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ABSTRACT

Numerical simulations in the ship and ocean engineering field often
require consideration of the interactions between structural boundaries
and fluid dynamics. In this study, a direct-forcing immersed boundary
method (DF-IBM) is implemented within the open-source adaptive mesh
solver Basilisk for the first time. By integrating IBM with geometric
reconstruction and Level Set tracking, our approach addresses the
challenging issue of capturing gas-solid-liquid three-phase interactions.
The proposed method is validated through a range of test cases: flow
around a cylinder (single-phase flow), a transversely oscillating cylinder
(simple motion), water entry and exit of a cylinder (simple motion,
simple two-phase flow), and wave-breaking phenomena around a
wedge-shaped structure (complex two-phase flow). The results confirm
the method's accuracy and reliability across these cases. This work
provides a robust foundation for future hydrodynamic simulations
involving complex structural motions in marine applications.

KEY WORDS: Immersed boundary method, direct forcing, fluid—
structure interaction, wedge-shaped bow, wave breaking.

INTRODUCTION

The interaction between two-phase flows and impermeable solid objects
is a common phenomenon in both nature and engineering, such as the
interaction between ships and water. Accurately simulating the presence
and motion of solid objects using numerical methods is highly complex
due to the involvement of turbulent boundary layers, surface breaking,
and gas-liquid-solid interactions.

Currently, three primary numerical approaches are employed to model
fluid-solid interactions: meshless methods, body-fitted mesh methods,
and non-body-fitted mesh methods. In meshless methods, interactions
between structures and fluids are modeled by assigning discrete particles
with distinct physical properties, as seen in methods like Smoothed
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Particle Hydrodynamics (SPH) and Moving Particle Semi-implicit
(MPS). While these methods have garnered significant attention in
recent years, their application to large-scale computations remains
challenging due to the high computational cost and algorithmic
complexity. In traditional body-fitted mesh methods, the mesh within the
object is removed, and the mesh near the interface is reconstructed to
conform closely to the object’s surface. The quality of the mesh is crucial
to the accuracy of the flow field. When the object is in motion, dynamic
mesh or overset mesh techniques are often used, requiring mesh
reconstruction at each time step. For objects with large motion
amplitudes, this approach becomes computationally expensive and prone
to divergence. Non-body-fitted mesh methods typically employ the
Immersed Boundary Method (IBM). The core of this approach is to
model the effects of complex boundaries as body forces in the Navier-
Stokes (N-S) equations, thereby circumventing the challenges associated
with generating body-fitted meshes. IBM imposes no restrictions on
object motion or shape changes, making it particularly suitable for cases
involving large motions or deformations of complex objects (Mittal and
Seo, 2023).

The IBM is initially proposed by Peskin to simulate the interaction
between blood flow and heart valves (Peskin, 1972). Over decades of
development, it has been widely applied to fluid-structure interaction and
interface modeling. Based on how boundary conditions are imposed,
IBM can be categorized into two main types: diffuse-interface methods
and sharp-interface methods. In diffuse-interface methods, the influence
of the interface is spread into the surrounding flow field in the Eulerian
grid using a delta function, leading to approximate satisfaction of the
boundary conditions. These methods include the feedback force method
(Goldstein et al., 1993), penalty function method (Kim and Peskin, 1993),
and virtual spring force method (Huang and Sung, 2010), and are better
suited for deformable structure motion.

Sharp-interface methods, on the other hand, impose boundary conditions
through forcing points, preserving the sharpness of the interface. These
methods are more appropriate for rigid body motion under high



