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ABSTRACT   
 

Focused waves are an extreme type of irregular waves, which can be 

much higher in wave height than the surrounding waves, posing a serious 

threat to the safety of marine structures. In this paper, a method based on 

overset mesh using SUGGAR++ and waves2Foam for generating waves 

is constructed and numerical simulations of the motion and response of 

a KCS ship in focused waves are performed. The solver uses naoe-

FOAM-SJTU developed within the group. The wave building is 

performed by a third party software, waves2Foam. The focused wave is 

generated based on JONSWAP spectra and using new wave model. 

Changes in bow pressure are more sensitive to changes in wave period. 

Shorter wave period brings steeper wave lift, which increases the bow 

pressure. 

 

KEY WORDS:  Focused wave; naoe-FOAM-SJTU; overset 

mesh; slamming.  
 

INTRODUCTION 

 

Focused waves are an extreme type of irregular waves, which can be 

much higher in wave height than the surrounding waves, posing a serious 

threat to the safety of marine structures. Studies have found that the 

acceleration of the ship under the action of focused waves is too large, 

and the nonlinear motion response amplitude of the hull can reach more 

than 1.5 times that under normal random waves. In this paper, the ship 

motion response and thumping load characteristics are investigated for 

extreme sea conditions. Based on the JONSWAP wind and wave spectra, 

focused waves focused at different locations on the ship's hull are 

generated by linear wave superposition, and the ship's motion and 

thumping under the focused waves are simulated. The effects of different 

focusing positions on the bang load are analyzed. Stansberg and Karlsen 

indicated that serious green water event usually occurs in the condition 

of focused waves, which the huge wave height of focused waves can 

make a great impact on the ship. Fonseca analyzed the influence of the 

wave height, wavelength, and waveform of the focused waves on the 

structural loads, and the results showed that the size of the structure load 

was related to the maximum wave height of the focused waves and the 

appearance position of the focused waves. Zhuang et al. focus on the 

numerical simulation of the interaction of a focused wave with a moving 

cylinder. The article employs a higher-order spectrum (HOS) method to 

generate the focused wave field, combined with a self-developed CFD 

solver, naoe-FOAM-SJTU (equipped with overlapping mesh technique), 

to capture the viscous effects around the moving cylinder. Chen et al. 

explore the complex nonlinear interaction phenomena of focused waves 

with a finite number of protruding water surface cylinders through high-

fidelity numerical simulations to reveal the mechanism of wave 

scattering. Liu et al. simulate the interaction of a focused wave with a 

buoy using the computational fluid dynamics (CFD) solver naoe-FOAM-

SJTU. The motion response of the wave to the buoy is discussed in the 

paper. Tromans, Anaturk and Hagemeijer presents a new large ocean 

wave kinematic model intended to be used as a design wave for offshore 

structures. The model provides a more accurate representation of the 

largest waves in a given sea state by taking into account the statistical 

properties of the peaks and troughs. Specifically, the model reformulates 

the equations describing wave behavior with deterministic amplitudes 

and phases, focusing on the occurrence of wave crests under conditional 

probability statistics. It emphasizes that the surface elevation becomes 

more deterministic as the height of the wave crest increases, which has 

significant implications for the loads experienced by offshore structures. 

In free-surface fluid simulations based on the finite volume method, 

wave reflections at the boundary of the computational domain can cause 

significant errors in the results. In order to minimize these reflections, an 

“implicit relaxation zone” technique can be used, provided that the case-

dependent parameters of the relaxation zone are optimized. An analytical 

method to optimize these parameters was proposed by Perić et al. and 

their predictions were compared with the results of two-dimensional 

flow simulations with different depths, wave steepness, flow solvers, and 

relaxation functions. Comparisons are also made with the results of 

three-dimensional flow simulations of a strong wave-reflecting object in 

the presence of nonlinear free surface waves. 

