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ABSTRACT

In this paper, a two-way coupled CFD-FEM (Computational Fluid
Dynamics and Finite Element Method) program is applied to
numerically simulate wave interaction with horizontal plate breakwaters.
The method of CFD-FEM is constructed based on preCICE, which is an
open-source coupling library for partitioned multi-physics simulations.
The flow field is solved by RANS method with OpenFOAM and the
structural part is solved by FEM with Calculix. The results of the
numerical simulations are compared with the existing literature results,
and the results of the elastic thin structure are in good agreement of the
literature results. The maximum error of reflection coefficient K, is
10.3%, the maximum error of transmission coefficient K, is 6.6%, and
the maximum error of RAO of the deformation &, at point A is 9.7%.
The results of elastic and rigid horizontal plate breakwaters are compared
to better understand the effects of the structure deformation on the
hydrodynamics.

KEY WORDS: wave interaction, CFD-FEM, overset, horizontal plate
breakwaters.

INTRODUCTION

Breakwaters have an important role in port facilities. Conventional
breakwaters are generally bottom breakwaters. Currently open
breakwaters such as horizontal plate breakwaters (HPB) have received
more attention. Heins (1950) carried out pioneering work on rigid
horizontal plate breakwaters (RHPB). His work derived explicit
formulas for the reflection and transmission coefficients of a semi-
infinite width rigid plate submerged in a finite water depth using the
Wiener-Hopf technique. Since then, a number of theoretical, numerical
and experimental studies have been carried out to better understand the
hydrodynamic properties of the structure. (Greene and Heins (1953),
ljima et al (1970), Brossard et al (2009), Qi and Hou(2003))

A study by I. Cho and M. Kim (1999) suggested that resilient
breakwaters may have better wave shielding performance compared to
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rigid breakwaters. For research purposes, an elastic horizontal plate
breakwater (EHPB) can be modelled as an elastic thin plate. Lee and
Chen (2010) proposed a linear analytical solution to the wave interaction
problem for an articulated elastic vertical plate breakwater. Based on this
theoretical solution, the effect of structural flexibility on reflected and
transmitted waves was investigated. Ashok et al (2020) presented an
analytical solution for wave scattering from porous flexible vertical
elastic plates and tensioned membranes where the reflection and
transmission coefficients are explicitly represented. In the above work,
the interaction of waves with elastic breakwaters was investigated using
potential flow theory. However, the potential flow theory can only deal
with inviscid fluids without considering viscosity. This may lead to
inaccuracies when solving specific engineering problems characterized
by wave breaking.

Due to the advances in Computational Fluid Dynamics (CFD), several
viscous flow models based on the Navier-Stokes equations for solving
fluid phases have been developed. In general, CFD methods can be
categorized into mesh-based and meshless methods. Among the mesh-
based methods, FDM and finite volume method (FVM) are the most
common methods for this particular topic. Liao and Hu (2013) developed
a fluid-solid coupling (FSI) model to simulate tank swaying with elastic
cantilever walls. In this model, the fluid and solid phases were solved by
finite difference and finite element methods, respectively, and coupled
by a conservative momentum exchange method based on the submerged
boundary method. Hu et al. (2023) combined the IHFOAM wave
modelling toolkit based on FVM with the fully-coupled FSI method to
study the hydroelasticity of a vertical wall subjected to waves elasticity,
aiming at a comprehensive understanding of the nonlinear wave
evolution and the corresponding structural response. Attili et al (2023)
simulated the wave impact on a flexible plate by means of the open-
source FVM toolbox Solids4dFOAM (Cardiff (2018)), implemented in
OpenFOAM, and validated the model by means of an ad hoc experiment.
Lagrangian meshfree methods (particle methods) can also be applied in
related studies. Khayyer et al (2021) combined the incompressible SPH
(ISPH) model of the fluid phase with the Hamiltonian SPH model of the
structural unit and presented the first SPH-based simulation of the
interaction between a fluid and a composite elastic structure. Chen et al



(2024) used the coupling of the 5-SPH model of the fluid phase (Antuono
(2010)) and the TL-SPH model of the elastic solid structure (Belytschko
(2000)) to study the role of EHPB and waves.