Reynolds numbers. Typical examples include the cut-cell method, ghost
cell method, and hybrid Cartesian/immersed boundary method. The cut-
cell method, also known as the embedded boundary method (Ghigo et
al., 2021; Limare et al., 2023), is ideologically analogous to the body-
fitted mesh approach. It involves cutting the computational cells
containing the interface and retaining the fluid portion. This method
achieves higher computational efficiency and accuracy compared to
body-fitted meshes by controlling fluxes at the interface. However, it has
certain drawbacks: (1) the interface distribution and cutting within the
mesh can vary, complicating its extension to three-dimensional problems;
(2) cells with a small fluid fraction can significantly degrade
computational efficiency and stability. The ghost cell method and hybrid
Cartesian/immersed boundary method share similar mechanisms,
differing primarily in how forcing points are constructed. In the former,
forcing points are created in the solid region, whereas in the latter, they
are placed in the fluid. The hybrid Cartesian/immersed boundary method
(Gilmanov and Sotiropoulos, 2005), also known as the direct forcing
method, applies boundary conditions as body forces directly to the right-
hand side of the discretized N-S equations. Its simplicity and ease of
implementation have made it widely adopted by researchers (Fadlun et
al., 2000; Vanella et al., 2010).

Yang and Stern (2009), building on the method introduced by Balaras
(2004) developed a direct forcing framework for the Immersed Boundary
Method (DF-IBM) to simulate strongly coupled fluid-structure
interactions. By incorporating the direct forcing approach into a
fractional step method, they validated its accuracy through benchmark
cases, including flow around a cylinder, vortex-induced vibrations of a
square cylinder, and the rolling motion of a rectangular plate.
Furthermore, Yang and Stern (2012) integrated this framework with the
Level-Set/Ghost-Fluid Method for two-phase flow simulations. They
successfully simulated the free surface flows of Wigley and DTMB 5512
hulls at low Froude numbers using coarse grids and demonstrated
consistency with results obtained from body-fitted solvers, thus
confirming the method's reliability. Kan et al. (2021, 2023) employed a
sharp-interface, level-set-based IBM to capture complex pump
geometries and simulate the near-water rotational behavior of propellers,
investigating the turbulent wake structures. Liu and Hu (2014, 2017)
combined a high-order conservative IBM with block-based adaptive
mesh refinement, extending its applicability to both compressible and
incompressible flows. Later, Hu et al. (2021) applied this method to
simulate free surface breaking induced by inclined plates, accurately
capturing bow wave breaking and air entrainment phenomena under
various inclination angles. Li et al. (2021) utilized this approach to
simulate flow around hydrofoils penetrating the free surface,
successfully reproducing the hydraulic jump phenomenon at the
hydrofoil's wake.

The Basilisk flow solver (Popinet 2003, 2009), an open-source
framework designed for incompressible flow with adaptive mesh
refinement, is used in this study. The solver already integrates the
embedded boundary method (Ghigo et al., 2021). Shao et al. (2024)
employed it to simulate free surface breaking induced by hydrofoils at
different submergence depths, analyzing phenomena such as bubble
entrainment. Similarly, Guo et al. (2023) modeled flow around rotating
cylinders using this solver. However, the method faces certain
limitations, including a lack of support for OpenMPI parallelization and
its inability to handle simultaneous solid-liquid-gas interactions within a
single grid cell. While Tavares et al (2024) extended the solver's
application to two-phase flows by incorporating contact angle
simulations, large-scale, multi-scale two-phase simulations remain
challenging. Sharaborin et al (2021) improved the solver's capability to
simulate solid interfaces by integrating the penalty function method.
Additionally, Huet and Wachs (2023) coupled the front-tracking method
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with a Peskin-type IBM within the solver framework to study elastic
capsules. Cheng et al. (2022) combined the lattice Boltzmann method
with the feedback forcing method to investigate particle-laden flows.
Despite these advances, existing IBMs still lack sharpness in handling
interfaces. The ultimate goal of this research is to enable hydrodynamic
simulations of ship-water interactions that account for structural effects.
To this end, we propose a direct forcing method for fluid-structure
interactions within the Basilisk solver framework.

This study aims to implement the direct forcing Immersed Boundary
Method within an adaptive mesh framework. The structure of this paper
is organized as follows: the numerical methods, including governing
equations, interface capturing techniques, and the direct forcing model,
are introduced first. Subsequently, the method is validated through three
benchmark cases: flow around a stationary cylinder at various Reynolds
numbers, motion of a moving cylinder, and water entry of a cylinder.
Simulations and analyses of wave-breaking phenomena around wedge-
shaped structures are then conducted. Finally, the study's findings are
summarized.

