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ABSTRACT

For nonlinear wave–structure interactions, the high-frequency scattered waves can be identified within the drag-inertia regime, especially in
steep incident waves where viscous effects are not negligible. According to previous studies, this unexpected phenomenon is highly associated
with the local flow field, posing challenges to the existing harmonic-based diffraction solutions (mostly up to second-order). To overcome
these shortcomings in potential flows, we establish a high-fidelity numerical wave tank to solve this two-phase free surface flow in the open
source computational fluid dynamics framework OpenFOAM. We implement the ghost fluid method to eliminate the spurious velocities,
mostly reported in two-phase volume of fluid solvers, in the vicinity of the free surface and preserve a sharp air–water interface. A modified
generating–absorbing boundary condition is employed to achieve high computational efficiency without passive relaxation zones. Good
agreement with experimental data demonstrates the reliability and accuracy of the present numerical wave tank in extreme wave conditions.
On this basis, this paper numerically investigates the wave scattering of the focused wave by a finite surface-piercing circular cylinder, with
emphasis on the flow mechanism. Three types of high-frequency scattered waves are identified in the near field, namely, Type-1, Type-2, and
Type-1� waves. The typical mechanisms of each type are analyzed in depth with detailed flow field data, which confirms and complements
the observations from previous experiments. More importantly, the primary vortical structures involved in scattering are extracted by the
Liutex vortex identification method. The behaviors of these vortical structures could characterize the evolution of the high-frequency scat-
tered waves and provide new insights into this strongly nonlinear phenomenon. An overall schematic of the wave scattering evolution in this
complex condition is summarized for a straightforward understanding.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0086826

I. INTRODUCTION

The interaction between the wave and a surface-piercing cylinder
has received sustained attention for decades due to its practical signifi-
cance in the design and production of offshore platforms. As a highly
nonlinear phenomenon involved, wave scattering is found to be impor-
tant in certain flow regimes, dependent upon the diameter D and the
incident wavelength k. When the cylinder is large, i.e., D=k> 0:2, the
structure is considered to cause evident disturbances to the incident
wave field. Therefore, a number of linear or high-order diffraction solu-
tions based upon the harmonic analysis have been established to take
into account the scattered field. When the cylinder is small, i.e.,
D=k< 0:2, the disturbances are generally considered minor and thus
can be ignored. However, according to the systematic experimental

studies by Swan et al.,1–3 this classification is not strictly for the steep
incident conditions where viscous effects possibly play important roles,
e.g., flow separation and vortex shedding. When the flow falls within
the regime D=k< 0:2, two undocumented high-frequency scattered
waves can be identified in both steep regular and focused waves,
namely, Type-1 and Type-2, as shown in Fig. 1. Since the evolution of
these scattered waves is highly related to the local flow around the cyl-
inder, the existing diffraction solutions based on the Taylor expansion
(mostly up to second-order) cannot account for these high-frequency
components. As a result, it usually leads to a large discrepancy in wave
loading predictions. On the other hand, it is difficult for numerical
methods based on potential flow theory to reproduce this highly non-
linear phenomenon for further analysis, especially in steep waves.4,5
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Experimental observation is considered the most straightforward
method for a preliminary exploration. By analyzing the records of
wave gauges and the high-quality photos by high-speed digital cam-
eras, Swan et al. concluded that the Type-1 wave is attributed to the
run-up and wash-down near the stagnation points, and the Type-2
wave is associated with the circulation of fluid around the cylinder.
However, due to the limitation of observation methods, it is hard to
obtain detailed information about the flow field for an in-depth under-
standing. Therefore, it is necessary to introduce a powerful numerical
tool for further analysis.

With the rapid development of high-performance computers,
computational fluid dynamics (CFD) offers the capability of solving
fully nonlinear governing equations, which can well capture these
high-frequency scattered waves. A large number of numerical simula-
tions have reported their existence in different wave conditions. Chen
et al.6 used OpenFOAM to simulate the wave–structure interaction of
a bottom-mounted vertical circular cylinder; they observed similar
scattered waves in the case of a focused wave group with kA¼ 0.2
(where k is the wavenumber and A is the crest amplitude). Similarly,
Chen et al.7 developed a 3D parallel particle-in-cell solver to simulate
the same working condition and additionally confirmed the existence
of high-frequency scattered waves in the case of regular waves with
kA¼ 0.2. Mohseni et al.8 adopted the IHFOAM toolbox to establish a
numerical wave tank and simulated the ITTC benchmark tests of a
truncated circular cylinder in regular waves; they mainly analyzed the
relationships with wavelength and wave steepness in terms of the har-
monics of run-up heights and the high-frequency scattered waves.

Nevertheless, previous numerical studies have paid little or no
attention to the formation mechanism of these high-frequency scat-
tered waves. Most of them still focused on common overall quantities,
such as wave elevation and wave loading, which did not fully utilize
the advantages of CFD in resolving the entire flow field. For these rea-
sons, it is of great importance to analyze the scattered waves from the
perspective of the local flow field, but before that, how to handle the
spurious air velocities above the free surface in the numerical simula-
tions, mostly reported in two-phase volume of fluid (VOF) solvers,
becomes a significant problem. Afshar9 reported the severe spurious
air velocities in wave generation of an OpenFOAM-based numerical
wave tank, especially the horizontal component. The reason for this
unphysical problem is that the original VOF method of the weighted
average concept cannot deal with the jump conditions in large density
ratio two-phase flows; his work found that the possible shortcomings
are the unexpected wave breaking and the unwanted phase-lag
between numerical and analytical solutions. These numerical problems

will undoubtedly affect the accuracy of the local velocity field and may
lead to misunderstandings of the flow mechanism.

