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ABSTRACT 

 

Turbulent flows, especially at high Reynolds numbers are resource-

demanding to resolve using numerical simulations. Due to the multi-

scale nature of fully turbulent flows, the spatial resolution in an LES 

calculation needs to be extremely high, and this results in a formidable 

number of computational grids, e.g., to the order of 100 million. 

Therefore, to obtain high-resolution flow field from low-resolution flow 

data is of great practical interest for turbulent flow predictions. This 

paper proposed a data-driven modeling framework for super-resolution 

(SR) reconstruction of turbulent channel flow from low-resolution flow 

field, in which the elliptic nature of the mass-conservation in 

incompressible fluids is leveraged to enhance the performance of neural 

networks. Specifically, inspired by the attention mechanism which is 

frequently adopted in natural language processing or time series analysis 

to capture global correlations among variables, we input pressure data 

obtained from globally distributed sensors as additional features to infer 

the local flow quantities, i.e. three instantaneous velocity components. 

By adopting this strategy, the global correlations among different spatial 

points are readily taken into account. This work first introduces the 

generation of high-fidelity training data set by using LES calculations, 

and the low-resolution flow field is obtained from the high-fidelity field 

by applying spatial filters. Then, a neural network mapping relation from 

the low-resolution flow field to the high-resolution flow field is 

established. Finally, the reconstructed flow fields are visualized and 

discussed. 

 

KEY WORDS: Super-Resolution Reconstruction; Machine 

Learning; Turbulent Flow. 

 

INTRODUCTION 

 

Turbulent flow is ubiquitous in ocean engineering applications, yet 

resolving it poses significant challenges due to its inherently multi-scale 

nature in both time and space. In Large Eddy Simulations (LES) of high 

Reynolds number flows, the total number of computational points can 

easily exceed 100 million, often leading to prohibitively high 

computational costs. However, with the rapid advancement of machine-

learning technology, there is growing optimism about its potential to 

revolutionize the modeling and simulation of turbulent flows, offering 

more efficient while reliable solutions. For instance, Fukami et al. 

(Fukami et al., 2019) pioneered a CNN-based approach to connect low-

resolution images to high-resolution ones, initially applying it to two-

dimensional cylinder wake flows, both turbulent and laminar, as well as 

two-dimensional homogeneous decaying turbulence. This framework 

was later extended to achieve super-resolution reconstruction of 

turbulent flow fields in both space and time (Fukami et al., 2020). 

Building on this, Liu et al. (Liu et al., 2020) enhanced the accuracy of 

neural network predictions by incorporating temporal dependencies 

through multiple temporal paths. Further advancements were made by 

Bi et al. (Bi et al., 2022), who integrated an attention mechanism into 

CNN-based SRCNN networks to more efficiently capture global spatial 

correlations in turbulent flows, achieving significant improvements in 

performance. 

 

The core idea behind these studies is to train neural network models to 

take low-resolution flow fields as input and output high-resolution 

results. This approach allows high-resolution flow fields to be obtained 

by performing CFD simulations on coarser grids, thereby significantly 

reducing computational resource requirements. However, the 

aforementioned studies all adopted pure data-driven framework, i.e., 

when training the neural network models, the “flow field” was treated as 

“image”. The super-resolution of the flow field is more or less a pure 

image-processing problem., and limited, or little, physical knowledge of 

the flow field was incorporated in the modeling process.  

 

In recent years, researchers have increasingly focused on integrating 

more prior physical into the modeling of artificial neural networks. This 

approach aims to enhance the accuracy, interpretability, and 

generalizability of neural networks by embedding fundamental physical 

principles directly into the learning process. Specifically, incorporating 

physical knowledge into neural networks can be achieved at either the 

output or the input end of the model. The first approach, known as 
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Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019), 

introduces physical constraints directly into the optimization process of 

the neural network. This ensures that the model's predictions adhere to 

fundamental physical laws. The second approach, often referred to as 

Physics-Guided Neural Networks (PGNNs) (Yousif et al., 2022; Li et al., 

2024), involves feeding the neural network with lower-fidelity data as a 

guiding framework during training. This method leverages approximate 

physical models or data to steer the learning process, enhancing the 

model's ability to generalize and produce physically consistent results.  

