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ABSTRACT

Bubble collapse is one of the leading causes for the cavitation erosion of submerged structures. For better understanding of the destructive
mechanism of cavitation, high-fidelity simulation is performed to simulate the complete process of single bubble collapse near a planar solid
wall. The wave propagation method with the approximate Riemann solver Harten Lax and van Leer Contact is adopted to solve the com-
pressible two-phase five-equation model. We implement fifth-order weighted essentially non-oscillatory scheme with the block-structured
adaptive mesh method to resolve shock waves and moving interface with high-resolution. We simulate single bubble collapsing in free-field
to validate the present numerical methods and solver. Our results (e.g., averaged bubble-interior pressure and the radius variation) are found
in excellent agreement with the theoretical Keller–Miksis solutions. In this study, the shock wave transmitted inside the bubble and the
water-hammer shock formed in the liquid are under quantitative investigation. Numerical results reveal that the interactions between the
shock wave and bubble interface give rise to peak pressures of liquid phase, and the initial stand-off distances have important influence on
shock wave pattern, wall peak pressure, and bubble dynamics.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0055727

I. INTRODUCTION

Bubble collapse in near-wall region is commonly encountered
in many industrial processes, such as ultrasonic cavitation, propeller
cavitation, and underwater explosion, etc. Shock waves1,2 and the
re-entrant jets generated3–6 from bubble collapse may cause severe
structural damage. To fully understand the mechanism of bubble col-
lapse, various experimental methods have been developed. The spark-
generated5,7–12 bubble and laser-induced13–18 bubble techniques are
the classical experimental methods for creating cavitation bubbles, and
high-speed photography can be used for the visualization of the re-
entrant jet and emission of shock.

Simplified theoretical models are also proposed to provide more
details of density, pressure, etc., of an inertial cavitation bubble. The
first theoretical method to predict a spherical bubble collapse in free-
field was proposed by Rayleigh,1 based on the spherical symmetry
assumption of a bubble. Later, Plesset19 improved Rayleigh’s method
by adding the viscous and surface tension effects, which is now the
prominent Rayleigh–Plesset (R–P) equation. After that, numerous

improvements for the R–P equation have been proposed, in particular,
Keller and Miksis20 included the compressibility effects of liquid to the
R–P equation and derived the well-known Keller–Miksis (K–M) equa-
tion. The solutions of the R–P equation and K–M equation have been
widely used as the validation of CFD (Computational Fluid Dynamics)
approaches.21–23 However, when the collapse is initiated in the vicinity
of a solid wall, the presence of wall boundary hinders the inward liquid
flow around bubble, leading to non-spherical collapse, which cannot be
effectively resolved by the aforementioned theoretical approaches.24

In addition to the theoretical and experimental methods, numeri-
cal simulations have also been extensively used to study bubble col-
lapse. Plesset and Chapman25 were the first to develop boundary
integral method (BIM) for the simulation of near-wall bubble collapse.
BIM assumes the fluid to be non-viscous and incompressible, which
highly improves efficiency and saves computational costs. Although
BIM has been widely adopted to study bubble collapse problems,26–32

the propagation of shock wave in fluid phase cannot been captured,
and additional models are required whenever compressibility effects
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are dominating. These limitations make it difficult to capture the main
flow characteristics of violent collapses. Therefore, high-fidelity simu-
lation based on the compressible two-phase flow equations becomes
more desirable. It can reproduce an experiment with abundant and
quantitatively temporal and spatial information, by which the evolu-
tion of shock waves and corresponding affection can be analyzed.

The high-density ratio of two phase fluids and the strong discon-
tinuities of the flow field make the problem complicated and bring
great challenges to the simulation. Liu and Hu33 took advantage of
THINC (Tangent of Hyperbola for Interface Capturing)34 and GFM
(Ghost Fluid Method)35 to simulate the collapse of an air bubble under
shock in water accurately. Allaire et al.36 proposed a robust
mechanical-equilibrium five-equation model for the simulation of the
interfaces between compressible two-phase flows with high-density
ratio, and the shock-induced collapse was simulated. Based on Allaire
et al.’s work,36 Deng et al.37 presented a novel low-dissipative BVD
(boundary variation diminishing) scheme and simulated the three-
dimensional shock–bubble interactions. The BVD scheme employs
more than one reconstruction function to minimize the variations
(jumps) of the reconstructed variables at cell boundaries, which can
resolve discontinuities with much less numerical dissipation. Kapila
et al.38 simplified the seven-equation of Baer and Nunziato39 to a ther-
modynamically consistent model, which is similar to the five-equation
model of Allaire et al.,36 and the only difference between them is that
the volume fraction equation of Kapila et al.38 includes a source term
ðKr � uÞ. Schmidmayer et al.23 compared the above two five-equation
models and the six-equation model of Saurel et al.40 in the simulation
of the Rayleigh collapse, and found that the results from the model of
Kapila et al.38 and Saurel et al.40 have good agreements with the K–M
solutions, while the model of Allaire et al.36 cannot predict the collapse
time and minimum volume of the Rayleigh collapse accurately.
Tiwari21 reduced the Baer–Nunziato model39 to a five-equation model
with interface regularization terms, and the 3D bubble collapse near
solid wall was tested. The interface regularization terms can keep the
thermodynamically consistent and reduce the numerical diffusion at
the phase interface.

In a bubble collapsing event, the high-speed re-entrant jet and
shock wave are generated when the bubble is compressed; ultimately,
the collapsing process is usually accomplished with extremely short
period of time. Therefore, very fine spatiotemporal resolution is
required to capture shock wave and flow structure accurately. Beig and
Johnsen22 gave a comprehensive study of the temperatures produced
during a 3D bubble collapse near solid wall using more than 900
� 106 grids. The large amount of grid makes it not very efficient for
the direct simulations. In order to save the computing expense,
numerous simplified methods have been proposed. Shaw and Spelt41

employed the spherically symmetric compressible quasi-conservative
Euler equations with GFM to investigate the shock wave emitted dur-
ing bubble collapse in free-field, and 10 000 uniform grids were
adopted in an 1D computational domain. Johnsen and Colonius42–44

studied the shock–bubble interactions in cylindrical coordinates with
azimuthal symmetry based on c-based approach proposed by Shyue,45

and 720 000 grids were employed in a 2D computational domain.
Hsiao et al.46 linked the BIM solver and the compressible solver to
study cavitation erosion based on a stretched grid, with finest resolu-
tion of 10 lm in a 1� 1m domain. To balance the efficiency and
accuracy, Tian et al.47 employed the adaptive mesh refinement (AMR)

technique and Eulerian finite element method to investigate the effects
of buoyance parameters on the bubble oscillating behaviors.
Trummler et al.48 investigated the influence of the grid resolution on
the collapse dynamics and the maximum pressures distribution, and
found that the grid resolution is significant for pressure peaks.