The currently investigated CFD methods for wave and elastic plate
action focus on vertical elastic plates, and there is a lack of validation
and research on EHPBs. The meshless methods for EHPB comparison
do not consider multiphase flow effects. In this study, we want to reduce
the effect of large deformation on the mesh discretization problem by
introducing overlapping meshes, and at the same time, we propose a set
of CFD-FEM solution methods in combination with the finite element
method. The modelling, method validation, and elastic effect study will
be discussed in the following.

NUMERICAL METHOD

In this section, a two-way coupled CFD-FEA (Computational Fluid
Dynamics and Finite Element Analysis) method is proposed to
investigate the dam break problem. The main framework of the coupling
strategy will be discussed in this section. The fluid domain is solved by
OpenFOAM (Jasak (1996) and Rusche (2002)) with RANS model and
VOF method. Calculix, an open-source FEA software, is employed to
solve the structure part. The coupling library for partitioned multi-
physics simulations, known as preCICE (Chourdakis et al., 2022), is
utilized to couple the fluid part and the structure part using a strong
implicit way.

Fluid part

The overInterDyMFoam solver with overset method in OpenFOAM ESI
v2206 is employed in the fluid part. OpenFOAM uses the PIMPLE
algorithm - a combination of Pressure-Implicit with Splitting of
Operators (PISO) algorithm and Semi-Implicit Method for Pressure
Linked Equations (SIMPLE) algorithm - to decouple velocity and
pressure.

The use of incompressible models to study the dam break problem is
common as well as stable approach in the current research field. The
equations of the RANS method are shown as follows:
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In equations (1) and (2) above, U is the velocity field; U, is the grid
moving speed; p; = p — pg - x is the fluid dynamic pressure; x is the
fluid coordinate position vector; p is the density of liquid or gas; g is the
gravitational acceleration vector; u.rr = p(v +v,) is the effective
dynamic viscosity, where v andv; are called kinematic viscosity and
turbulent eddy viscosity, respectively, and the latter is solved by the
turbulence model; f is the surface tension term in the two-phase flow
model; and f; is the source term applied in the extinction region. k — w
SST model (Menter et al. (2009)) is used to solve the turbulent eddy
viscosity v

When it comes to the free surface capture, the VOF method (Berberovié
et al. (2009)) with artificial compression is used to solve the problem.
The transport equation of the phase fraction is equation (3)
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where a is the phase fraction between 0 and 1. Different values of «

represents the following meanings in equation (4):

a=20 air
a=1 water 4)
0<a<1 interface

The open-source library waves2Foam (Jensen et al. (2014)), based on the
relaxation zone method, was used to simulate wave generation and
absorption. The theoretical and numerical solutions are weighted and
combined within the relaxation zones set up in the viscous flow inlet and
outlet regions, using a relaxation function as shown in equations (5) and

(6)
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¢ is the fluid velocity or volume fraction; wg is the relaxation factor,
between 0 and 1; and X is the relative position within the relaxation zone,
between 0 and 1. The boundary relaxation factor is 0 in the
computational domain, and the boundary relaxation factor of the
relaxation zone in the viscous flow computational domain is 1. Waves
can be both generated and absorbed in the relaxation zone, where the
wave absorption efficiency is sensitive to the length of the relaxation
zone. A longer relaxation zone can improve the wave absorption
efficiency, but it will increase the number of grids and increase the
computational cost, so it is necessary to choose the appropriate length of
the relaxation zone.