 

In this work, we propose a data-driven modeling framework based on 

PGNN for the SR reconstruction of turbulent channel flow from low-

resolution flow fields. Our approach leverages the elliptic nature of 

pressure equation in incompressible flows to enhance the performance 

of the neural network. Inspired by the attention mechanism—commonly 

used in natural language processing and time series analysis to capture 

global correlations—we incorporate pressure data from globally 

distributed sensors as additional input features. This allows the model to 

infer local flow quantities, specifically the three instantaneous velocity 

components, while naturally accounting for global correlations across 

different spatial points. By integrating these strategies, our framework 

effectively combines physical principles with data-driven learning to 

improve the accuracy and robustness of super-resolution reconstruction 

in turbulent flows. 

 

The remainder of this paper is organized as follows. First, we provide a 

detailed explanation of the generation of the high-fidelity dataset. Next, 

we introduce the neural network (NN) model used in this study, 

including its architecture, the mapping relationship it aims to establish, 

and the preparation of the training dataset. Subsequently, the NN model 

is trained and applied to the super-resolution reconstruction of fully 

developed turbulent flow, using lower-resolution data as input. Finally, 

conclusions are drawn based on the results and discussions presented. 

 

 

GENERATION OF HIGH-FIDELITY DATASET 

 

In machine learning tasks, a high-quality dataset is considered a 

fundamental prerequisite. Therefore, in this chapter, we will detail the 

process of generating the high-quality dataset used in this study. 

 

 

CFD Approach 

 

After applying a spatial filter to the incompressible N-S equations, the 

governing equations can be written as: 
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where 𝑢̃𝑖(𝑖 = 1,2,3) is the filtered velocity component in the 𝑥𝑖 

direction. 𝑝 is the filtered pressure, 𝜐 the kinematic viscosity of the 

fluid, and 𝜏𝑖𝑗  is the so-called sub-grid stress which is given by 
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2
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where 𝑆̃𝑖𝑗  is the resolved strain-rate tensor, while 𝜐𝑠𝑔𝑠  being the 

unresolved eddy viscosity and need additional model to close. In the 

current work, the wall-adapting local eddy-viscosity (WALE) model 

(Nicoud and Ducros, 1999) is applied, and the unresolved eddy viscosity 

is written as: 
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where Cw = 0.325 is the WALE coefficient, ∆ is the cube root of local 

cell volume, 𝑆𝑖𝑗
𝑑  is the traceless symmetric part of the square of the 

velocity gradient tensor which is defined by: 
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Numerical Setup 

 

Fig. 1 illustrates the computational domain used in the CFD simulations 

for this study. The domain dimensions are Lx × Ly × Lz = 2πδ × 2δ × πδ, 

where δ represents the channel half-height. The coordinate system is 

defined as follows: x corresponds to the streamwise direction, y to the 

wall-normal direction, and z to the spanwise direction. Periodic boundary 

conditions are applied to the side walls, while the top and bottom walls 

are set as no-slip boundaries.  

 

 
 

Figure 1. Illustration of the computational domain. 

 

In this study, the Reynolds numbers are defined based on the bulk 

velocity and friction velocity. Specifically, the bulk Reynolds number is 

given by Reb = Ubδ ν⁄  = 20000, and the friction Reynolds number is 

Reτ = uτδ ν⁄  = 1000. Here, uτ = √τw ρ⁄  represents the friction velocity at 

the wall, where τw is the wall shear stress and ρ is the fluid density.  

 

The specifications of the computational grid are detailed in Table 1. The 

grid consists of 320 cells in the streamwise direction (x), 216 cells in the 

wall-normal direction (y), and 320 cells in the spanwise direction (z). 

This configuration results in a total of approximately 22 million grid 

points used in the CFD simulations. 

 

Table 1. Computational grid specifications 

 

Parameter Value 

∆x+ 19.6 

∆y+ 0.79 ~ 15.0 

∆z+ 9.8 

Nx × Ny × Nz 320 × 216 × 320  

Ntotal 22.1 million 

 

CFD Results 

 

The verification and validation of the CFD results have been extensively 

discussed in a previous paper by the authors and are therefore omitted 
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here for brevity. Readers are encouraged to refer to our earlier work for 

detailed information. Within the scope of this paper, we focus on the 

flow snapshots from the LES dataset. As illustrated in Fig. 2, the velocity 

components (U, V, W) and the pressure field (p) on the central slice of 

the computational domain are presented, providing a clear visualization 

of the flow characteristics. 