It is well known that the water-hammer shocks and re-entrant
jets account for most of cavitation erosion of the structures. In the
experiment of laser-induced bubble collapsing, the emissions of shock
wave during bubble rebounding can be detected with a needle-type
hydrophone (Johansen et al.49). Numerical simulation provides an
alternative way to study the shock wave emissions in the expansion
stage of bubble explosion (Lechner et al.24), based on a multiphase
flow solver InterFoam, and also by Tian et al.50 using Eulerian finite-
element method. Cao et al.51 studied shock-induced near-wall bubble
collapse numerically and captured the emitted shock waves in the liq-
uid during collapse with phenomenological model. Johnsen and
Colonius44 found that the precursor shock preceded the water-
hammer shock in free-field shock-induced collapse; however, the pre-
cursor shock is not clearly resolved due to the numerical dissipation.
Lechner et al.52 found when a bubble collapses very close to a solid
boundary, and the jet speed can reach up to�1000m/s.

Although shock wave emissions are extensively exist in bubble
collapse, few of the numerical works emphasize the formation and
propagation of the shock wave system around the interface, especially
for the shocks generated inside the bubble before the emission of
water-hammer shocks. Moreover, due to the numerical diffusion, the
shock waves might not be resolved sharply for long-timescale simula-
tion if traditional upwind schemes are applied. To overcome these dif-
ficulties, a compressible two-phase flow solver based on the fifth-order
WENO (weighted essentially non-oscillatory) scheme53 is developed.
One significant advance in the present simulation is the use of block-
structured AMR method.33 AMR allows one to capture the shock
waves and other discontinuities with high resolution, and keep the
compact thickness of the interface, while leaves other non-critical
regions covered with coarse mesh, providing savings in both the com-
putational time and data storage. With the above approaches, the vio-
lent oscillations of the bubble interface are captured with high
resolution, the shock waves formed inside the bubble are well-
resolved, and the propagation and refraction of the shocks can be
investigated quantitatively; in particular, the interactions of the shock
waves and the bubble interfaces are analyzed in detail. The pressure
peaks on the solid wall caused by the shock waves and the re-entrant
jets are also studied.

The highlight of the present study lies in the following four
aspects: (1) High-resolution compressible multiphase solver based
on WENO and adaptive mesh is developed to improve the compu-
tational efficiency and accuracy in simulating bubble collapse. (2)
Bubble pressure and radius predicted by this solver agree well with
the theoretical solutions, even for large pressure and density ratio
cases. (3) Shock waves and pressure peaks inside the bubble or in
the liquid are resolved with high resolution, and the shock wave
generation mechanism and the interaction between shock wave
and bubble interface in the whole process of collapsing are studied
quantitatively. (4) Influences of the initial stand-off distances on
the peak wall pressure are discussed; the primary reason for the
cavitation damage is identified to be the shock wave rather than
the re-entrant jet.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 073311 (2021); doi: 10.1063/5.0055727 33, 073311-2

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


The paper is structured as follows. Numerical approaches are
introduced in Sec. II. Numerical validations are presented in
Sec. III, including the convergence study and the comparisons of
the present numerical results and the semi-analytical K–M solu-
tions20 for the Rayleigh collapse. Shock waves generated in the col-
lapse of an air bubble near solid wall are quantitatively investigated
in Sec. IVA–IV C, and the wall pressure caused by shock wave and
re-entrant jet are studied in Sec. IVD. Finally, some concluding
remarks are drawn in Sec. V.

II. NUMERICAL METHODS
A. Governing equations

The governing equations of compressible two-phase flows with
Kapila’s38 five-equation model are given by

@
a1q1ð Þ
@t

þr � a1q1uð Þ ¼ 0; (1)

@
a2q2ð Þ
@t

þr � a2q2uð Þ ¼ 0; (2)

@ quð Þ
@t

þr � quuþ pð Þ ¼ 0; (3)

@E
@t

þr � E þ pð Þuð Þ ¼ 0; (4)

@a2
@t

þ u � ra2 ¼ Kr � u; (5)

where ak and qk, denote volume fraction and density, respectively.
k ¼ 1 for liquid and k ¼ 2 for gas. u indicates the velocity, p is the
mixture pressure, and E is the total energy. To prevent spurious oscil-
lations, the K term in Eq. (5) is considered on the interface cells where
two fluids co-exist,54 and is given by

K ¼ a1a2 q1c
2
1 � q2c

2
2

� �
a1q2c

2
2 þ a2q1c

2
1

; (6)

where c1 and c2 denote the sound speed of each phase. To close the
governing equations, the stiffened gas equation of state (SG EOS)55 is
adopted

p ¼ c� 1ð Þqe� cp1; (7)

where c is the ratio of specific heats, p1 represents the stiffness con-
stant, and e indicates the density of internal energy. The mixing rules38

for two-phase flow can be expressed as

a1 þ a2 ¼ 1; (8)

a1q1 þ a2q2 ¼ q; (9)

a1
c1 � 1

þ a2
c2 � 1

¼ 1
c� 1

; (10)

a1p1;1

c1 � 1
þ a2p1;2

c2 � 1
¼ p1

c� 1
: (11)

In the present study, the sound speed of the mixture flow is com-
puted by the mixture variables56,57 as

c2 ¼ c pþ p1ð Þ
q

: (12)

B. Wave propagation method

The wave propagation method37,58 is used to solve the conserva-
tion laws of the form in Eq. (13). By splitting the flux difference into
eigenvectors of Jacobian matrix, high-resolution results can be
obtained. In the wave propagation method, flux is assumed to be con-
tinuous; thus, it is not required to compute the jumps at the interface
in solving the Riemann problem.59 For completeness, a brief descrip-
tion of the wave propagation method is presented as follows.
Equations (1)–(5) are rewritten as

@q
@t

þ A
@q
@x

¼ 0; (13)

where q is a vector of conservative variables and A is the flux Jacobian
matrix and can be split into subvectors as

A ¼ RKL; (14)

where K is the diagonal matrix composed of the eigenvalues of A, R
and L are, respectively, the right and left eigenvector matrix corre-
sponding to K. Let Dq ¼ qr � ql , where ql and qr are the left and
right reconstructed conservative variables at cell boundaries, which are
calculated by WENO scheme. Dq can be reformulated as

Dq ¼ qr � ql ¼ RLDq ¼ r1; r2;…; rnð Þ

l1
l2

..