 

 

NUMERICAL METHOD 

 

Ship Motion 
 

The six-degree-of-freedom module in the naoe-FOAM-SJTU solver is 

used to calculate the ship 's motion in waves. The six-degree-of-freedom 

divides the motion of the object into three translational motions of surge, 
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sway and heave and three rotational motions of roll, pitch and yaw. In 

order to solve these motions, the geodetic coordinate system and the hull 

coordinate system are established. The position of the geodetic 

coordinate system is fixed, the hull coordinate system is always fixed on 

the hull, and its coordinate origin is generally located at the center of 

gravity. In order to facilitate the understanding of the ship 's motion 

process, the X axis of the coordinate system is generally arranged along 

the longitudinal direction of the ship, the Y axis is arranged along the 

width direction of the ship, and the Z axis is arranged along the draft 

direction. When the ship is in a positive floating state, the geodetic 

coordinate system is consistent with the positive direction of each 

coordinate axis of the hull coordinate system. 

 

The movement process of the ship under the geodetic coordinate system 

is the movement process of the hull coordinate system relative to the 

geodetic coordinate system, and the displacement of the ship under the 

geodetic coordinate system can be expressed as: 

 

𝜼 = (𝜼𝟏, 𝜼𝟐) = (𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓) (1) 
 

Among them, the six parameters represent the linear displacement of the 

ship along the X, Y, and Z axes ( surge, sway, heave ), and the angular 

displacement around the X, Y, and Z axes ( roll, pitch, yaw ). The three 

linear velocities and the three angular velocities are expressed in the hull 

coordinate system: 

 

𝑣 = (𝑣1, 𝑣2) = (𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟) (2) 
 

Velocities in the geodetic and hull coordinate systems can be linked by 

the three angular motions (Euler angles) of the hull: 

 

𝒗1 = 𝑱1
−1 ⋅ 𝜼̇1, 𝒗2 = 𝑱2

−1 ⋅ 𝜼̇1 ,
𝜼̇1 = 𝑱1 ⋅ 𝒗1, 𝜼̇1 = 𝑱2 ⋅ 𝒗2

(3) 

 
where J1 and J2 are conversion matrices with the following expressions: 

𝑱1 = [
cos 𝜃 cos 𝜓 sin 𝜙 sin 𝜃 cos 𝜓 − cos 𝜙 sin 𝜓 cos 𝜙 sin 𝜃 cos 𝜓 + sin 𝜙 sin 𝜓
cos 𝜃 sin 𝜓 sin 𝜙 sin 𝜃 sin 𝜓 + cos 𝜙 cos 𝜓 cos 𝜙 sin 𝜃 sin 𝜓 − sin 𝜙 cos 𝜓

− sin 𝜃 sin 𝜙 cos 𝜃 cos 𝜙 cos 𝜃
](4) 

 

𝑱2 = [

1 sin 𝜙 tan 𝜃 cos 𝜙 tan 𝜃
0 cos 𝜙 − sin 𝜙

0
sin 𝜙

cos 𝜃

cos 𝜙

cos 𝜃

] (5) 

 

 

Wave Model 
 

The wave elevation can be represented as the sum of numerous small 

wavelets: 

 

𝜂(𝑥, 𝑦, 𝑡) = ∑  

𝑛

𝑐𝑛 cos(𝑘𝑛𝑥 cos 𝜃𝑛 + 𝑘𝑛𝑦 sin 𝜃𝑛 − 𝜔𝑛𝑡 + 𝜀𝑛) (6) 

 

The surface elevation is normally distributed about a most probable value, 

𝜂𝑑
∗ . And the surface elevation 𝜂 can be described as a function of time, 

by: 

 
𝜂∗(𝜏) = 𝛼𝜌(𝜏) + 𝑔(𝜏) (7) 

 

where 𝜏 = 𝑡 − 𝑡1 , 𝛼 is the crest elevation and 𝑡1 is the time when the 

waves focus. 𝜌(𝜏) is the autocorrelation function of the ocean surface 

elevation. 𝛼𝜌(𝜏)  is the domestic component of crest elevation. 𝜌(𝜏) 

changes along with time as shown in Fig. 1: 

 
Fig. 1 The correlations of 𝜌 and time 

 
As 𝜏 increase, the conditioning imposed by the crest becomes weaker. 

The value of 𝜌(𝜏)  is easily obtained as the Fourier transform of the 

surface spectrum.  