 

 
(a) 𝑈 

 
(b) 𝑉 

 
(c) 𝑊 

 
(d) 𝑝 

Figure 2. LES results, i.e. the HR flow field. 

 

 

DEFINITION OF ANN FOR THE SR RECONSTUCTION OF 

TURBULENT CHANNEL FLOW 
 

Definition of ANN Structure 
 

A Multilayer Perceptron (MLP) network is composed of an input layer, 

one or more hidden layers, and an output layer. The input layer receives 

the initial data, which is then propagated forward through the hidden 

layers to the output layer. Each hidden layer applies a series of non-linear 

transformations to the input, enabling the network to capture and model 

intricate relationships between the input and output data. In the present 

study, we employ this fundamental neural network structure for 

illustrative and demonstrative purposes. A visual representation of an 

MLP is provided in Fig. 3. 

 

 
 

Figure 3. Illustration of an MLP. 

 
Fig. 4 illustrates the detailed operations within a node of the hidden 

layers in an MLP. Each node in the hidden layer computes a weighted 

sum of its inputs, which is then passed through an activation function, 

denoted as 𝜎 in Fig. 2. This activation function introduces non-linearity, 

enabling the node to model complex patterns in the data. During the 

training process, the MLP network employs backpropagation to 

iteratively adjust the weights. Backpropagation calculates the gradient of 

the loss function with respect to the weights, allowing the network to 

optimize the weights in a way that minimizes the discrepancy between 

the predicted output and the true output. This iterative optimization 

process enables the network to learn the underlying relationships 

between the input and output data effectively. 

 

 
 

Figure 4. Illustration of an MLP node. 

 

Definition of Mapping Relation 

 

In this study, the mapping relationships to be established by the NN 

model are formulated in Eq. (6) and Eq. (7). Here, Eq. (6) serves as a 

benchmark for comparative analysis, providing a reference point to 

evaluate the performance of the proposed PGNN model, i.e. Eq. (7). 

 

(𝑈𝐻𝑅, 𝑉𝐻𝑅, 𝑊𝐻𝑅, 𝑝𝐻𝑅) = 𝑵𝑵(𝑥, 𝑦, 𝑧) (6) 
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(𝑈𝐻𝑅 , 𝑉𝐻𝑅, 𝑊𝐻𝑅, 𝑝𝐻𝑅) = 𝑷𝑮𝑵𝑵(𝑥, 𝑦, 𝑧, 𝑝𝐿𝑅) (7) 

 

Preparation of Training Dataset 

 

The flow field depicted in Fig. 2 is initially down-sampled to generate 

LR data, which serves as the training data of the two NN models. In this 

study, a down-sampling ratio of 10 is applied to derive the LR data from 

the HR data. The resulting LR flow field data points are then utilized to 

train the NN models, as defined by Eqs. (6) and (7). The process of 

down-sampling the HR data is visually demonstrated in Fig. 5. 

 

 
(a) data points of the HR data. 

 
(a) data points of the LR data. 

Figure 5. Down-sampling of the HR data. 

 

 

The resulting down-sampled flow field, i.e., the LR flow field, which 

includes the three velocity components (U, V, W) and the pressure field 

(p), is illustrated in Fig. 6. 

 

 
(a) 𝑈𝐿𝑅 

 

 

(b) 𝑉𝐿𝑅 

 
(c) 𝑊𝐿𝑅 

 
(d) 𝑝𝐿𝑅 

Figure 6. LR flow field. 

 

 

The total number of training data points is around 8,000, and the data 

points of the LR flow field are then randomly split into a training dataset 

and a testing dataset in a ratio of 9:1. The data points in the training 

dataset are then utilized to train the two NN models.  

 

 

RESULTS AND DISCUSSION 
 

Training of the ANN Model 
 

First, the training data points are randomly shuffled to ensure a balanced 

distribution. Next, min-max normalization is applied to standardize the 

original data, scaling all input features to the range [0, 1]. This 

normalization step helps enhance the training efficiency and 

performance of the neural network. 