.

ln

0
BBBBB@

1
CCCCCADq

¼ r1; r2;…; rnð Þ

l1Dq

l2Dq

..

.

lnDq

0
BBBBB@

1
CCCCCA ¼

Xn
k¼1

bkrk; (15)

where rk and lk are the left and right eigenvectors of A corresponding
to its eigenvalues kk and bk ¼ lk � Dq. Analogously

A � Dq ¼ RKLDq ¼
Xn
k¼1

kkwk; (16)

where wk ¼ bkrk refer to the discontinuities (jumps) and can be
expressed as

w1 ¼ q�l � ql;

w2 ¼ q�r � q�l ;
w3 ¼ qr � q�r ;

8><
>: (17)

the intermediate conservative variables q�l and q�r can be obtained by
the three-wave approximate HLLC (Harten Lax and van Leer
Contact) Riemann solver.59

At the ith cell, the wave propagation method constructs the
Riemann discontinuities at the cell boundaries and inside the cell;
then, Eq. (13) can be rewritten as

@qi
@t

¼ L qið Þ ¼ � 1
Dx

A � Dqi

¼ � 1
Dx

AþDqi�1
2
þ A�Dqiþ1

2
þ ADqi

� �
; (18)
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where AþDqi�1=2 denotes the fluctuations propagating into the cell at
the left face xi�1=2, with the initial states of the Riemann problem
qi�1=2;l and qi�1=2;r . A

�Dqiþ1=2 denotes the fluctuations propagating
into the cell at the right face xiþ1=2, with the initial states of the
Riemann problem qiþ1=2;l and qiþ1=2;r . ADqi is the total fluctuations
inside the cell with qi�1=2;r and qiþ1=2;l as initial states of the Riemann
problem.37,58

The conservative variables qi61=2;r and qi61=2;l at the cell bound-
aries are reconstructed by WENO scheme.53 As the WENO scheme
itself is not positivity-preserving, to remedy this problem, the
positivity-preserving limiter60 is used.

Finally, third-order Runge–Kutta scheme is adopted to update
the solution

q 1ð Þ ¼ qn þ DtL qnð Þ;

q 2ð Þ ¼ 3
4
qn þ 1

4
q 1ð Þ þ 1

4
DtL q 1ð Þ
� �

;

qnþ1 ¼ 1
3
qn þ 2

3
q 2ð Þ þ 2

3
DtL q 2ð Þ
� �

;

8>>>>><
>>>>>:

(19)

where the superscript n denotes the nth time step, qð1Þ and qð2Þ are the
intermediate time values.

For 1D computational domain, the nonreflecting boundary con-
ditions applied in the present work are dq=dxjC ¼ 0, where C stands
for the boundary. The reflective boundary conditions are the same as
the nonreflecting boundary conditions except for velocity component
perpendicular C. For instance, the reflecting boundary condition of
velocity component in x� direction is given as ujC ¼ 0.

C. Adaptive mesh refinement

To improve the computational efficiency, the block-structured
AMR method proposed by Berger and Oliger61 is adopted. This
approach makes use of non-overlapped blocks to cover the computa-
tional domain, and all blocks are indexed by tree data structure (quad-
tree for 2D or oct-tree for 3D). Each block is discretized with identical
topology and filled by uniformmesh with buffer layers. As a result, the
block-structured AMRmethod is suitable for implementation of high-
resolution schemes with wide stencils.

To gain more insight into the block-structured adaptive mesh,
the logical relationships of block, guard cell, and computational cell
are depicted in Fig. 1. It is shown that the computational domain is
discretized by a series of blocks, and the refinement is performed near
the bubble interface [Fig. 1(a)]. Block with buffer layer [Fig. 1(b)] is
the basic unit for computation and performing the loading balance
algorithm.62,63 Each block is divided by N3 uniform mesh (N is the
cell number in one axial direction) and a collocated configuration of
physical variables is used as shown in Fig. 1(c).

For the present fifth WENO scheme, four layers of guard cells
are introduced as buffer layer for the flux computation at block bound-
ary. On the other hand, the guard cells in the buffer layer can also be
used to construct boundary conditions. Therefore, the guard cells
should be updated at the end of each time step or after parallel data
transmission. When two adjacent blocks are refined by different
refinement levels, the fluxes on the block boundaries may not consis-
tent. Additional operations should be performed to ensure the flux
conservation. For the guard cells adjacent to refined neighbor blocks,
arithmetic average can be used for computing the fluxes. While for the

guard cells adjacent to coarse neighbors, a conservative interpolation
approach33 should be employed.

Refinement criterion used to mark the region to be refined/
coarsened is crucial for AMR method. In the present work, a scalar
function d is defined as

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
;iþ1 � ;i�1

2Dx

� �2

þ ;jþ1 � ;j�1

2Dy

 !2

þ ;kþ1 � ;k�1

2Dz

� �2
vuut ;

where ; can be an arbitrary physical field (density, pressure, etc.) of
our interest. Two threshold values dmin and dmax are set to determine
which block to be refined or coarsened. To reach the desired accuracy,
a preliminary numerical assessment for dmin, dmax is necessary. We
use the following criterions for refine or coarsen of a block: (1). When
d � dmax is detected in one cells of the block, then refine the mesh;
(2). when d � dmin is satisfied for any cells of the child blocks, then
coarsen to reduce the mesh resolution. In practical, we need to per-
form preliminary numerical tests to determine dmin, dmax until the
desired regions are covered with finest mesh. The grid convergence
and the comparison with theoretical or experimental results are also
helpful to assess the refinement level. In the present work, the phase
interface regions should be refined, thus ; ¼ a with dmin ¼ 0:1 and
dmax ¼ 0:2 is suggested. The strong discontinuities like shock waves
and contact waves are expected to be captured; therefore, ; ¼ q with
dmin ¼ 2000 and dmax ¼ 4000 is applied.

III. NUMERICAL VALIDATION FOR 3D BUBBLE
COLLAPSE IN OPEN DOMAIN

In this section, the physical process of single bubble collapse in
open space is simulated by present AMR solver. The numerical results
are compared with theoretical predictions of K–M model. To assess
the boundary effects, three sets of the domain size are considered.
Mesh independency study are also conducted to test the spatial con-
vergence property of this scheme.