To eliminate the spurious air velocities in air–water two-phase
flows, the ghost fluid method (GFM) has been proven to be an effec-
tive approach. By constructing the corresponding ghost nodes/cells on
the other side of the real fluid, the GFM can handle the discontinuous
variables across the interface, e.g., pressure, density, and viscosity, thus
achieving the required jump conditions. The GFM was first proposed
by Fedkiw et al.10 for two-phase compressible flows on a Cartesian
grid and later was extended by Kang et al.11 for viscous incompressible
air–water flows. In marine hydrodynamics, the GFM has also shown
its superior capabilities in a wide range of applications. Huang et al.12

implemented the GFM with the two-phase level-set method on curvi-
linear body-fitted grids and applied it to the flow around a surface
combatant model; the comparisons with experimental measurements
showed its good performance in free surface flows. Queutey and
Visonneau13 extended the GFM to unstructured grids with the VOF
method; in the flow around the Series 60 ship model, excellent agree-
ment was achieved in terms of free surface elevation and velocity field.
Vuk�cevi�c et al.14 first implemented the GFM in the arbitrary polyhe-
dral framework of OpenFOAM for large-scale air–water flows and
gave a thorough description of numerical discretization; in their imple-
mentation, the surface tension was neglected, and the viscosity was still
assumed continuous across the interface. On this basis, Peltonen
et al.15,16 took a special treatment for the viscous term and proved its
improvement with a benchmark shear flow. Based on these previous
developments, the GFM has gradually been applied to wave simula-
tions. Vuk�cevi�c et al.17,18 and Li19 adopted the GFM in their coupled
viscous/potential models to simulate the 2D wave propagations and
the wave diffraction of a 3D vertical circular cylinder in regular waves.
Liu et al.20 used the GFM to eliminate the spurious air velocities in
wave-breaking simulations and thus assessed the performances of dif-
ferent turbulent models; their simulations confirmed that the spurious
velocities result in an earlier breaking position.

In summary, the numerical simulations using the GFM can obtain
a more physical flow field and thus provide insights into the formation
of the high-frequency scattered waves. However, to the author’s knowl-
edge, few scholars have thoroughly studied their behaviors and mecha-
nisms, especially in complex extreme wave conditions. For example,
Kasiman21 used OpenFOAM to reproduce the experiments by Swan
et al., but still preferred to explain the physics from surface elevation. To
fill this gap regarding the flow mechanisms, a high-fidelity simulation is
performed to study the high-frequency scattered waves of focused wave
interactions with a finite surface-piercing circular cylinder. The primary
objects are to (i) establish a high-fidelity numerical wave tank for
focused wave simulations using the GFM and generating–absorbing
boundary conditions (GABC); (ii) explain the mechanisms of high-
frequency scattered waves from the local flow field; and (iii) summarize
the evolution of wave scattering in focused wave conditions.

The remainder of this paper is organized as follows. First, the
numerical methods used to establish the high-fidelity numerical wave
tank are introduced in Sec. II, including the GFM, geometric VOF
method, and GABC boundary conditions. Section III describes the
numerical setups in detail. Among them, a mesh convergence study is
carried out to determine the mesh configuration, and the adverse
effects of spurious air velocities are also discussed. In Sec. IV, the
mechanisms of the high-frequency scattered waves involved in this

FIG. 1. Illustration of high-frequency wave scattering in regular waves: (a) Type-1
and (b) Type-2.
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complex flow are analyzed in terms of wave elevation, velocity field,
and vortical structures. Finally, conclusions are drawn in Sec. V.

II. NUMERICAL METHODS
A. Governing equations

In the present study, all simulations are carried out by the open
source finite volume CFD toolbox OpenFOAM v8. In the original
two-phase incompressible VOF solver interFoam, the governing equa-
tions are as follows:

r � U ¼ 0; (1)

@qU
@t

þr � ðqUUÞ ¼ �rpd � g � xrqþr � ðleffrUÞ þ fr; (2)

whereU is the velocity, q is the density, g is the acceleration of gravity,
x is a Cartesian coordinate vector, pd ¼ p� qg�x is the dynamic pres-
sure, leff is the effective dynamic viscosity, and fr is the surface tension
term. Here, the variable density q and viscosity l are assumed contin-
uous across the free surface using the phase fraction av ,

q ¼ 1� avð Þqa þ avqw; (3)

l ¼ 1� avð Þla þ avlw: (4)

On the RHS of Eq. (2), the co-existence of the dynamic pressure
gradient term �rpd and the density gradient term �g�xrq brings
troubles to the solution algorithm. Because most CFD codes employ
segregated strategies, the phase fraction is solved with the velocity of
the previous time step, and then the weighted density is obtained
accordingly. However, the dynamic pressure is updated in each itera-
tion of the present time step. On the other hand, the usual linear inter-
polation fails to meet the jump conditions and thus obtains the
incorrect gradients of pd and q, both of which vary dramatically across
the free surface. Therefore, these numerical errors will cause an imbal-
ance between �rpd and �g�xrq, resulting in an unphysical non-
zero source term on the RHS of Eq. (2). It can explain the generation
of spurious velocities, which are more severe in the low-density air
phase due to q as pre-factors on the LHS of Eq. (2).

To address this issue, we implemented the ghost fluid method
(GFM) to meet free surface jump conditions, in which the density and
the dynamic pressure are both assumed sharp across the free surface.
The basic ideas and procedures are based on the previous work by
Vuk�cevi�c et al.14 After considering free surface jump conditions, the
momentum equation becomes

@U
@t

þr � ðUUÞ ¼ �brpd þr � ð�effrUÞ; (5)

where �eff is the effective kinematic viscosity, and b is either the
inverse air density 1=qa or the inverse water density 1=qw. Here, the
viscosity is still assumed continuous, and the surface tension is
neglected due to the large-scale characteristics in marine hydrodynam-
ics. Note that the laminar model is used in this study because of the
minor turbulence effect in non-breaking wave conditions, but the cur-
rent implementation allows the application of various existing turbu-
lence approaches, such as Reynolds-averaged Navier-Stokes (RANS)
method, detached-eddy simulation (DES), and large eddy simulation
(LES), without any additional changes.

Since the flows are considered incompressible with constant den-
sity in each phase, Eq. (5) is similar to the momentum equation of

incompressible single-phase flows. The main difference is the special
treatments for �brpd when the free surface lies between the adjacent
cell centers P and N, i.e., ðavP � 0:5ÞðavN � 0:5Þ< 0. Here, av ¼ 0:5
is regarded as the free surface in the VOF method. When the cells are
away from the free surface, the inverse density b can be directly posi-
tioned inside the divergence operator. However, when the cells are
near the free surface, the one-sided extrapolations have to be adopted
for the dynamic pressure and density. For dynamic pressure, the corre-
sponding ghost cell is constructed on the other side of the real fluid to
calculate the gradient instead of the actual adjacent cell. Its value is
correlated with the relative distance to the free surface ðavP � 0:5Þ=
ðavP � avNÞ. For density, the value is simply determined by whether
the cell is wet (av > 0:5) or dry (av < 0:5).

