ¼ p=6, (e) a2 ¼ 2p=3; a1 ¼ 0, and (f) a2 ¼ 2p=3; a1 ¼ �p=3.
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FIG. 17. Variation of the non-dimensional wave force and run-up on the cylinder for three kinds of structure for case 1 with a1 ¼ 2p=3; a2 ¼ p; k ¼ 0:5; c=a ¼ 0:5, and b
¼ 0: (a) wave force and (b) wave run-up, v ¼ 1.

FIG. 18. Distribution of the relative wave height for case 1 with b ¼ 0, v ¼ 1, a1 ¼ 2p=3; a2 ¼ p; k ¼ 0:5; G1 ¼ G2 ¼ 1, and c=a ¼ 0:5: (a) c1 ¼ 2p=3; c2 ¼ 0, (b)
c1 ¼ p=2; c2 ¼ p=3, and (c) c1 ¼ p=3; c2 ¼ p=3.

FIG. 19. Variation of the non-dimensional wave force and run-up on the cylinder for three kinds of structure for case 2 with a1 ¼ p=2; a2 ¼ p; k ¼ 0:5; c=a ¼ 0:5, and b
¼ 0: (a) wave force and (b) wave run-up, v ¼ 1.
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height amplitude in the wave region of a cylinder with two uncrossed
arcs significantly fluctuates. The force j�Fcylj and run-up �gcyl on the
solid cylinder for case (2) with c1¼c2¼2p=3;a1¼a2¼2p=3;k¼0:5,
and c=a¼0:5 are shown in Fig. 19, (a) wave force and (b) wave run-
up (v ¼ 1). For case (2), the trends and amplitudes of the wave force
and run-up on the cylinder are similar to those plotted in Fig. 17. The
relative wave height change near the combined structure for case (2) is
shown in Fig. 20; the calculation conditions are the same as those shown
in Fig. 19(b). As shown in Fig. 20(c), when the two arc walls are in
uncrossed placement, the wave run-up on the windward side of the inte-
rior cylinder is pronounced. The entire protected area in case (1) is
larger than that in case (2), resulting in a reduction in wave run-up on
the leeward side of the interior cylinder. Overall, the construction of a
cylindrical system is not more expensive than building a cylinder with a
single-arc wall; moreover, it provides a navigable channel for ships.

V. CONCLUSION

This paper presents an analytical investigation of solitary wave
interaction with a combined system having two concentric asymmetric
porous arc walls. Based on the present model, several factors influenc-
ing the wave loads and run-ups on the interaction cylinder were exam-
ined. The correctness of the analytical solution proposed in this paper
is verified by comparing its output with the results of existing studies.
The main conclusions are summarized as follows:

(1) The arc structure can only protect a limited area; hence, its per-
formance in terms of wave attenuation may be sensitive to the
incident wave heading. Therefore, it is more suitable in unidi-
rectional incident waves such as in the inshore water area.

(2) The location of arc 2 has a limited effect on protecting the inner cyl-
inder, whereas the degree of permeability of arc walls 1 and 2 has a
considerable effect on the wave loads and run-ups on the interior
cylinder. Remarkably, the surge phenomenon may occur when
G2 ¼ 0 (arc wall 2 is impermeable), possibly risking overtopping.

(3) The opening angles of the two arc walls are found to consider-
ably affect the wave loads. However, this does not mean that a
bigger opening angle is better. After a certain range of opening
angles, the solution of reducing the wave load by increasing the
opening angle becomes ineffective. In addition, a comparison of
two special cases illustrates that a cylinder with double-layered

walls can deal with more complex marine environment than a
cylinder with a single-layered wall.

(4) When two arcs are placed asymmetrically, the protection they
provide in reducing wave loads and run-ups becomes less effec-
tive; nevertheless, the protection range is extended. As the
placement of the two arc walls is crossed, the wave loads and
run-ups on the inner cylinder do not significantly increase.
Moreover, the gap between the two arcs can be used as a trans-
port corridor, which could be of great importance to engineer-
ing applications. In addition, the use of the uncrossed
placement of two arc structures in engineering design requires
caution due to the relatively inadequate protection it provides.

The case studies presented in this paper are focused on those
with G 2 Rþ. A more general case could be G 2 Rþ þ iR in which
the real and imaginary parts represent the resistance and inertia effects
of the arc walls, respectively, and this can be studied with the present
theoretical model as well. By referring to the results presented here,
coastal and ocean structures can be designed more effectively. Because
of the specificity of the structure considered in this work, a variety of
complex structures for study and discussion may possibly evolve. For
example, the single-arc structure, two-arc structure, cylinder with an
outer arc wall, and cylinder with two arc walls may be considered.
Additionally, the present model can be extended to study solitary wave
interaction with a cylinder surrounded by multi-arc walls. The number
of elements that has been examined in this work is limited.
Nevertheless, the reader can conduct any study of interest based on
the formulations presented in this paper.
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