A. Numerical tests for the adaptive refinement
method and its efficacy

First, the collapse of a single bubble in infinite liquid is considered
to test the robustness and efficiency of the AMR solver. The numerical
test case shows that the amount of grids in the computational domain
will greatly decrease as the bubble compressed. The long period of
time simulation, including the re-expansion and re-collapse stage of
the collapse process, proves that the present solver is of high
robustness.

The computational domain is x; y; z 2 ½0; L	 with L¼ 20R0,
where R0 is the initial bubble radius. Initially, the bubble is placed at
the center of the domain with R0 ¼ 0:038. The pressure ratio is
pinf =p0 ¼ 100, and the initial density ratio qinf =q0 ¼ 1000, where the
subscript inf denotes the initial pressure in ambient liquid and the
subscript 0 denotes the initial pressure inside the bubble. The nonre-
flecting boundary conditions are applied on all boundaries. The refine-
ment levels 2–9 are adopted, with minimal grid interval
Dxmin ¼ R0=102:4. The coarsest refinement level 2 corresponds to the
entire domain discretized by 16� 16� 16, and the finest refinement
level 10 corresponds to 4096� 4096� 4096 uniform meshes. The
detailed numerical setup could be found in Table I.
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For comparison, the simulation time is scaled by Rayleigh col-
lapse time1 Tc

Tc ¼ 0:915R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qinf

pinf � p0ð Þ

s
:

Figure 2 shows the evolution of the block at different time instants.
As the bubble shrinks, the refined blocks decrease significantly
until the bubble volume reaches minimum at about 1:05Tc; after-
ward, the blocks count increases as the bubble rebounds. The finest
mesh blocks always cover the bubble interface; thus, AMR is crucial
to reduce the dissipation of WENO scheme and to maintain the
sharpness of the interface. The variation of total block number
(Ntotal) as a function of time for the entire computational domain is
given in Fig. 3.

Figure 4 shows the time history of dimensionless averaged
bubble-radius R=R0 and non-dimensional averaged bubble pressure
p=pinf , where R=R0 is computed by ðV=V0Þ1=3, and V is calculated
from

V ¼
X
X

DxDyDzð Þi � ai;

and p is derived by

p ¼ 1
V

X
X

DxDyDzð Þi � ai � pi;

where DxDyDzð Þi, ai, and pi denote the volume, gas volume fraction,
and pressure of the ith cell, respectively, and X represents the whole

FIG. 1. Refinement principle of the block-structured AMR method. (a) Enlarged view of computational domain discretized by a series of blocks for bubble collapse simulation (red surface
denotes air bubble), (b) single block that is divided by N3 uniform mesh with buffer layers outside, and (c) single computational cell in the block with physical variables defined in cell center.

TABLE I. Parameters of the collapse of a single bubble in infinite liquid. Note that
uij jmax refers to the maximum velocity in the flow field.

Computational domain size
Lx � Ly � Lz

20R0 � 20R0 � 20R0

Initial bubble radius R0 0.038
Initial pressure ratio pinf =p0 100
Initial density ratio qinf =q0 1000
Time step size Dt CFL� Dxmin=ðjjuijmax þ cjÞ
CFL (Courant–Friedrichs–Lewy)
number

0.3

c1(liquid) 4.4
c2(air) 1.4
p1;1(liquid) 6� 108

p1;2(air) 0.0
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computational domain. We can see the time history of bubble radius
and pressure agree well with the K–M solutions, even in the re-
collapse and re-expansion stage; thus, it can be concluded that the pre-
sent developed AMR solver is capable in simulating the dynamic
behaviors of an oscillating bubble.

B. Computational domain andmesh
independency study

The convergence study of computational domain is conducted to
assess the boundary effects. Three cubic computational domains of
x; y; z 2 ½0; L	 with L¼ 10R0, 20R0, and 40R0 are considered. The

same initial and boundary condition setups are used as in Sec. IIIA. For
the three domain sizes, the corresponding refinement levels are set as
2–8, 2–9, and 2–10 to keep the finest mesh resolutions consistent, thus
R0=Dxmin ¼ 102:4 is maintained for all of the three cases. Figure 5 dis-
plays the numerical results with different domain size. It is found that
time evolution of bubble radius and pressure converge with the increase
in domain size, even with L¼ 10R0, only slight discrepancies near the
peak values are shown. In order to minimize the effects of the far-field
boundaries, L¼ 20R0 is considered in the following simulations.

Next, the grid convergence study on adaptive mesh is performed.
The refinement levels of 2–6, 2–7, 2–8, and 2–9 are tested with the
same size computational domain L¼ 20R0, and the finest refinement
level 6, 7, 8, and 9 correspond to R0=Dxmin ¼ 12:8, 25:6, 51:2; and
102:4, respectively. As shown in Fig. 6, both R=R0 and p=pinf show
good convergence properties; except for the refinement levels of 2–6,
slight discrepancies near the peak values are shown. To reduce the
computing expense and keep high accuracy, the refinement level 2–9
is adopted in the following work.

C. Comparison with theoretical predictions

To further validate and assess the reliability of the present AMR
solver, single bubble collapse in open space with different driven pres-
sures and initial bubble radii are considered, and the numerical results
are compared with K–M solutions.20 Figure 7 presents the results of
the bubble collapse with the initial radius R0 ¼ 0:038 under three
driven pressures, pinf

p0
¼ 10; 20; and 100. For higher pressure-ratio

cases, bubble will be compressed into much smaller size with violent

FIG. 2. Block of half computing domain during bubble collapse; each block is discretized by Nx ¼ Ny ¼ Nz ¼ 8, and the red surface denotes iso-surface of a ¼ 0:5.

FIG. 3. Blocks count (Ntotal) during the simulation of single bubble collapse in
open space.
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rebounding. Figure 7 illustrates that, even for pinf =p0 ¼ 100, the time
history of R=R0 and p=pinf agrees well with the theoretical solutions
from the K–M equation; both the peak values and collapse durations
are predicted accurately.

Bubble collapse with smaller initial radius R0 ¼ 0:01 and R0

¼ 0:001 under the same driven pressure pinf =p0 ¼ 100 is also simu-
lated for comparison. Even for the smaller bubble size, the time history
of the averaged bubble radius shows good agreements with theoretical
solutions, and the peak values of the average pressure inside the bubble
are also predicted accurately as displayed in Fig. 8.