In fact, the above treatments are primarily for the discretization
of the pressure Poisson equation,

r � 1
ap

brpd

� �
¼ r � H UNð Þ

ap

 !
; (6)

where ap is the diagonal coefficient of the semi-discretized form of
Eq. (5), and HðUNÞ consists of the source term and the contribution
from all neighbor cells. In this regard, a modified Laplacian scheme is
required for the diffusion term on the LHS. Moreover, due to explicit
non-orthogonal correction, a modified gradient scheme is also neces-
sary for the gradient term brpd . For detailed information, refer to
Ref. 14. In the Appendix, a standard test case for free surface flows is
used to validate our implementation of the GFM and show its numeri-
cal improvements.

B. Interface capturing method

To accurately capture the interface, the volume of fluid (VOF)
method22 is adopted in our simulations. A scalar field av , which is
defined as the volume fraction of the heavier phase (Here refers to
water) in each cell, is used to locate the interface. The transport equa-
tion is given below:

@av
@t

þr � avUð Þ ¼ 0: (7)

Using Gauss’s theorem, the discretized integral form of the advection
term in Eq. (7) can be rewritten asð

V
r avUð ÞdV ¼

ð
@V

avUð Þ � ndS ¼
X
f

avf � /f ; (8)

where n is the unit face normal, avf is the face interpolated volume
fraction, and /f is the volume flux. To reduce the numerical diffusion,
the challenge lies in how to get the precise interpolated value avf in
advection. In addition to the original algebraic interface compression
approach proposed by Weller,23 OpenFOAM v8 also provides a geo-
metric method based on the piecewise-linear interface calculation
(PLIC). The primary idea is to split each cell with surface-cuts, the ori-
entation of which is determined by the point interpolated value avp.
According to the submerged area on each face, avf can then be calcu-
lated with the concept of geometric interface reconstruction. For those
cells that cannot fully resolve the interface, the algebraic interface com-
pression approach will still be applied, and thus avf will include the
contribution from the artificial compression term. This flexible
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strategy will significantly improve the solution’s accuracy to get the
sharp interface while enhancing the robustness for complex practical
problems. Considering the above strengths, we adopt this PLIC-based
geometric VOF method in the present study. A detailed description of
the procedure was given in Ref. 24.

C. Wave generation and absorption

The third-party library waves2Foam developed by Jacobsen25 is
adopted for wave generation and absorption. In the present numerical
wave tank, we employ a new generating–absorbing boundary condi-
tion (GABC) instead of the passive relaxation zone technique. This
open boundary can achieve low reflection coefficients for dispersive
waves without the relaxation (dissipation) zone, thus greatly saving the
computational cost. Meanwhile, when the incident wave theories
(including pressure and velocity) are known, this boundary condition
can also generate required waves. For its detailed derivation and per-
formance, refer to Ref. 26. Recently, a simplified variant has been
implemented in wave2Foam by Borsboom and Jacobsen27 and vali-
dated through a series of 2D wave propagation cases. However, since it
was originally derived based on free surface continuous conditions, we
have to make necessary modifications under the GFM framework.
Here, a detailed description is presented:

This boundary condition is based on the classical Sommerfeld
radiation condition, which only performs perfectly for waves with con-
stant phase velocity c. For dispersive waves, a depth-varying function c
(z) is proposed to replace the constant value c,

@U
@t

þ c zð Þ @U
@x

¼ 0; (9)

where different forms of c(z) were already given in Ref. 27. In order to
convert the velocity potential U into variables in the Navier–Stokes
equations, the linear Bernoulli equation is used,

p ¼ �qwgz � qw
@U
@t

; (10)

where p is the total pressure and qw is the water density. When insert-
ing Eq. (10) into Eq. (9), the boundary condition then can be expressed
with dynamic pressure pd and velocity U,

� pdð Þb þ qwc zð Þnb � Ub ¼ SG; (11)

where ðÞb represents the variables on the boundary face, and SG is the
source term for wave generation. To further eliminate the velocity Ub,
the semi-discretized form of Eq. (5) is required,

Ub ¼ H UNð Þð Þb
apð Þb

� 1
ap

� �
b

bð ÞbC rpdð ÞbC ; (12)

where ðÞC represents the special treatment near the interface, i.e., the
above-mentioned one-sided extrapolation. Since this boundary condi-
tion is essentially imposed on the water column, we follow the same
criterion in the GFM framework to determine the wet boundary face,
i.e., af > 0.5. Therefore, ðbÞbC can be directly expressed as the inverse
water density bw. When Eq. (12) is substituted into Eq. (11), we can
finally obtain the boundary condition for dynamic pressure pd ,

1þ c zð Þ
D

1
ap

� �
b

 !
pdð Þb ¼

c zð Þ
D

1
ap

� �
b

pdð ÞC þ
c zð Þ
bw

H UNð Þð Þb
apð Þb

� SG;

(13)

where D is the distance between the boundary face center and the adja-
cent cell center, and ðÞC represents the variables of the owner cell of
the boundary face. It is worth noting that the gradient term of dynamic
pressure ðrpdÞbC still uses the usual linear interpolation method, i.e.,

ðrpdÞbC ¼ ðpdÞb�ðpdÞC
D . This is because the free surface at the inlet/outlet

is relatively flat with respect to the size of the mesh, which means the
situation where the free surface lies between the boundary face center
and the adjacent cell center almost does not exist.