𝜌(𝜏) =
1

𝜎2 ∫  
∞

0

𝑆(𝜔)𝑐𝑜𝑠𝜔𝜏𝑑𝜔 =
1

𝜎2 ∑  

𝑛

(𝑆(𝜔)Δ𝜔𝑛)𝑐𝑜𝑠𝜔𝑛𝜏 (8) 

Thus the deterministic component of Eq.7 that will be dominant when 𝛼 

is large is  

𝜂𝑑
∗ = 𝑚 =

𝛼

𝜎2 ∑𝑑𝑛𝑐𝑜𝑠𝜔𝑛𝜏 (9) 

where 

𝑑𝑛 = 𝑆(𝜔𝑛)Δ𝜔𝑛 (10) 

Even when 𝛼 is not large Eq.9 provides the expected and most probable 

values of the ocean surface displacement. 

 

Simulation of Focused Waves 
 

In order to reproduce the extreme waves numerically, the common means 

is to get a larger wave amplitude by adjusting the phase of the regular 

waves at different frequencies so that they reach the maximum amplitude 

at a certain moment and a certain position at the same time. Feng applied 

a phase-manipulation method to do an experiment on focused wave-

current interaction In this paper, focused waves are obtained based on 

linear and irregular wave theory, and the amplitude and frequency of 

each regular wave are obtained from the irregular wave wind and wave 

spectra. 

The discretization of the linear wave parameters is accomplished based 

on the JONSWAP spectrum with the following spectral equation, 

𝑆(𝑓) = 0.204𝐻𝑠
2𝑓𝑝

4𝑓−5 (−
5

4
) exp ((

𝑓

𝑓𝑝
)) 𝛾𝑟 (11) 

𝑟 = exp [
−(𝑓 − 𝑓𝑝)2

2𝜎2
𝑓𝑝

2] (12) 

where Hs is the meaningful wave height, fp=1/Tp is the peak frequency, 

Tp is the peak period, 𝛾 is the peak lifting factor, which is generally taken 

as 3.3, and 𝜎 is the peak shape factor, which is defined as, 

𝜎 = {
0.09𝑓 ≥ 𝑓𝑝

0.07𝑓 < 𝑓𝑝
(13) 

Focused waves are obtained in the form of a superposition of regular 

waves, and the wavefront equation η(x, t) can be expressed as, 

𝜂(𝑥, 𝑡) = ∑  

𝑁

𝑖=1

𝑎𝑖 cos(𝑘𝑖𝑥 − 2𝜋𝑓𝑖𝑡 + 𝜑𝑖) (14) 

where i denotes the ith linear wave, N is the total number of linear waves, 

ai is the wave amplitude, ki is the number of waves, fi is the wave 

frequency, and the number of waves satisfies the dispersion relation with 

the wave frequency: 𝜔𝑖
2 = (2𝜋𝑓𝑡)2 = 𝑔𝑘𝑡tan𝑘𝑖ℎ , 𝜔𝑖  denotes the 

wave-circle frequency, 𝑔 is the gravitational acceleration and h is the 
water depth. 
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NUMERICAL MODEL AND SIMULATION CONDITIONS 

 

Geometric Model 

 
The model selected in this paper is KCS Ship Model. The length between 

perpendiculars is 2.7m.  

 

 
Fig. 2 Benchmark ship model KCS 

 
Table 1 Main parameters of KCS 

 

Parameters Full scale Model scale 

Lpp 230m 2.7m 

B 32.2m 0.378m 

D 19m 0.223m 

T 110.8m 0.084m 

∇ 52030m3 0.084m3 

 
In the focused wave simulation, the distance from the focusing position 

to the inlet boundary should be long enough to ensure that the wave can 

be formed, and the specific computational domain size is set as: 

−1.5𝐿𝑃𝑃 < 𝑋 < 3.5𝐿𝑃𝑃, −1.0𝐿𝑃𝑃 < 𝑌 < 1.0𝐿𝑃𝑃, −2.0𝐿𝑃𝑃 < 𝑍 <
1.0𝐿𝑃𝑃.  