From Figs. 7 and 8, it can be observed that even considering dif-
ferent cases of driven pressures and initial radii, all cases show similar
final collapse instant (around 1:05Tc). Generally, the bubble com-
pressing and the first rebounding process are predicted accurately, so
the accuracy of present numerical approaches is further proved.

IV. HIGH-FIDELITY SIMULATION OF BUBBLE COLLAPSE
NEAR SOLIDWALL
A. Evolution of wall pressure in the bubble collapse
near a solid wall

In this section, the wall pressure, shock wave, and re-entrant jet
in the collapse of a 3D bubble near a planar solid wall are investigated.

Geometry of computational domain is x; y; z 2 ½0; L	 as shown in
Fig. 9, where L ¼ 20R0. The reflective boundary conditions are applied
on the solid wall, and the nonreflecting boundary conditions are consid-
ered on the other boundaries. Since the collapse of a single bubble can
be regarded as a symmetric problem, one-quarter of the computational
domain is adopted by applying symmetry boundary conditions along
the relevant cross sections. In Fig. 9 and the following analysis, the prox-
imal side always denotes the leftmost side of the bubble near the solid
wall, and the distal side indicates the rightmost side of the bubble.

The initial bubble radius is R0 ¼ 0:62, and the initial stand-off
distance from the bubble center to the solid wall is H0 ¼ 1:5R0 in the
following work, unless stated otherwise. The detailed initial parameters
of liquid and gas are given by

q1a1;q2a2; u; p; c; p1; a½ 	

¼ 0; 1; 0; 1:06; 1:4; 0; 1½ 	; 0 � r < R0;

1000; 0; 0; 374; 6:59; 4049; 0½ 	; R0 � r;

(
(20)

and all the parameters above are dimensionless values.
Figure 10 shows the variation of bubble shape, with the pressure

contour on the solid wall and velocity field on the cross section of
z ¼ 0:5L. Initially, the bubble collapses non-spherically toward the

FIG. 4. Comparison of present numerical results (red dashed line) and the K–M solutions (black line) for single bubble collapse with the initial radius R0 ¼ 0:038, and the
driven pressure is pinf =p0 ¼ 100: (a) averaged bubble radius and (b) averaged pressure.

FIG. 5. Convergence study of the domain size for the simulation of single bubble collapse in liquid: the driven pressure is pinf =p0 ¼ 100, and time history of (a) averaged bub-
ble radius and (b) averaged pressure inside bubble is shown. Black line: L ¼ 10R0 with refinement level 2–8; red dashed line: L ¼ 20R0 with refinement level 2–9; blue dotted
line: L ¼ 40R0 with refinement level 2–10.
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planar wall driven by pressure difference. The distal side of the bubble
first contracts, then involutes, and finally forms a re-entrant jet; this
physical process is similar to the pioneering work of Plesset and
Chapman.25 After the re-entrant jet penetrates the proximal side of bub-
ble, the bubble splits into several toroidal bubbles by the catapulting jet,
and these toroidal bubbles move toward the solid wall with violent
deformations and impinge on the solid wall in the end. According to
the evolution of pressure distribution on the solid wall surface in Fig. 10,
the high pressure appears on the center of the wall and gradually reaches
maximum until 1:27Tc; shortly after, the high pressure on the wall sur-
face evolves into a circle region and propagates outward radially, while
at the same time, the pressure on the wall center decreases until the re-
entrant jet collides with the wall surface. When the pressure on the wall
center reaches up to the maximum value, the re-entrant jet does not
contact with the wall surface and the velocity contours on the cross sec-
tion z ¼ 0:5L also show that the high speed flow not yet contact with
the wall surface. As a result, it can be inferred that the maximum pres-
sure on the wall does not result from the jet impacting.

Figure 11 displays the time history of the pressure on the wall
center and averaged bubble radius. In the initial stage of the collapse,
the pressure increases very slowly until 1:22Tc; shortly after, the pres-
sure rapidly reaches up to maximum value (note that the bubble radius

achieves its minimum volume at about 1:18Tc). At about 1:27Tc, the
pressure on the wall center reaches its first peak value, and later, the
pressure decreases rapidly to its minimum at about 1:37Tc; shortly
after, the pressure increases to the secondary peak; however, the pres-
sure magnitude is smaller than the first peak. At this instant (1:37Tc),
the tip of the re-entrant jet impacts the solid wall. After that, the pres-
sure on the wall center experiences a gradual decrease.

Pressure peaks acting on the wall center play an important role of
cavitation erosion; thus, it is of great importance to identify the reasons
for the first pressure peak appearing in Fig. 11. To this end, the shock
waves induced initially in the collapse process are studied. According
to the evolution of pressure gradients field (Fig. 12), the shock wave
emitted by the collapsed bubble propagates toward the wall and finally
results in high pressure on the wall center. Therefore, the shock wave
emission in the collapse process is proven to be the primary reason for
the first peak pressure on the solid wall and the re-entrant jet impact-
ing on the solid wall accounts for the second peak pressure. However,
there are a few experimental and numerical researches focusing on
shock wave emission process of a collapsing bubble, and the mecha-
nisms of shock wave formation and evolution are still unclear. In order
to gain more insight into the shock wave emission process, a compre-
hensive study of the shock waves upon bubble collapse is performed.

FIG. 6. Mesh independency study for simulating single bubble collapse in liquid: the driven pressure is pinf =p0 ¼ 100, and time history of (a) averaged bubble radius and (b)
averaged pressure inside bubble (with an enlarge view in the right) is shown. Black line: L ¼ 20R0 with refinement level 2–6; red dashed line: L ¼ 20R0 with refinement level
2–7; blue dotted line: L ¼ 20R0 with refinement level 2–8; green dashed-dotted line: L ¼ 20R0 with refinement level 2–9.
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B. Formation of shock waves in the collapse process

The formation of a precursor shock ahead of the water-hammer
shock was observed in the experiment by Ohl et al.64 As stated by Lindau
and Lauterborn,65 the water-hammer pressure is partly caused by precur-
sor shock, while Johnsen and Colonius44 explained that the piston-like

motion of the re-entrant jet leads to the generation of precursor shock. To
clarify the generation of water-hammer shock, the entire process of near-
wall bubble collapse is simulated by the present AMR solver.