D. Extreme wave model

To reproduce extreme wave conditions, the linear NewWave
theory28 is used to generate phase-focused waves at the target position
and time. In this theory, a number of linear waves with specific phases
are linearly superimposed. The wave elevation can then be expressed
as

g x; tð Þ ¼
XN
i¼1

Ai cos kiðx � xcÞ � xiðt � tcÞð Þ; (14)

where xc and tc are the target position and time, respectively. Based on
the specified wave spectrum, the amplitude Ai of each wave compo-
nent is determined by

Ai ¼ Ac
S fið ÞDfPN

i¼1
S fið ÞDf

; (15)

where Ac is the target crest amplitude, SðfiÞ is the wave spectral density
of the ith component with wave frequency fi, and Df is the frequency
interval usually with a uniform distribution. The wave spectral density
is computed with the JONSWAP wave spectrum29 as follows:

S fð Þ ¼ a
H2

s f
4
p

f 5
exp � 5

4

fp
f

� �4
" #

cb; (16)

where Hs is the significant wave height, fp is the peak wave frequency,
and c is the peak lifting factor. Here, c is set to a default value of 3.3. a
and b are defined as

a ¼ 0:0624
0:23þ 0:0336c� 0:185= 1:9þ cð Þ ; (17)

b ¼ exp
� f � fp
� �2
2r2f 2p

" #
; (18)

r ¼ 0:07; f � fp;

0:09; f > fp:
:

(
(19)

III. NUMERICAL SETUP
A. Computational model

According to the experiments in the COAST Laboratory Ocean
Basin at Plymouth University, a finite surface-piercing cylinder is used
to study the high-frequency scattered waves. The cylinder has a diame-
ter D of 0.3m and a height L of 0.3m. The front of the cylinder is
located at the focus position xc, and the submerged depth H is 0.15m
at still water. In the experiment, the cylinder was fixed, and all degrees
of freedom were restricted.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 035132 (2022); doi: 10.1063/5.0086826 34, 035132-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


In the present simulation, a rectangle computational domain is
adopted for the numerical wave tank, as shown in Fig. 2. The origin of
the coordinate system is at the intersection of the inlet with the longi-
tudinal symmetry plane at still water. The water depth is set to 2.93m,
which equals to the working depth of the experimental basin. The
application of GABC boundary conditions leads to a shorter domain
length without the relaxation zone in the far field. As a result, the size
of the computational domain is finally set to 0 � x � 10 m,
−1.5 � y � 1.5 m, and −2.93 � z � 1 m (length� width� depth).

To better explore the flow mechanism, a high-quality body-fitted
structured mesh is adopted, as shown in Fig. 3. According to the con-
vergence study discussed later, the mesh finally consists of 6.3� 106

cells with refinement regions around the free surface. In the vicinity of
the cylinder surface, several O-grid blocks are used to capture the
topology to improve the quality near the free end. The height of the
first near-wall layer is set to 5 �10�3D, and the expansion ratio is set
to 1.05. At the same time, the mesh gradually becomes coarse toward
the boundaries away from the free surface.

FIG. 2. Computational domain (where the
local enlargement shows the geometric
parameters of the cylinder and the posi-
tion of a pressure probe).

FIG. 3. Computational mesh: (a) overview
on x-z plane (y¼ 0), (b) magnified view
on x-y plane (z¼ 0), and (c) magnified
view near free end.
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B. Boundary conditions and numerical schemes

For wave generation and absorption, the GABC boundary condi-
tion is applied to the inlet and outlet. The bottom and cylinder are
both treated as no-slip walls, while the Neumann boundary condition
is imposed on the atmosphere. As for the lateral sides, the symmetry
boundary condition is used.

To reduce the numerical dissipation during the wave propaga-
tion, a blended scheme between the first-order Euler scheme and the
second-order Crank–Nicolson scheme is used for the temporal discre-
tization. According to a sensitive study of Zhuang and Wan,30 the
blending factor is set to 0.95 as recommended. For the spatial discreti-
zation, the advection term and the diffusion term in the momentum
equation are discretized using a second-order limitedLinearV
scheme31 and a second-order linear scheme, respectively. Note that
the diffusion term in the pressure Poisson equation is discretized by a
second-order GFM corrected laplacian scheme, which meets the free
surface jump conditions. In addition, the gradient term of the dynamic
pressure pd is also treated with a second-order GFM corrected gradient
scheme for the non-orthogonal correction. As for the phase fraction
transport equation, it is solved by a PLIC corrected scheme. For pres-
sure–velocity coupling, the PIMPLE algorithm, which is a combina-
tion of PISO32 and SIMPLE,33 is used to solve it with a segregated
strategy. The pressure equation is solved using a preconditioned con-
jugate gradient (PCG) solver with a diagonal incomplete-Cholesky
(DIC) preconditioner, and the tolerance is set to 10�8. Moreover, the
phase fraction transport equation is solved by an iterative solver with a
symmetric Gauss–Seidel smoother, and the tolerance is set to 10�10:

The simulation is performed on the high performance computing
(HPC) cluster of CMHL laboratory at Shanghai Jiao Tong University.
Each node consists of 36 CPU cores (2�Intel Xeon Gold 5120,
2.20GHz) with 128 GB RAM, and three nodes are used for running in
parallel. For stability, a fixed time step Dt ¼ 5�10�4 s is used through-
out the simulation, satisfying the maximum Courant–Friedrichs–Lewy
number always less than 0.5. The physical time t is 17 s, and the total
CPU running time is about 112 h.

C. Mesh convergence study

A mesh convergence study is first performed on the focused
wave generation to determine the appropriate mesh size. The experi-
mental wave parameters used in our study are listed in Table I. Since
the wave profiles are the same along the lateral direction, a 2D mesh
with only one cell in the y-axis is adopted in this section. The main
parameters of three different sets of meshes (namely, coarse, medium,
and fine) are presented in Table II.

In our simulations, the number of input wave components is the
same as in the experiment, i.e., N¼ 244. Meanwhile, the frequencies
are evenly distributed between 0.1 and 2Hz. Figure 4 compares the
wave amplitude spectrum calculated by Eq. (15) with the experimental

data. It can be seen that the amplitudes show almost the same distribu-
tion, indicating the input parameters are valid.

Figure 5 compares the time histories of wave elevation g at the
focus position. In Fig. 5(a), the wave profiles show a large discrepancy
for the coarse mesh, especially in the initial and final phases.
Moreover, the crest amplitude is also slightly under-predicted, which
can be attributed to the excessive numerical dissipation errors.
However, the difference between the medium and fine meshes is mini-
mal, indicating the solution converges with mesh refinement. On this
basis, a grid convergence index (GCI) study is carried out on the crest
amplitude Ac to quantitatively assess the grid resolution, as shown in
Table III. The specific procedures are all under the guidelines of Celik
et al.34 Based on the uniform refinement region near the free surface,
the grid refinement factor r is a constant equal to 2. The results show
that the converge ratio RG is in the range of 0–1, indicating a mono-
tonic convergence. More importantly, GCI32=rPGCI21 is approxi-
mately 1, yielding that the solutions are well within the asymptotic
range of convergence. In Fig. 5(b), the result of the medium mesh is
further compared with the experimental measurement and the numer-
ical prediction of Hu et al.35 The good agreement with them demon-
strates the accuracy of incident wave generation and sufficient mesh
configuration. Therefore, the medium mesh is adequate to predict the
most common quantities of interest, including wave elevation.
Nevertheless, for the main focus of our work, we still employ a 3D
mesh (see Fig. 3) of the fine configuration to analyze the near-field of
the following wave–structure interaction simulation.