NUMERICAL METHOD
Governing Equations
For incompressible flows, the governing equation can be described as:

p(O,u+ (u-V)u) =-Vp+V-(2uD) +a+fy )

V-u=0 )
Where u is the velocity of the fluid, p is the density of the fluid, p
represents the pressure, u is the dynamic viscosity coefficient, D is the
deformation coefficient, Defined as D;; = (al—uj + ajui)/z. a=pg+
f,, grepresents the acceleration of gravity, f, represents the action of
surface tension, and fz represents the boundary conditions under which
the DF-IBM method is implemented.

If the f5 source term is not considered, the discrete governing equation
can be expressed as:

1 +_.n 1 1 = *
p"+z% +V- (un+z ® u"+2) =V [2y"+zD ] +a-vp*  (3)
utl = ut - 5 (V) @
Pl
V. = 0 )

The pressure-velocity Poisson equation is obtained by combining Eq. 4
and Eq. 5:

v- <i—i%Vp"+1> =V-u (6)
o

Interface Capturing Method

The free liquid surface is captured by geometric reconstruction VOF-
PLIC method (Fuster et al., 2018) and he normal direction of the
interface is determined by the Mixed-Youngs-Centered (MYC) method
(Youngs, 1982).

0 + V- (pu) =0 0



where ¢ is the volume fraction of the VOF method:
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Fig. 1 Interface indicator function diagram

To determine the location of the solid, the Level Set method is used to
identify and track the location of the solid, as shown in Fig. 1. v is the
symbolic distance function of Level Set, whose value represents the
distance from the solid:

0 +V-(u) =0 ©)
Y <0 Liquid

=0 Solid boundary (10)
>0 Solid

Immersed boundary formulation

For Eq. (3), the second-order Bell-Collela—Glaz scheme is used to solve
the convection term:

1 1
u” =u"—Atv- (u"+5 ® un+5) (11)
After solving for u**, it is substituted into the diffusion term for further
computation:

1 % ok
—u —u
R vy

o [Z,u’”%D*] +a™ — Vp"

p (12)
here, u* represents the intermediate velocity to be solved, and an DF-

IBM source term needs to be added to the right-hand side of the equation:

_up-u’

fl =
B At

13)
The source term f§ , accounting for boundary effects, is then
incorporated into the discretized equation to solve for the updated
intermediate velocity u*:

1 0% *x
n+-u-u
2—=V-

1
n+-pry#* n n n
v [2/1 2D ] +a" —Vp" +f§

p (14)
The key challenge lies in determining ug. As shown in Fig. 2, all grid
points are classified into three categories: 1) Solid points: Grid points
located inside the solid or on its surface. 2) Forcing points: Grid points
within the fluid domain that have at least one neighboring grid point
inside the solid. 3) Fluid points: Grid points located in the fluid domain
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but not classified as forcing points.
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Fig. 2 Grid point classification

For solid points, ug = ug, Where ug represents the boundary condition
on the solid surface. For fluid points, us = u*, where u* is the velocity
obtained directly from the flow field. For forcing points, the velocity is
calculated through interpolation. The interpolation method used in this
study is similar to the approach proposed by Yang and Stern (2012) and
Ghigo et al. (2021).

Fig. 3 Interpolation algorithm diagram

As shown in Fig. 3, for forcing point P;z, Psrepresents the closest point
to the surface, while P,,, is the intersection point where the line
extending from Ps to P;z meets the centerline of the grid cell adjacent to
P, on the right.

ha—hy
hy

h
ug us + h_:uext (15)

where, hy = ;5 and hy = Y., Uexe NEEd to be interpolated.

The normal vector at Pjg is n = Vy/|Vy|. If n, =n,, the vertical
interpolation template is used as shown in Fig. 3. For the variable S, if



YVext > 0.5A, then

s ¥
Z‘t = (S[L0]Wexe = 1) + 5[1,2] (Vexe + 1)) ezn

=s[L1]Wext = D Wexe + 1)

(16)

where A is the mesh size. If y.,; < 0.5A, then s[1,0], s[1,—1],
s[1,—2] three grid points interpolation is used. If y..; = 0.5A, then
s[1,—1], s[1,0], s[1,1]three grid points interpolation is used.