Figure 13 presents the pressure gradient ( r pj j) field on the cross
section z ¼ 0:5L. When the distal side of bubble deforms inward the

FIG. 7. Comparison of present numerical results (red dashed line) and the K–M solutions (black line) of the averaged bubble radius (left) and pressure history (right) for single
bubble collapse, with the same initial radius R0 ¼ 0:038 and (a) pinf =p0 ¼ 10, (b) pinf =p0 ¼ 20, and (c) pinf =p0 ¼ 100.
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FIG. 8. Comparison of the present numerical results (red dashed line) and the K–M solutions (black line) of the averaged bubble radius (left) and pressure history (right) for
single bubble collapse; the initial radius of (a) R0 ¼ 0:01, (b) R0 ¼ 0:001 with the same driven pressure pinf =p0 ¼ 100 is considered.

FIG. 9. Schematic diagram of computational domain for bubble collapse near solid wall: (a) geometric configuration, the blue surface in the left side of the computational
domain is the solid wall and the red sphere denotes the air bubble, the symmetry boundary conditions are applied on the yellow cross sections; (b) cross section of z ¼ 0:5L.
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FIG. 10. Pressure contours on the wall surface, velocity fields on the cross section z ¼ 0:5L, and bubble profiles during bubble collapse at different time instants; the red sur-
face denotes iso-surface of a ¼ 0:5.
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bubble, a shock wave generates inside the bubble; it becomes more vis-
ible as the advancing of re-entrant jet. The shock wave propagates
toward the proximal side and is refracted at 1:170Tc. Subsequently, a
precursor transmitted shock is formed in the liquid, together with a
reflected shock inside the bubble (1:171Tc). With the precursor shock
propagating away from the bubble interface, the reflected shock pene-
trates the tip of the re-entrant jet into the liquid at 1:172Tc. Shortly
after the re-entrant jet impacting on the proximal side of bubble, a
more intense water-hammer shock wave is emitted. The water-
hammer shock toward the solid wall merges with the precursor shock
at 1:176Tc. More shock waves with complex interference are observed
on the bubble tip region (1:176Tc); two visible shocks propagating
inside the toroidal bubble at 1:176Tc and 1:184Tc are also captured. It
is noted that the shape of the bubble interface is almost undistorted
after the shock inside the bubble penetrates the bubble tip. As the
water-hammer shock propagates, finally an approximately spherical
shape is developed (1:184Tc).

Numerical simulations show that the piston-like re-entrant jet
may lead to a rapid compression process of the gas and create shock

wave inside the bubble due to the pressure difference. To clarify the
relations between the precursor shock and the re-entrant jet, the evolu-
tion of pressure field inside the bubble is analyzed.

C. Relations of pressure and shock waves

In this section, the shock generation and emission, shock–
interface, shock–shock interactions as well as the relations between
shocks and pressure field are investigated quantitatively. Figure 14
shows the pressure distribution and pressure gradient on the partial
cross section z ¼ 0:5L. As time elapsing, the high-pressure region is
found around the distal side of bubble, giving rise to the deformation
of bubble interface. As the distal side of bubble developing into a re-
entrant jet, the pressure jump inside the bubble becomes visible gradu-
ally (Fig. 14). Figure 15 shows the pressure and volume fraction along
the centerline of the computational domain at different time instants.
At 1:141Tc, the pressure discontinuity inside bubble is formed in front
of the re-entrant jet. As the bubble is compressed more, the pressure
on the distal side increases rapidly, and a sharp pressure jump is
observed at t ¼ 1:163Tc and t ¼ 1:168Tc. It is shown that the left
pressure peak always appears on the distal side of the bubble as the
deforming of the interface [Figs. 15(c) and 15(d)].

Shock wave generated inside the bubble will impact the bubble
interface ahead of the re-entrant jet impinging on the proximal side of
the bubble, and an abrupt increase in pressure (Fig. 16) in the bubble tip
region is observed. Figure 17 depicts the process of shock–interface
interaction from the instant when the shock wave inside the bubble pen-
etrates the bubble interface. It can be seen that the pressure on the proxi-
mal side of bubble increases rapidly forming a pressure peak, which
is much higher than the pressure in the ambient liquid. As shown in
Figs. 17(c)–17(f), two pressure discontinuities are generated around the
proximal bubble interface, corresponding to the transmitted and
reflected shock wave in Fig. 16. After the shock penetrates the bubble
interface, the pressure peak on the proximal side of bubble almost
reaches up to 60pinf (1.1707Tc). The transmitted shock wave propagates
into the liquid forming a precursor shock, followed by a reflected shock
wave propagating inside the bubble as shown in Fig. 16.

Shortly after the shock wave refracting at the proximal side of the
bubble, the re-entrant jet contacts with the bubble interface leaving a
higher pressure region as displayed in Fig. 18. Subsequently, the
bubble splits into a toroidal-shape bubble, followed by the emission of

FIG. 11. Time history of wall pressure (black line) and averaged bubble radius (red
dashed line); two pressure fields corresponding to the instants of the two pressure
peaks are presented.

FIG. 12. Pressure gradients (right) on cross section z¼ 0.5L at different time instants, together with the pressure field on solid wall (left); the red surface denotes iso-surface
of a ¼ 0:5.
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FIG. 13. Pressure gradient contours on
the cross section z¼ 0.5L at different time
instants: x ¼ 0 corresponds to the posi-
tion of the solid wall, and the red line
denotes iso-surface of a ¼ 0:5.

FIG. 14. Pressure (top) and pressure gradient $ pj j (bottom) contours on the cross section z¼ 0.5L at different time instants: x denotes the distance from the solid wall and
x ¼ 0 is the location of the solid wall, and the red line denotes iso-surface of a ¼ 0:5.
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water-hammer shock. The water-hammer shock propagates in liquid
radially and merges with the precursor shock at about 1:1743Tc. In
Fig. 19, it can be found that the reflected shock impacts the tip of the
re-entrant jet and generates a much higher pressure peak (up to
135pinf ) in liquid phase. It is noted that the high-pressure region

spreads in the entire domain, including regions away from the wall
(Fig. 18). When the re-entrant jet impacts the proximal side of bubble
[Fig. 19(e), 1:1722Tc], another peak pressure appears at the contact
region, such that the water-hammer shock is generated (1:1728Tc)
accordingly. Figure 19(g) shows that the water-hammer pressure

FIG. 15. Pressure and volume fraction on the centerline from x ¼ 0:4 to x ¼ 1:2, at instants (a) t¼ 1.141Tc, (b) t¼ 1.152Tc, (c) t¼ 1.163Tc, and (d) t¼ 1.168Tc. Black line:
Pressure; red dashed line: volume fraction.