TABLE I. Experimental wave parameters: xc , target focus position; Tp, peak wave
period;Ac , target crest amplitude; kp, peak wavenumber; kp, peak wavelength; d,
water depth; N, total number of wave components.

xc (m) Tp (s) Ackp D=kp d (m) N

4.15 1.456 0.196 0.09 2.93 244

TABLE II. Mesh parameters in 2D convergence study: Nt , total number of cells; Dx,
uniform size of refined region in the horizontal direction; Dz, uniform size of refined
region in the vertical direction.

Mesh Nt (�104) Dx (m) Dz (m)

Coarse 1.8 0.04 0.02
Medium 4.6 0.02 0.01
Fine 6.6 0.01 0.005

FIG. 4. Comparison of wave amplitude spectra.
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D. Effects of spurious air velocities

In this section, the effects of spurious air velocities on focused
wave generation are discussed, emphasizing the need for the GFM. To

intuitively show the difference at first, the comparison of the velocity
field at the focus time with/without the GFM is presented in Fig. 6,
where the black lines (av ¼ 0.5) represent the instantaneous free sur-
face. It can be seen from Fig. 6(a) that the velocity field is continuous
and smooth across the free surface, and the maximum appears below
the wave crest as expected. However, without using the GFM, some
spurious velocities (dark red areas) occur above the free surface, as
shown in Fig. 6(b). It is worth noting that this problem is particularly
evident at the wave crests and troughs. Figure 7 further compares the
vorticity field at the focus time with/without the GFM. In Fig. 7(b), the
vorticity is much higher above the entire free surface with a more cha-
otic distribution. However, after using the GFM, it is clearly observed
from Fig. 7(a) that the non-zero vorticity is confined to a small region in
the vicinity of the free surface, indicating the velocity field is greatly
improved. For quantitative statistics, Fig. 8 compares the time histories
of wave elevation at the focus position with/without the GFM, where
the dashed lines indicate the actual focus time. When the GFM is not
used, it gives an earlier focus time and a slightly reduced crest amplitude,
which can be attributed to the above observed spurious air velocities.

By comparing various aspects of interest, we conclude that the
spurious air velocities can be well eliminated with the GFM, thereby

FIG. 5. Time histories of wave elevation
at focus position: (a) mesh convergence
study and (b) numerical validation.

TABLE III. Grid convergence index (GCI) study for Ac : e21 ¼ S2 � S1 and
e32 ¼ S3 � S2, absolute errors where S denotes the solution of each mesh; r, con-
stant grid refinement factor; RG ¼ e21=e32, convergence ratio; P, apparent order of
convergence; subscripts 1, 2, and 3 represent the fine, medium and coarse meshes,
respectively.

Parameter Value

e21 (m) −0.003 24
e32 (m) −0.005 05

r 2
RG 0.643
P 0.638

GCI21 (%) 7.29
GCI32 (%) 11.72

GCI32=rPGCI21 1.03
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improving the robustness and accuracy of numerical simulations. This
improvement guarantees stable wave propagation in steep conditions
without any wave breaking caused by large unphysical velocities,
which was reported in Ref. 9. On the other hand, because most vortex
identification methods are based on the calculation of the velocity
field, the more accurate the velocity field, the more accurate the vorti-
cal structures, i.e., free from any possible contamination and mislead-
ing caused by spurious velocities. This feature is critical for numerical

simulations of more complex wave–structure interactions, especially
for the in-depth analysis of small-scale free surface flow structures.

IV. RESULTS AND DISCUSSION
A. Comparisons with experiment

Before analyzing the flow field, the results are first quantitatively
compared with experimental measurements to validate our numerical
model again. Figure 9 shows the locations of wave probes on the cylin-
der surface, of which WPB1 aims to record the wave run-up height at
the front. The other four probes are evenly located on the cylinder sur-
face at an interval of 45�. Figure 10 compares the time histories of
wave elevation at WPB1. As can be seen, the present result is in rea-
sonable agreement with the experiment and the numerical simulation
of Hu et al.35 However, in our simulation, we find that the maximum

FIG. 6. Velocity fields at focus time: (a) with GFM and (b) without GFM.

FIG. 7. Vorticity fields at focus time: (a) with GFM and (b) without GFM.

FIG. 8. Time histories of wave elevation at focus position with/without GFM. FIG. 9. Locations of wave probes.
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wave run-up is over-predicted. This discrepancy may be due to the vir-
tual wave probes can be infinitely positioned close to the cylinder sur-
face in the numerical simulation.

In the experiment, a pressure sensor was positioned 0.05m below
still water at the front of the cylinder, as illustrated in the enlargement
of Fig. 2. In Fig. 11, the comparison of time histories shows that the
present numerical model can accurately predict the pressure with a rel-
ative error of less than 3% for the peak. On the other hand, when in
the significant wave troughs, the pressure drops to zero due to the
emergence of the sensor above the free surface. This phenomenon is
manifested as straight lines in the time histories, which is also well cap-
tured in our simulation.

B. High-frequency wave scattering

Figure 12 shows the time histories of wave elevation at each wave
probe. When the focused wave crest comes to the cylinder, a steep
wave run-up can be detected at the front stagnation point (WPB1), as
shown in Fig. 12(a). The maximum wave elevation can reach about
0.15m, which is approximately the cylinder’s radius. As the wave crest
further propagates downstream, a water mound that forms on the
back of the cylinder is responsible for a high wave elevation at the rear
stagnation point (WPB5). With the crest traveling farther, Fig. 12(b)
shows a significant secondary peak (indicated by the red arrow) at
WPB3, corresponding to the local disturbance marked by the red
dashed circle in Fig. 14(f), which is attributed to the scattered waves
near the cylinder surface. Similarly, another small peak occurs at
WPB4, as shown in the enlargement. Its earlier occurrence suggests

that this scattered wave, i.e., the above-mentioned local disturbance on
the cylinder surface [see Fig. 14(d)], propagates along the upstream
direction and gradually develops in amplitude. However, this second-
ary peak quickly cannot be detected on the cylinder surface and only
appears as a horizontal line at WPB2. The main reason is that this
scattered wave gradually radiates outward rather than remaining
attached closely to the cylinder surface, which can be well indicated by
the evolution of the related vortical structures in Figs. 16(c)–16(e) and
19(g)–19(i).