 
Fig. 3 Computational domain 

 
A wave-making relaxation region of 0.5𝐿𝑃𝑃 in length is provided at the 

inlet of the computational domain, and an extinction relaxation region of 

1.0𝐿𝑃𝑃 in length is provided at the outlet. 

 
Fig. 4 Demonstration of relaxation zone 

 

Computational Grids 

 
Overlapping mesh is used to avoid the large mesh deformation caused 

by the large hull movement, which results in low mesh quality. 

Encryption is performed around the hull and at the waterline surface to 

capture the details of the flow field. At least 20 grids are guaranteed for 

a wave height in the z-direction and 200 grids are guaranteed for a 

wavelength in the x-direction. 

 

 
Fig. 5 Grid arrangement 

 

Simulation Conditions 
 

The wave spectrum is JONSWAP. There are two amplitude and two 

periodicities. 

 

Table 2. Main parameters of focused wave 

 

Parameters Case A Case B Case C 

Amplitude 0.108m 0.108m 0.054m 

Tp 3.72s 1.86s 1.86s 

Focus time t=10s 

 

the peak of the focused wave is set to be focused at the bow, and the 

pressure distributions of the ship are compared on the bow. 

 
Fig. 6 Position of probes 

 

 

RESULT AND DISCUSSION 

 

Wave Validation 

 
The time history of wave at the focusing position is shown in Fig.6. Three 

different amplitudes of waves are used to be compared with theory. It 

can be seen that the numerical solution agrees well with the theoretical 

solution for a period of time before the generation of the focused wave, 

and deviations start to appear on the waveforms before and after the 

moment of focusing, and this deviation becomes more obvious as the 

amplitude of the focused wave increases. This phenomenon may be due 

2769



to the greater wave steepness of the maximum wave peak and the 

enhanced interference between the sub-waves, which in turn causes the 

wave to become unstable near the focused wave moment. After the 

passage of the maximum wave peak, the numerical solution again agrees 

well with the theoretical solution. 

 

  
(a)Ac=0.081m (b)Ac=0.108m 

 

Fig. 7 Comparison of wave elevation between theory and CFD 

 

 

Overall, although the numerical solution deviates from the theoretical 

solution, the error of the maximum wave amplitude is not more than 2%, 

the error of the focusing moment is not more than 1%, and the main 

features of the focused wave are preserved, which indicates that the 

current numerical method can simulate the focused wave more 

accurately, and this provides support for the subsequent research under 

the focused wave. 

 

Results 
 

Extracting the ship’s motion attitude and mapping the hull surface 

pressure when the wave is focused. And p_rgh refers to dynamic pressure 

obtained by subtracting hydrostatic pressure from hull surface pressure. 

 

 

   
(a) Case A (b) Case B (c) Case C 

Fig. 8 Wave elevation 

 

   
(a) Case A (b) Case B (c) Case C 

Fig. 9 Pressure distribution along ship 

 
Comparing Fig.8(a) and Fig.8(c), we could find though they have the 

same amplitude, a shorter wavelength result in a higher wave steepness, 

making the ship's motion more violent. Comparing Fig. 9(a) with Figs. 

9(b) and Fig. 9(c), it can be seen that although the maximum value of the 

dynamic pressure on the hull surface at the moment of wave focusing 

occurs at the bow under different conditions, the location of the 

minimum value of the dynamic pressure varies under different 

conditions. The dynamic pressure of the hull above the free surface is 

always 0, and the dynamic pressure of the stern part of the hull is negative 

for both cases B~C, while the dynamic pressure of the transom part of 

the hull is still positive for case A. This may be due to the fact that the 

longer wavelength makes the wave steepness more gentle at the moment 

of wave focusing, and by the time the peak of the focused wave has 

progressed to the bow of the ship, the trough of the previous wave has 

progressed aft of the stern, and the entire hull of the ship is on the 

currently focused wave. At shorter wavelengths, when the wave is 

focusing at the bow, the trough of the previous wave has already 

developed near the stern, which reduces the pressure of wave action on 

the stern part of the ship, and the ship's stern shows a negative dynamic 

pressure. 

Extract the data from the measurement point Probe95 for comparison. 