 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =  
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 (8) 

 

The hyperbolic tangent (tanh) function is employed as the 

activation function in the neural network model, defined as 

follows: 

 

𝑎𝑡𝑎𝑛ℎ =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (9) 

 

In the current study, the open-source deep-learning library 

PyTorch is used to construct and train the NN models. The 

constructed NN architecture consisted of 11 hidden layers with 

100 neurons per layer. During the training process, the Adamax 

optimizer from PyTorch is utilized, and the batch size is 64, and 

the Mean Square Error (MSE) is used as the loss function with a 

learning rate of 0.0001. 

 

The loss curve is illustrated in Fig. 7. 
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Fig.7 Histories of losses in the training process. 

 

 

SR Construction of the Flow 

 

After training with low-resolution flow field data, the two resulting NN 

models are used to reconstruct high-resolution flow fields, as shown in 

Figure 8. The left column displays the flow fields computed by CFD, 

which serve as the ground truth in this study. The middle column 

presents the results obtained from the neural network defined by 

Equation 7 (purely data-driven), while the right column shows the results 

from the neural network defined by Equation 8 (physics-guided). 

 

 

 

   
(a) CFD-U (b) NN-U (c) PGNN-U 

   
(d) CFD-V (e) NN-V (f) PGNN-V 

   
(g) CFD-W (h) NN-W (i) PGNN-W 

   
(j) CFD-p (k) NN-p (l) PGNN-p 

Figure 8. NN-reconstructed turbulent flow fields. 

 

Comparing the reconstructed flow fields obtained from the pure data-

driven model and the Physics-Guided Neural Network (PGNN), it is 

evident that the high-resolution flow field reconstructed by the PGNN is 

closer to the ground truth. Although the purely data-driven approach 

successfully captures the large-scale characteristics of turbulence, its 

accuracy in resolving small-scale structures is relatively poor. In contrast, 

the PGNN, which incorporates physical information, achieves more 

desirable results in reconstructing the turbulent flow field, accurately 

capturing both large-scale and small-scale features. 

 

The authors posit that the efficacy of incorporating the global pressure 

field arises from its inherent elliptic nature, as governed by the pressure 

Poisson equation in the Navier-Stokes (NS) system. Unlike parabolic or 

hyperbolic equations—which characterize velocity evolution through 

localized dependencies (e.g., viscous diffusion or convective 

transport)—elliptic systems require global interdependence, meaning 

each point in the pressure field is influenced by all other points 

simultaneously. Consequently, integrating the pressure field into the 

neural network (NN) inputs provides a mechanism to encode these long-

range correlations directly. In contrast, models relying solely on spatial 

coordinates to map velocity or other flow quantities inherently capture 

only local relationships, lacking the ability to resolve the non-local 

interactions critical to pressure-dominated phenomena. By leveraging 

the elliptic structure of pressure, the NN gains access to the global 

physical constraints of the system, enabling a more accurate and 

physically consistent representation of the turbulent field. 

 

CONCLUSIONS 
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In this study, we proposed a data-driven modeling framework based on 

Physics-Guided Neural Networks (PGNNs) for the super-resolution 

reconstruction of turbulent channel flow from low-resolution flow fields. 

By leveraging the elliptic nature of the pressure equation in 

incompressible flows and incorporating global pressure data as 

additional input features, our framework effectively integrates physical 

principles with machine learning to enhance the accuracy and robustness 

of super-resolution reconstruction. 

 

The high-fidelity dataset generated through LES provided a solid 

foundation for training the neural network models. The comparison 

between the purely data-driven neural network and the proposed PGNN 

demonstrated that incorporating physical knowledge significantly 

improves the reconstruction accuracy, especially in capturing small-

scale turbulent structures. The PGNN model was able to produce high-

resolution flow fields that closely resembled the ground truth obtained 

from CFD simulations, thereby validating the effectiveness of our 

approach. 

 

This work highlights the importance of integrating physical insights into 

machine learning models for complex fluid dynamics problems. The 

proposed framework not only reduces the computational burden 

associated with high-resolution CFD simulations but also enhances the 

generalizability and reliability of super-resolution reconstruction in 

turbulent flows. Future work may focus on extending this framework to 

more complex flow configurations, exploring additional physical 

constraints, and further optimizing the neural network architecture to 

improve performance and efficiency. 
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