Structures subjected to slamming loads usually have large vertical
motions, and the use of deformed mesh techniques can make calculations
impossible due to severe deformation of the mesh. For this reason, the
overlapping mesh technique is used: each part of the object is divided
into separate meshes, which are independent of each other and are
connected by interpolation; the flow field mesh and the object mesh can
produce unconstrained displacements and the mesh mass remains
unchanged, which ensures the stability of the calculation of the object's
large-scale motion. The exchange of flow field information between
different meshes in the overlapping mesh is achieved by interpolating
values on the overlapping areas of the meshes. The Inverse distance
interpolation method is used in overset solver in OpenFOAM ESI V2206.
As shown in Fig.1, The red dashed line denotes the active cell, the black
realization denotes the contributing cell, and the weight function w; is
showed in equation (7). The Inverse Distance Interpolation can quickly
and easily exchange the physical information of the interpolating unit
and the active unit to improve the computational efficiency. Meanwhile,
the interpolation accuracy meets the needs of numerical simulation.
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Fig. 1 Inverse distance interpolation method.



where d; denotes the distance from the center of the contributing cell to
the center of the active cell and n denotes the number of contributing
cells. The physical quantity field ¢erporate SUCh as the pressure field
p of the active cell can be obtained by interpolating the physical quantity
field on the contributing cell, calculated as equation (8)

n

¢interpolate = Z w;P; ®
i

Structural part

The structural responses of the beam are calculated using Calculix, a free
software three-dimensional structural finite element program which
makes use of the Abaqus input format. It is possible to use commercial
pre-processors. The four-node continuum shell element (S4R) and eight-
node brick element with reduced integration solid element (C3D8R) is
used to discretize the wedge structure. One end of the beam is fixed to
form a cantilever beam structure. The dynamic movement of the wedge
is described via displacement field u and the equation is shown in

equation (9):

Mi+Cu+Ku=q 9)
where M,K,C are the structure mass, stiffness and damping n xn
matrix. The damping matrix used Rayleigh damping which is a linear
combination of mass and stiffness of the structure. The dynamic equation
is solved by generalized alpha method.

Two-way Coupled method

In this paper, the multi-physics field coupling library preCICE is used to
couple the above fluid solver with the structure solver to achieve a two-
way coupled solver. preCICE is an open-source massively parallel
system-based coupling library for partitioned multi-physics field
simulations jointly developed by the Technical University of Munich and
the University of Stuttgart in Germany using C++. It is powerful enough
to be used as a third-party coupling tool to couple OpenFOAM flow field
calculations with other open-source FEM solvers such as Calculix
(Uekermann et al., 2017, Chourdakis et al., 2023). This approach has
been successfully applied to study the fluid-structure interaction
problems in water-entry slamming (Xiao et al., 2024) and ship
hydroelasticity (Zhang et al., 2025). For coupling solutions, preCICE
uses adapter as an interface to interpolate and exchange data directly
without modifying the underlying code, just by calling the libpreCICE
library in each open-source program.

NUMERICAL SIMULATIONS
Validation of CFD-FEA Method

A benchmark simulation example conducted by Chen et al. (2024) is
introduced in this section to investigate wave interaction with an elastic
horizontal plate breakwater (EHPB). The numerical flume set up is
shown in Fig. 2. The grid is encrypted over a range of wave heights to
ensure wave generation. The flume is 4.2L+2.25m long. The source zone
and wave Absorber zone are both 1.3L long. L is the wavelength that
varies with the wave period. The depth is 0.5m. EHPB is set below
0.075m the free-surface with fixed-ends on both sides. It is 0.75m long
and 0.025m thick with 0.025m fixed-ends on both sides. The density p
is 1500 kg/m® and v is 0.4. Point A is in the middle of EHPB to measure
the deformation of the structure. To study the reflection coefficient K.,
and transmission coefficient K;. Three wave gauges are set in the flume.
G1 and G2 are set at 0.6L and 0.35L from the left side of EHPB. G3 is
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set at 0.7m from the right side of EHPB. The reflection coefficient K. is
defined as K, = H,./H . H, is the reflected wave height which is
estimated with G1 and G2 through two-point method. (Goda, Suzuki
(1976)) Transmission coefficient K; is defined as K, = Hs/H. H is the
wave height.