To intuitively visualize the wave field, Fig. 13 shows the contours
of wave elevation at a sequence of time instants. The focused wave
propagates from left to right, as indicated by the black arrows in the
upper left. When the maximumwave run-up arises at the front stagna-
tion point, the symmetrical scattered waves known as Type-2 can be
roughly observed at the rear side, as shown in Fig. 13(a). As the Type-2
waves further develop downstream along the cylinder surface, they
merge at the rear stagnation point to form an apparent water mound
[see Figs. 13(b) and 13(c)]. Meanwhile, the concentric scattered wave
known as Type-1 propagates outward because of the flow induced by
the run-up and the subsequent wash-down. When the wave crest
passes through the cylinder, the water mound begins to travel back
upstream along the cylinder surface, which is responsible for the gen-
eration of Type-2 wave again. At the same time, the Type-1 wave gen-
erated in the early phase gradually gets dampened with traveling
farther outward, as shown in Fig. 13(d). However, Fig. 13(e) shows
that another evident concentric scattered wave known as Type-1�

wave arises immediately in front of the cylinder, which is consistent
with the numerical results by Kasiman.21 Under the negative velocities
induced by the wave trough, the Type-1� wave propagates upstream,

FIG. 10. Time histories of wave elevation at WPB1.

FIG. 11. Time histories of pressure 0.05m below still water at the front of the
cylinder.

FIG. 12. Time histories of wave elevation at (a) WPB1 and WPB5, and (b)
WPB2–WPB4.
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opposite to the incident wave direction. At the same time, a pair of
symmetrical Type-2 waves also travel upstream around the cylinder,
one in the clockwise direction and the other in the counterclockwise
direction [especially see Fig. 13(g)]. Because of the difference in propa-
gation speed, the Type-2 waves gradually catch up with the Type-1�

wave and finally merge with it into a larger concentric wave, as shown
in Figs. 13(h) and 13(i). As the merged wave continues to propagate

upstream, it gradually grows steeper in the far field under the interac-
tion with the next incident wave crest.

From the above observations, it is found that the high-frequency
wave scattering, especially for the Type-2 wave, is strongly related to
the flow around the cylinder surface. Therefore, Fig. 14 gives the
instantaneous free surface streamlines near the cylinder and the pro-
files of wave elevation around the cylinder surface at several

FIG. 13. Contours of wave elevation at (a) t¼ 10.46 s, (b) t¼ 10.6 s, (c) t¼ 10.7 s, (d) t¼ 10.8 s, (e) t¼ 10.9 s, (f) t¼ 11 s, (g) t¼ 11.1 s, (h) t¼ 11.2 s, (i) t¼ 11.3 s,
(j) t¼ 11.4 s, (k) t¼ 11.5 s, and (l) t¼ 11.6 s.
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FIG. 14. Flow around cylinder surface at (a) t¼ 10.46 s, (b) t¼ 10.6 s, (c) t¼ 10.7 s, (d) t¼ 10.8 s, (e) t¼ 10.9 s, and (f) t¼ 11 s. (The left columns are the instantaneous
free surface streamlines near the cylinder, and the right columns are the profiles of wave elevation around the cylinder surface.)
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representative time instants. Due to the symmetry of the flow field,
only half of the results are shown for clarity.

In Fig. 14(a), a local disturbance (marked by the red circle) can
be seen at the rear of the cylinder surface, which corresponds to a
small peak (indicated by the red arrow) in the profile. This disturbance
is caused by the movement of fluid along the sides, as suggested by the
streamlines and the streamwise velocity contour. When the steep wave
crest meets the cylinder, some fluid moves upward and then reverses
back at the free surface due to gravity. Meanwhile, as shown by the
dark red region near the cylinder, other fluid with high positive veloci-
ties moves along the sides. When these disturbances on both sides
meet on the back, their superimposition leads to the significant ampli-
fication of wave elevation (referred to as the water mound in Fig. 13).
This amplification is manifested as a steep slope in the profiles where
the red dashed lines represent the beginning, as shown in Figs. 14(b)
and 14(c). During this process, the wash-down occurs at the front
simultaneously, which leads to the generation of the Type-1 wave.
With the wave elevation at the back reaching its maximum, a similar
wash-down occurs inevitably and creates another small disturbance, as
shown in Fig. 14(d). From the perspective of time history, this local
disturbance appears as a secondary peak when observed at a fixed
position, i.e., the small secondary peak at WPB4 in Fig. 12(b). Under
the negative velocities, this disturbance moves in the clockwise direc-
tion and interacts with the fluid still moving downstream. As a result,

this disturbance grows rapidly and becomes more evident in the pro-
files, as shown by the red arrow in Fig. 14(f) and the secondary peak at
WPB3. With the arrival of the subsequent wave through, the flow field
is gradually dominated by the wave-induced negative velocities, and
the positive velocities are confined to a shrinking area near the cylin-
der. The whole development can be clearly seen in Figs. 14(d)–14(f).

C. Vortical structures

In this section, we take a preliminary insight into the vortical
structures36 involved in this complex condition (high fluid velocities
induced by the focused wave crest and the existence of the short free
end) and attempt to find their relationships with the wave scattering.

The third generation of vortex identification method—Liutex—
proposed by Liu et al.37–39 is adopted to represent the vortical struc-
tures. This method can extract the pure rigid-body rotation through
the decomposition of the fluid motion and obtain the local rotational
axis. Compared with other traditional vortex identification methods
likeQ40 and k2,

41 this unique strength enables it can exclude the possi-
ble shearing contamination from a rigorous mathematical perspective.
Since the wave motion is essentially a shear flow, the Liutex method is
considered the most suitable vortex identification method in wave-
structure interaction problems.