FIG. 16. Pressure (top) and pressure gradient (bottom) contours on the cross section z¼ 0.5L at different time instants, x ¼ 0 is the location of the solid wall, the red line
denotes iso-surface of a ¼ 0:5.
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increases up to maximum at about 1:1733Tc, with the magnitude
almost equal to the peak pressure generated by the collision of
reflected shock and the re-entrant jet [Fig. 19(c)]. In the final stage,
water-hammer shock toward the wall merges with the precursor shock
at 1:1756Tc. In Figs. 19(g) and 19(h), the water-hammer shock mov-
ing away from the solid wall dissipates gradually and makes the
reflected shock sharper, but does not merge with the reflected shock.
According to Fig. 19, it can be concluded that the impact of the re-
entrant jet on the reflected shock occurs before the generation of the
water-hammer shock, which strengthens the reflected shock.

As aforementioned, the precursor shock and water-hammer
shock are emitted during the collapse, which may have great potential
damage to the planar wall; thus, the evolutions of the pressure field
after shock wave emission are also discussed. Figure 20 presents the
instantaneous pressure curves after the water-hammer shock and pre-
cursor shock are merged. At the beginning, pressure waves with two
visible peaks propagate in opposite direction. The left pressure peak is
dissipated rapidly while the right pressure shock is strengthened as it
propagating away from the wall. A large pressure peak is generated
when the top and bottom water-hammer shocks are focused, with

FIG. 17. Pressure and volume fraction on the centerline from x ¼ 0:55 to x ¼ 0:7, at instants (a) t¼ 1.1691Tc, (b) t¼ 1.1694Tc, (c) t¼ 1.1696Tc, (d) t¼ 1.1698Tc, (e)
t¼ 1.1701Tc, and (f) t¼ 1.1707Tc. Black line: Pressure; red dashed line: volume fraction.
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FIG. 18. Pressure (top) and pressure gradient (bottom) contours on the cross section z¼ 0.5L at different time instants: x denotes the distance from the solid wall and x ¼ 0
is the location of the solid wall; the red line denotes iso-surface of a ¼ 0:5.

FIG. 19. Pressure and volume fraction on the centerline from x ¼ 0:55 to x ¼ 0:65, at instants (a) t ¼ 1:1712Tc, (b) t ¼ 1:1715Tc, (c) t ¼ 1:1718Tc, (d) t ¼ 1:1720Tc, (e)
t ¼ 1:1722Tc, (f) t ¼ 1:1728Tc, (g) t ¼ 1:1733Tc, (h) t ¼ 1:1743Tc, and (i) t ¼ 1:1756Tc. Black line: Pressure; red dashed line: volume fraction.
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maximum pressure reaching up to 450pinf ½1:196Tc, Fig. 20(a)].
Afterward, the peak pressure declines quickly to about 60pinf ½1:206Tc,
Fig. 20(b)], which is still higher than the leftmost pressure peak. As the
pressure wave propagating away from the shock impacting site, a
low-pressure region is formed. Finally, the left moving pressure shock
collides with the solid wall, leading to high wall pressure up to about
21pinf .

From the numerical results in Fig. 20, we can find that the shock
away from the solid wall can give rise to tremendous pressure pulse,
even though it has little influence on the planar solid wall. However,
this pressure pulse may lead to the structure damage in the opposite
direction. The great dissipations of the shock wave in the liquid are
also observed; thus, the impacting strength of the shock on the solid
wall depends strongly on the initial stand-off distance.

D. Influence of initial stand-off distance
on wall pressure

In this subsection, the effect of the initial stand-off distances
(from the bubble center to the solid wall) on maximum wall pressure
is investigated. Specifically, case studies with initial stand-off distances
H0 ¼ 1:1R0, 1:3R0, 1:5R0, 1:7R0, 2:0R0; and 2:5R0 are performed
using present AMR solver.

By placing a pressure probe on the centroid of the planar wall,
time history of the wall pressure for the above-mentioned cases is
given in Fig. 21. It is found that although the initial stand-off distances
are different, the first pressure peaks induced by the shock impacting
are always higher than the second peaks induced by the re-entrant jet,
which further confirms that the water-hammer shocks is more
destructive than the re-entrant jet. Also, we note that the initial stand-
off distances have significant influence on the peak wall pressure.
When H0 < 2:0R0, the pressure peaks change substantially with
respect to the variations of the initial stand-off distance. In particular,
for H0 ¼ 1:1R0 case (the gap between the bubble front and wall is
0:1R0), the magnitude of the first pressure peak reaches 63pinf , which
is much higher than the subsequent pressure peak (38pinf ) caused by
re-entrant jet. For H0 ¼ 1:3R0 case, the first pressure peak reaches
35pinf , and the second reduces to 19pinf . When H0 ¼ 1:5R0, the first

pressure peak reaches 21pinf , and the second declines to 12pinf . For
H0 ¼ 2:5R0 case, the shock wave still causes high pressure on the wall
with the first pressure peak up to 8pinf . It is also observed that the first
pressure peak appears approximately at a similar instant for
H0 ¼ 1:1R0, 1:3R0 1:5R0, and 1:7R0 cases, while the second pressure
peak occurs at different times. Since the pressure wave toward planar
wall dissipates quickly (Fig. 20), the intensity of the wall pressure will
be affected greatly by the initial stand-off distance. We may infer that
the shock wave propagates with extremely high speed comparable to
the speed of sound in liquid. However, the flow speed of re-entrant jet
is much lower. Thus, a visible phase differences are expected for the
second pressure peaks of various H0. In Fig. 21, the obvious delay of
the second pressure peaks is found for the six cases; moreover, the val-
ues of the second peak pressure decrease significantly with the increase
in initial stand-off distance. We notice that when the initial stand-off
distances H0 < 2:0R0, the wall pressure oscillates violently after the
re-entrant jet impacting, while for H0 ¼ 2:5R0, the pressure curve is
relatively smooth (Fig. 21). To identify the sources of the pressure
oscillation, bubble dynamic behaviors during collapse are investigated.