To study the fluid and solid convergence of the fluid mesh. A standard
condition with H=0.04m, T=1.2s and L= 2.052m and the structure
Young’s modulus E=3MPa is introduced in this section. Three cell size
results are introduced which differ from 0.025m, 0.0125m and 0.00625m
are compared with the theory in Fig. 3. n is the wave height. It could be
concluded from the figure that the fluid mesh is monotonic convergence.
The medium size of 0.0125m is chosen to study the solid mesh
convergence. The parameters are shown in table 1. Delta time At is
0.005s.
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Fig. 2 Numerical flume set up.
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Fig. 3 Comparison of three cell size wave evolution with theory result.
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Table 1. Parameter settings of fluid and structure simulations.

Parameter Value
E 3 MPa
1500 kg/m?
v 0.4
At 0.005s

Three sizes of solid mesh are set to study the solid mesh convergence



which differ from 0.0125m 0.0833m and 0.00625m. The maximum 1.8 0.5934 0.6042 1.8%
deformation of each size is shown in table 2. The simulation results of 1.9 0.5789 0.5868 1.3%
the three structural mesh sizes relative difference with the minimum size 2.0 0.5404 0.5715 5.4%
is smaller than 2.8%. We chose 0.0125 structural grid which is close to T (s) K,CFD-FEM K,Chen et al (2024) Eror|E|
the size of the fluid mesh for calculation. 1.0 0.6080 0.6424 5 4%
. . 1.1 0.5960 0.6177 3.5%
Table 2. Structural deformation results of different cell type. 12 0.4428 0.4546 2.6%
- - — 1.3 0.3745 0.4011 6.6%
Cell size Max top displacement Relative difference 14 0.5368 0.5589 4.0%
0.0125m 0.01994 m 2.8% 15 0.5035 0.5241 3.9%
1.6 0.5330 0.5542 3.8%
0,
0.0833m 0.01955m 0.8% 17 0.5405 0.5656 4.4%
0.00625m 0.01939 m / 1.8 0.5558 0.5716 2.8%
1.9 0.5840 0.5943 1.7%
After the simulation we choose Axf,;q = 0.0125m and Axgyiq = 2.0 0.6315 0.6565 3.8%
0.0125m to study wave interaction with EHPB. We investigate 11 wave T(s) RAO RAO Eror|E|
period and length with H=0.04m which were shown in table 3. CFD-FEM Chen et al (2024)
1.0 0.3486 0.3269 6.6%
Table 3. Parameters of waves period and length with H=0.04m. 1.1 0.3716 0.3388 9.7%
T(s) L (m) 1.2 0.4185 0.3860 8.4%
1.3 0.6757 0.6970 3.1%
! 1.514 1.4 0.7340 0.7256 1.2%
1.1 1.784 15 0.5428 0.5209 4.2%
1.2 2,052 1.6 0.5263 0.5136 2.5%
1.7 0.4728 0.4731 0.1%
1.3 2.317 18 0.5002 0.5083 1.6%
1.4 2.577 1.9 0.6304 0.6552 3.8%
15 2834 2.0 0.6933 0.7216 3.9%
1.6 3.087
17 3.336 —— CFD-FEM
1 8 3 583 0. —— Chen et al (2024)
1.9 3.827 0.
2 4.07 0
The reflection coefficient K,. , transmission coefficient K, and The o 0
RAO= §,/H of the deformation §, at point A is study to validate the
CFD-FEM method and the wave generation in Fig. 4. It could be found 0
that the three curves fit well with the trend of the literature results. o
Meanwhile, from table 4, it can be seen that the maximum error of K,. is 0
10.3%, the maximum error of K, is 6.6%, and the maximum error of ’
RAO is 9.7%. The above results prove that the current proposed CFD- LO 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
FEM method can be used in the study of EHPB. T(s)
In this study, the structural deformation response calculations are closer 0.70
to the literature results. The reflection and transmission coefficients are ——CFD-FEM
in large error with the literature results around 1.0s-1.2s, which is 0. 65 —+— Chen ct al (2024)
correlated with the structural response error. However, it may also be
affected by wave dissipation and relaxation zone reflections. 0. 60
Table 4. Comparison of K, K, RAO between CFD and literature. w i 0.95
T (s) K, CFD-FEM | K, Chenetal (2024) | Eror|E]| _
1.0 0.2122 0.1923 10.3% 0.50
1.1 0.3366 0.3158 6.6% 0. 45
1.2 0.4378 0.458 4.4%
1.3 0.5986 0.6296 4.9% 0. 40
1.4 0.6907 0.7023 1.7%
1.5 0.6750 0.687 1.7% 0 T 1.2 1.3 1.4 15 16 L7 1.8 L9 2.0
1.6 0.6515 0.6583 1.0% T(s)
1.7 0.6303 0.6376 1.1%
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Fig. 4 Comparison of K,. = H,./H, K, = H3/H and RAO=§,/H at point
A with literature results.