The definition of the Liutex vector R is given as below:

FIG. 14. Flow around cylinder surface at (a) t¼ 10.46 s, (b) t¼ 10.6 s, (c) t¼ 10.7 s, (d) t¼ 10.8 s, (e) t¼ 10.9 s, and (f) t¼ 11 s. (The left columns are the instantaneous
free surface streamlines near the cylinder, and the right columns are the profiles of wave elevation around the cylinder surface.)
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where u is the velocity in the transformed coordinate system, and Q is
the rotational matrix,

R ¼ Rr; (21)

R ¼
2ðB� AÞ; A2 � B2 < 0 and B> 0;
2 Bþ Að Þ; A2 � B2 < 0 and B< 0;
0;

8<
: (22)

A ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@uy
@y

� @ux
@x

� �2

þ @uy
@x

þ @ux
@y

� �2
s

;

B ¼ 1
2

@uy
@x

� @ux
@y

� �
;

8>>>><
>>>>:

(23)

FIG. 15. Instantaneous iso-surfaces of Liutex magnitude R¼ 8 from the front view at (a) t¼ 9.68 s, (b) t¼ 10.1 s, (c) t¼ 10.46 s, (d) t¼ 10.6 s, and (e) t¼ 10.9 s, colored by
instantaneous streamwise vorticity.
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where R is the magnitude of the Liutex vector, and r is the real eigen-
vector of the velocity gradientru, i.e., local rotational direction.

Figure 15 shows the development of instantaneous vortical struc-
tures during the wave run-up from the front view. The iso-surfaces of
Liutex magnitude R¼ 8 represent the vortical structures in the water
phase, and the transparent free surfaces are also given to determine
their relative positions. When the previous large-amplitude wave
trough passes through the cylinder, the wave-induced high negative

velocities generate some vortical structures near the free end, as shown
in Fig. 15(a). These structures are complete and mainly surround the
front cylinder surface. With the arrival of the following focused crest,
they gradually move upward and approach the free surface. Their
interaction with the free surface is one of the reasons for such small-
scale vortical structures below the maximum wave elevation, as shown
in Fig. 15(c). Another important reason is the roll-up of local fluid
caused by the steep wave run-up on the front surface visualized later.

FIG. 16. Instantaneous iso-surfaces of Liutex magnitude R¼ 8 from the back view at (a) t¼ 10.7 s, (b) t¼ 11 s, (c) t¼ 11.1 s, (d) t¼ 11.2 s, and (e) t¼ 11.3 s, colored by
instantaneous streamwise vorticity.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 035132 (2022); doi: 10.1063/5.0086826 34, 035132-14

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


Then, as the wash-down occurs, these small-scale structures propagate
outward in a concentric pattern, which is very similar to the Type-1
wave [see Fig. 15(d)]. More notably, when these vortical structures
gradually dissipate and propagate to the far field, Fig. 15(e) shows
another apparent structure (indicated by the red arrow) surrounding
the cylinder in the front. The occurrence of this specific structure
exactly corresponds to the onset of the Type-1� wave observed in
Fig. 13(e).

Moreover, Fig. 16 shows the development of instantaneous vorti-
cal structures during the wash-down of the water mound from the

back view. When the water mound is formed on the back, a pair of
counter-rotating vortices (indicated by red arrows) can be identified
below the free surface in Fig. 16(a). As the fluid of the water mound
travels back, they create local disturbances on both sides near the cyl-
inder surface, as already discussed in Fig. 14. After the rapid growth of
these disturbances, another pair of counter-rotating vortices can be
seen below the Type-2 waves in Figs. 16(b) and 16(c). Under the nega-
tive velocities induced by the wave trough, the symmetrical vortices
move upstream and gradually radiate away from the cylinder surface,
which could explain why no secondary peak is detected at WPB2.

FIG. 17. Instantaneous iso-surfaces of Liutex magnitude R¼ 8 from the side view at (a) t¼ 10.8 s and (b) t¼ 11 s, colored by instantaneous streamwise vorticity.

FIG. 18. Instantaneous streamlines on specific planes, colored by phase fraction.
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This behavior is generally consistent with the experimental observa-
tion of Swan and Sheikh.3 More importantly, the development of these
vortical structures further confirms the tail of the above disturbances
moves in a spiral fashion, which cannot be recognized easily from the
free surface in previous studies. When the vortices move further
upstream, they merge into a semicircle and continue to spread out-
ward, as shown in Figs. 16(d)–16(e). It can be seen from the

incomplete structure that its magnitude is decreasing, indicating the
scattered waves get dampened in the far field.

Figure 17 shows a side view of vortical structures to reveal their
relationship to the local disturbance on the cylinder surface (marked
by red dashed circles). Two representative time instants are chosen
here, which in turn correspond to the occurrence of the secondary peak
in Fig. 12(b). As shown in Fig. 17(a), the apparent counter-rotating

FIG. 19. Contours of Liutex magnitude R at (a) t¼ 10.46 s, (b) t¼ 10.6 s, (c) t¼ 10.7 s, (d) t¼ 10.8 s, (e) t¼ 10.9 s, (f) t¼ 11 s, (g) t¼ 11.1 s, (h) t¼ 11.2 s, (i) t¼ 11.3 s,
(j) t¼ 11.4 s, (k) t¼ 11.5 s, and (l) t¼ 11.6 s.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 035132 (2022); doi: 10.1063/5.0086826 34, 035132-16

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


vortices are not generated immediately when the local disturbance is
initialized at the early stage. Instead, many small-scale vortices gather
below the free surface, indicating the nearby flow is very unstable at
this time. As this disturbance develops upstream along the cylinder sur-
face, the dominant counter-rotating vortices can be captured, with their
head just below the disturbance. This feature shows that the counter-
rotating vortices develop synchronously with the local disturbance,
confirming their strong correlations.