FIG. 20. Evolution of pressure distribution on the centerline from x ¼ 0 to x ¼ 1:2. (a) Black line: t ¼ 1:179Tc, red line: t ¼ 1:184Tc, purple line: t ¼ 1:196Tc, green line:
t ¼ 1:197Tc, blue line: t ¼ 1:2Tc, yellow line: t ¼ 1:206Tc; (b) Black line: t ¼ 1:206Tc, red line: t ¼ 1:213Tc, purple line: t ¼ 1:222Tc, green line: t ¼ 1:238Tc, blue line:
t ¼ 1:254Tc, yellow line: t ¼ 1:27Tc, dark red line: t ¼ 1:286Tc.

FIG. 21. Time history of the wall pressure at the wall center x; y; z½ 	 ¼
0:0; 6:2; 6:2½ 	 for the different initial stand-off distances. Black line: 1:1R0, red
line: 1:3R0, purple line: 1:5R0, green line: 1:7R0, blue line: 2:0R0, yellow line:
2:5R0.
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FIG. 22. Evolution of a collapsing bubble with initial stand-off distance of 1:7R0 (rendered by volume fraction).
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FIG. 23. Evolution of a collapsing bubble in the later stage with initial stand-off distance of 2:0R0 in the left row, 2:5R0 in the right row (rendered by volume fraction).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 073311 (2021); doi: 10.1063/5.0055727 33, 073311-19

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


Figure 22 presents a sequence of snapshots to illustrate the typical
dynamics of a collapsing bubble with initial stand-off distance
H0 ¼ 1:7R0. In the initial stage, the bubble contracts gradually to
become an elliptical shape. Driven by the high pressure difference, the
distal side of bubble is flattened at 1:11Tc. Shortly afterward, a visible
inward deformation on the distal side of bubble is observed (1:14Tc).
As the development of shrinking-induced deformation, the distal side
evolves into a re-entrant jet impacting onto the proximal side of bub-
ble, followed by the formulation of a toroidal bubble at 1:18Tc.
Thereafter, the highly compressed bubble rebounds rapidly at the tip
region, with the formation of a mushroom-shape bubble at 1:29Tc. As
the bubble moves toward the solid wall, a protrusion induced by the
re-entrant jet flow appears (1:40Tc); meanwhile, the bubble surface
becomes slightly ruffled. The protrusion bubble separates from the
toroidal bubble and subsequently collides with the solid wall at 1:72Tc.
In the final stages of collapsing (1:83Tc, 1:94Tc), the toroidal bubble
breaks up with turbulent jet flow propagates radially along the wall.

Split bubble often has significant influence on the magnitude of
wall pressure, and Tong’s experimental results66 suggest that the
breakup of the toroidal bubble onto the solid wall may give rise to the
wall pressure, which is higher than the shock induced pressure. A suc-
cessive impingement of the split bubbles (Fig. 22, 1:72Tc–3:77Tc)
accounts for the pressure oscillations partly in the stage of final
collapsing (Fig. 21).

Figure 23 presents the collapse patterns with initial stand-off dis-
tance H0 ¼ 2:0R0, 2:5R0. For H0 ¼ 2:0R0 case, the bubble behaviors
(i.e., the re-entrant jet, the mushroom-like shape, the protrusion bub-
ble) are similar to H0 ¼ 1:7R0 case. However, it is shown that a
smaller protrusion bubble is formed and impacts the wall. In addition,
the bubble left in liquid does not contact with the solid wall eventually.

For H0 ¼ 2:5R0 case, bubble is developed with significant differ-
ences compared with previous two cases (H0 ¼ 1:7R0 and 2:0R0).
After the bubble splits into two parts at the rebounding stage, the split
part in left side forms a much smaller protrusion shape bubble
(1:3Tc), a gourd-shape, rather than a mushroom-shape bubble
emerged. Compared with H0 ¼ 2:0R0 case, a smaller bubble is
detached from the protrusion bubble and moving toward the solid
wall (1:61Tc). The remnant part re-collapses and splits into two bub-
bles at 1:83Tc, followed by re-expansion and coalescence. The expan-
sion–contraction process will repeat until the pressure in- and outside
the bubble reaches equilibrium. Due to the larger stand-off distance,
the split bubbles do not contact the solid wall finally; thus, a smoother
pressure variation is shown forH0 ¼ 2:5R0 case (Fig. 21).

V. CONCLUSIONS

In this study, a compressible two-phase flow solver is developed
to simulate the collapsing process of a single air bubble in water. The
highly robust wave propagation method with Riemann solver (HLLC)
is applied to solve the five-equation model. The WENO scheme with
block-structured AMRmethod is adopted to reduce the numerical dis-
sipation and improve the computational efficiency. From the conver-
gence analysis, excellent agreement is found between the predicted
results (bubble radius and pressure as function of time) and the theo-
retical solutions (K–M theory). We perform a comprehensive and
quantitative analysis to investigate the formation of shock waves in a
collapsing bubble and the pressure acting on planar solid wall, with
the following conclusions:

(1) It can be concluded that the piston-like motion of the re-
entrant jet leads to the generation of shock wave inside bubble.
The shock is refracted at the bubble interface, forming a precur-
sor transmitted shock propagating into liquid and a reflected
shock inside bubble. Eventually, the reflected shock impacts the
tip of the re-entrant jet, resulting in an enhanced water-
hammer shock in the liquid.

(2) It is found that the water-hammer shock will merge with the
precursor shock and give rise to the first peak of wall pressure.
Although the strength of the merged-shock dissipated rapidly,
the wall pressure induced by water-hammer shock still shows
much higher magnitude than the pressure generated by the re-
entrant jet only. Thus, we can conclude that shock waves are
the primary reason for the cavitation damage.

(3) We found that the water-hammer shock traveling opposite to the
wall causes tremendous pressure pulse. It occurs when the water-
hammer shock approaches the reflected shock in the distal side of
the bubble. The enhanced shock–shock interaction results in a
drastic increase in pressure, up to 450pinf [Fig. 20(a)].

(4) The initial stand-off distance is a key factor on the wall pressure
peak and bubble dynamic behaviors. For H0 � 2:5R0, the re-
entrant jet cannot contact with wall, but the shock wave still
produces high pressure on the wall. When H0 � 2:5R0,
rebounding occurs at the bubble tip region, and a typical
mushroom-shape bubble (H0 ¼ 1:7R0; 2:0R0) or a gourd-shape
bubble (H0 ¼ 2:5R0) will be produced. As there is an increase
of H0, the size of the protrusion bubble split from the toroidal
bubble declines. The protrusion bubble and the remnant part
impacts the wall successively, giving rise to the oscillations of
wall pressure in the final stage of the collapse.
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