Effects of elasticity

In this section the effects of elasticity are studied. Rigid horizontal plate
breakwater (RHPB, E=3MPa) is set up to compare the reflection
coefficient K,. and transmission coefficient K, with Elastic horizontal
plate breakwater (EHPB). Fig 5 shows the comparison of K, between
EHPB and RHPB. When T=1.1s-1.4s EHPB’s K,. is larger than RHPB
while RHPB’s K, is larger than EHPB. The K,. of EHPB is larger in the
shorter wave and RHPB’s is larger in the longer wave, except for T=1.0s.
Fig. 6 is the comparison of K; between EHPB and RHPB. RHPB is
larger than EHPB when T<1.6s while RHPB behave better than EHPB
when T>1.6s.

0.8
—=—TE=3Mpa

—_t

0.3

0.2

LO LI 1.2 .3 1.4 1.6 1.6 1.7 1.8 1.9 2.0
T(s)

Fig. 5 Comparison of K, = H,./H between EHPB and RHPB.

0. 35
?.0 L1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

T(s)

Fig. 6 Comparison of K, = H;/H between EHPB and RHPB.

It could be concluded that the effects of elasticity may be not obvious at
the longer wave at H=0.04m. When T<1.6s which we could define these
waves short wave EHPB’s performance is better. T=1.2s is chosen to
investigate the interaction with waves between EHPB and RHPB.

s ————

Diplacement (m)
-0.025 -0.02 -0.015 -0.01 -0.005 0.000
————— ! —

EHPB (E=3MPa)

RHPB
Fig. 7. Wave evolution at t=0.5T, T=1.2s, H=0.04m.
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Fig. 8. Velocity filed at t=0.5T, T=1.2s, H=0.04m.
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Fig. 7 is the wave evolution at t=0.5 of case T=1.2s. The deformation of
the EHPB resulted in a calmer wave surface. In the case of RHPB
installations, breakage will occur if the wave steepness is too large to
maintain the wave surface. We further investigated the flow velocity
distribution inside the flow field as shown in Fig. 8. The deformation of
the EHPB resulting in the sinking of the lower body of water on the upper
surface of the breaker will have consumed some of the energy. The above
phenomenon prevents the wave breaking phenomenon from occurring.

CONCLUSIONS

This paper proposed a two-way coupled CFD-FEM program is applied
to numerically simulate wave interaction with elastic horizontal plate
breakwaters. Overset method and waves2Foam open-source library was
used to hydrodynamics and wave generation. Results of T=1.2s,
H=0.04m regular wave interaction with E=3MPa EHPB is compared
with literature results (Chen et al. (2024)). The maximum error of
reflection coefficient K,. is 10.3%, the maximum error of transmission
coefficient K; is 6.6%, and the maximum error of RAO of the
deformation &, at point A is 9.7%. The above results prove that the
current proposed CFD-FEM method can be used in the study of EHPB.

Effects of elasticity is investigated in this work. EHPB is compare with
RHPB. The comparison of K, and K, shows that in the regular wave
H=0.04m. EHPB behave better than RHPB in shorter wave (T<=1.6s),
while RHPB is better in longer wave (T>1.6s). The deformation of
breakwater can prevent the generation of breaking waves and make the
wave surface smoother.

Further work could be concentrated on different wave height, materials
and even irregular wave.
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