 
Fig. 10 Time history of total pressure  

 
Observing Fig. 10, it can be found that the total pressures at the moment 

of wave focusing are, in descending order, case B, C and A. Although 

case A has twice the amplitude of the wave height of case C, the 

maximum value of the total pressure of case C is higher than that of case 

A. The maximum value of the total pressure of case C is higher than that 

of case A, even though case A has twice the amplitude of the wave height. 
Meanwhile, the total pressure time histories of cases B and C were in 

good agreement with the wave time histories, while the pressure time 

histories of case A did not match the wave time histories for the overall 

changes outside the wave focusing moment. Take the same pressure 

point and compare the dynamic pressure. 

 
Fig. 11 Time history of dynamic pressure 

 
Unlike the total pressure, the dynamic pressure maximum for case A is 

higher than that for cases B and C. Also, the dynamic pressure time 

history for case A agrees well with the wave time history. 

 

Table 3. Maximum value of pressure and time of occurrence 

 
 Case A Case B Case C 

p 1509.5Pa 2262.2Pa 1757.3Pa 

Time 11.15s 11.03s 11.10s 

p_rgh 1093.7Pa 862.21Pa 461.58Pa 

Time 9.99s 10.02s 10.06s 

 

 

Table 3 and comparison of Fig.10 and Fig. 11 reveals that the total 

pressure change has a hysteresis compared to the wave time calendar, 

while the dynamic pressure change is able to respond quickly with the 
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wave change. Meanwhile, comparing the pressure time histories of case 

A, it can be found that the total pressure has no obvious peaks and valleys 

before and after the wave focus, while the dynamic pressure shows 

obvious peaks and valleys; and the total and dynamic pressures of case 

B and C show obvious peaks and valleys.  

 

This suggests that the free surface of case A may have echoes resulting 

in a gap between the actual wave generation and the theory. Higher 

wavelengths with the same length of the dissipative relaxation zone 

result in lower wave generation quality. The distribution of the pressure 

in the frequency domain is obtained by applying the Fourier transform to 

the pressure time history.  

 

By comparing the distributions of the pressure in the frequency domain 

for case A, B and C, it can be found that the pressure for case B and C is 

mainly dominated by waves with frequencies around 0.4-0.6 Hz, and the 

overall shape shows a single peak. However, for case A, the frequency 

domain distribution of dynamic pressure is similar to that of case B and 

C, showing a single peak, but the total pressure does not show an obvious 

spike, which further proves that a longer wavelength with the same 

length of the relaxation zone will lead to a decrease in the quality of wave 

dissipation and thus cause echoes, which will have an effect on the 

generation of subsequent waves. At the same time the amplitude of the 

total pressure is significantly lower than that of the dynamic pressure 

case; whereas the peak amplitude of the single peak is similar for 

working cases B and C. 

 

 

CONCLUSION 
 

This paper focuses on calculating the response of a KCS ship model in 

focused waves using a combination of overset grids from SUGGAR++ 

and OpenFOAM and the third-party wave-making software 

waves2FOAM, and comparing the total and dynamic pressures for 

different operating cases. 

 

At shorter wavelengths, a region of negative dynamic pressure occurs 

below the free surface of the stern at the moment of wave focusing, 

which may be due to the higher wave steepness in the short-wavelength 

condition and the fact that the transom is in the trough of the previous 

wave when the wave focuses at the bow, resulting in a negative dynamic 

pressure at the stern. 

 

At the same length of the relaxation zone, longer wavelengths lead to a 

degradation of the quality of the extinction, and the presence of echoes 

causes the wave height lift to diverge from the theoretical value, having 

an effect on the time-calendar variation of the total pressure, while 

having almost no effect on the variation of the dynamic pressure. 

The distribution of the pressure in the frequency domain shows an overall 

single-peak pattern, but for the longer wavelength case, the dissipation 

quality decreases with the same length of the relaxation region, so that 

the frequency domain distribution of the total pressure does not show an 

obvious spike, while the amplitude is significantly lower than that of the 

short wavelength case. 

 

   
(a) Case A (b) Case B (c) Case C 

Fig. 12 Distribution of pressure in frequency domain 
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