To more intuitively show the local fluid motion below the scat-
tered waves, the instantaneous streamlines on several specific planes
are displayed in Fig. 18. The planes are colored by the phase fraction
to represent the free surface. In Fig. 18(a), some fluid is obstructed by
the cylinder and forced to move upward along the front surface.
During the reverse flow due to gravity, it rolls up into two small vortices
below the free surface. This flow behavior can vividly explain the for-
mation of the Type-1 wave in the steep wave conditions. In Fig. 18(b),
the flows from both sides converge on the centerline and then move
upward, forming the apparent water mound. Similarly, the flows spread
outward again on the free surface and roll up into a pair of counter-
rotating vortices corresponding to the vortical structures in Fig. 16(a).
In Fig. 18(c), it can be seen that a large vortex is below the Type-1�

wave when the wave elevation reaches the lowest at the front stagnation
point (WPB1). At this time, the sustained wash-down on the front sur-
face just ends. Most of the gravitational potential energy accumulated
during the steep run-up is converted into kinetic energy. As a result,
the wave elevation is much lower than the incident condition without
the presence of the cylinder. After that, the subsequent significant
increase in wave elevation induces a rapid upward movement of the
fluid near the cylinder surface, which is termed “bounce-back” by
Kasiman.21 This phenomenon is responsible for the generation of this
large vortex. In Fig. 18(d), the streamlines on a transverse plane further
reveal the detailed behavior of the Type-2 wave. In the contour of phase
fraction, the Type-2 wave is manifested as a slight rise on the free sur-
face. Below it, a small vortex can be seen corresponding to the struc-
tures in Fig. 16(b) with another induced one in the air phase. The
visualization of this vortex further confirms the outward spiral motion
of the Type-2 wave.

From the above analysis, it is evident that the high-frequency
scattered waves are associated with several primary vortical structures.

In other words, these vortical structures appear as high-frequency scat-
tered waves on the free surface. Furthermore, the behaviors of these
vortical structures could reveal the evolution of scattered waves. On
this basis, we attempt to use the contours of Liutex magnitude on the
free surface to identify the high-frequency scattered waves again. As
shown in Fig. 19, the high-magnitude regions colored in red well
depict the patterns of scattered waves. Compared with other straight-
forward identification methods, such as surface elevation, this post-
processing method is not only more effective in visualization but also
provides more details. For example, Figs. 19(a) and 19(b) clearly show
the generation of the Type-1 wave during the run-up and wash-down.
Its subsequent dissipation in the far field can also be seen from the
gradually decreasing magnitude. In addition, Fig. 19(d) further con-
firms that the initial disturbances of the Type-2 wave originate from
the cylinder surface, which is not evident in the wave profiles. What is
more, Figs. 19(g)–19(j) illustrate the evolution of the merging of Type-1�

and Type-2 waves from a more intuitive perspective. According to their
patterns and magnitudes, an overall schematic of wave scattering evolu-
tion in the present condition is summarized in Fig. 20.

V. CONCLUSIONS

In this paper, the wave scattering of the focused wave by a finite
surface-piercing circular cylinder is numerically investigated. The
GFM is implemented to eliminate the spurious air velocities, and the
GABC boundary conditions are adopted for wave generation and
absorption with high computational efficiency. The established high-
fidelity numerical wave tank is proven to be accurate and reliable by
comparison with experimental measurements in 2D wave propagation
and 3D wave–structure interaction. On this basis, the high-frequency
scattered waves involved in this complex condition are identified and
analyzed, providing new insights into wave scattering. The main con-
clusions are as follows:

1. The current implementation of the GFM works well to eliminate
the spurious air velocities above the free surface in focused wave
simulations, achieving a more physical flow field. By contrast,
the spurious air velocities result in an earlier focus time and a
slightly reduced crest amplitude.

FIG. 20. Schematic of wave scattering
evolution during one wave crest period:
(a) stage I, (b) stage II, (c) stage III, (d)
stage IV, and (e) stage V.
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2. Visualization of the flow field reveals the mechanisms of three
types of high-frequency scattered waves, which are Type-1, Type-
2, and Type-1�, respectively. The concentric Type-1 wave is
attributed to the run-up and wash-down after encountering the
focused crest. The symmetrical Type-2 waves are highly associ-
ated with the flow around the cylinder and first initialize as dis-
turbances on the cylinder surface. The bounce-back after the
sustained wash-down at the front, which only appears in focused
waves, is responsible for the concentric Type-1� wave.

3. Primary vortical structures are extracted below the high-
frequency scattered waves using the Liutex vortex identification
method. Semicircular structures surrounding the front cylinder
surface correspond to the concentric Type-1 and Type-1� waves,
and a pair of counter-rotating slender structures correspond to
the symmetrical Type-2 waves. Their behaviors could character-
ize the evolution of scattered waves and reveal more details, such
as spiral motions of tails.

4. Based on the above identifications and analysis, an overall sche-
matic of wave scattering evolution in the focused wave interac-
tions with a finite surface-piercing circular cylinder is
summarized. It could well complement previous studies on regu-
lar waves and gain a straightforward understanding of this highly
nonlinear phenomenon.

In the future, we will perform a systematical parametric study
and focus on studying the variation of these high-frequency scat-
tered waves and the correlated vortical structures with various fac-
tors of interest, including wave steepness (kA) and cylinder
diameter (D).
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APPENDIX: NUMERICAL IMPROVEMENTS BY THE GFM

In this appendix, we demonstrate the significant numerical
improvements by the GFM using a standard test case for free sur-
face flows, which is also adopted for validation in Refs. 14 and 15.
Figure 21 illustrates a 2D computation domain, where the interface
between two inviscid fluids is the initial position. It is worth noting
that the 1:1000 density ratio between these two fluids can well rep-
resent the air–water two-phase flows in this study. When the uni-
form flow with velocity U enters from the inlet, the free surface at
the outlet will gradually rise due to the ramp and finally reach a
steady state. A structured computational mesh that consists of
120� 96 cells is used in our simulations. Detailed description and
numerical setup can be found in Refs. 14 and 42.

Figures 22–25 compare the flow field from various aspects
when the flow reaches a steady state. The improvements with the
GFM are on the left, and the original results without the GFM are
on the right. For the free surface profile, there is no significant dif-
ference from each other, as shown in Fig. 22. However, for the
dynamic pressure, a sharp interface between two fluids is well pre-
served in Fig. 23(a), indicating the free surface jump condition is

FIG. 21. 2D inviscid free surface flow
over a ramp.

FIG. 22. Comparison of the phase fraction: (a) with GFM and (b) without GFM.
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achieved with the GFM. The qualitatively similar results can also be
found in Ref. 18. For future wave impact problems, this feature is
thought to improve the accuracy of predicting peak pressure values.
Further post-processing reveals that the vertical pressure gradient is
continuous using the above-mentioned one-sided extrapolation. On
the contrary, Fig. 24(b) shows that the usual linear interpolation
results in an obvious discontinuity in the vicinity of the free surface,
which is one of the main reasons for the spurious velocities. For the
velocity, Fig. 25(a) shows that the spurious velocities are well elimi-
nated above the free surface, leading to a more stable and continu-
ous field.
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