The interpolation method presented here applies to one specific case;
other cases follow a similar interpolation approach. Based on this, us can

be updated using Eq. (15), allowing the calculation of f; . The entire
computational flow field is shown in Fig. 4.

— VOF equation
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! IBM module ;
Calculate 3
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Fig. 4 Calculation flow chart

RESULTS

Flow around a circular cylinder

U ,,,,,,
— ‘
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Fig. 5 Computing domain setting for flow around a circular cylinder

The flow around a stationary cylinder is selected to validate the
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Immersed Boundary Method, as shown in Fig. 5. The computational
domain has dimensions of 50D x 50D, with the cylinder center located
15D from the inlet. The cylinder diameter is D = 1 m, and the inflow
velocity is U = 1 m/s. Simulations are performed at Re = UD/u =
40,100, with a minimum grid size of 0.006D. Fig. 6 illustrates the grid
configuration for this problem, where the red represents the forcing
points that require correction.

vl
Solid point M Fluid point
Fig. 6 Grid classification diagram

[ Forcing point

Fig. 7 and 8 depict the instantaneous vorticity fields for Re = 40 and
Re = 100, respectively. For Re = 40, no flow separation is observed in
the cylinder's wake, and a pair of symmetric vortices forms behind the
cylinder. However, for Re = 100, alternating vortex shedding is evident
in the cylinder's wake, forming a K&améan vortex street.
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Fig. 8 The vorticity contour for Re=100
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Fig. 9 The time curve of lift coefficient and drag coefficient for Re = 40
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Fig. 9 and 10 show the time histories of the lift and drag coefficients for
Re = 40 and Re = 100, respectively. Due to the Kaman vortex street
phenomenon, the lift coefficient for Re = 100 exhibits significant
oscillations. Furthermore, Table 1 compares the results of this study with
those from other authors. For Re = 40, the comparison includes the drag
coefficient C, and the symmetric vortex length behind the cylinder L,,.



For Re = 100, the comparison involves the mean drag coefficient
Cp mean, the maximum lift coefficient Cy 4, and the Strouhal number
S¢, which characterizes the vortex shedding frequency. The results of the
present study are found to be in good agreement with those reported in
the papers, demonstrating the accuracy of the Immersed Boundary
Method used in this work.
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Fig. 10 The time curve of lift coefficient and drag coefficient for Re =
100

Table 1. comparison of results

R, =40 R, =100
CD LW CD,mean CL,max St,‘
Present work 155 | 2.27 1.37 0.35 | 0.166
Lietal., (2016) 155 | 2.34 1.36 0.33 | 0.165
Linnick and Fasel
(2005) 154 | 2.28 1.34 0.34 | 0.166
Tseng and Ferziger )
(2003) 153|221 1.42 0.164

Present work Koumoutsakos et al (1995)

-0 @
-3 @
-3 @
-Q &
Tm<:j® N\
» 4@
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Fig. 11 The vorticity contour for Re = 9500
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Fig. 12 CPU computation time at different grid resolutions for Re = 40

High Reynolds numbers pose a challenge to the accuracy of the
Immersed Boundary Method. As shown in Fig. 11, Re=9500 is selected
as a test case to investigate the vortex evolution around the cylinder
during the initial stages of flow. The minimum grid size is set to 0.0005D,
and the simulation is conducted using the dimensionless time
T=Ut/R.The results in Fig. 11 indicate that the current Immersed
Boundary Method effectively accounts for the influence of the solid
surface. The generation and rotational evolution of positive and negative
vortices at the cylinder's trailing edge are clearly observed.

Fig. 12 shows a comparison of CPU computation time between the
present method and the existing Embedded Boundary Method (EBM) in
Basilisk for the Re=40 case under 8-core OpenMP parallelization. The
grid resolution is set to A=50D/N. As shown in the figure, the present
method demonstrates higher computational efficiency as the number of
grid cells increases. For example, for a grid resolution of
A=50D/2"13=0.006D , the CPU computation time for the DF-IBM
method in this study is 12,950.1s, whereas the EBM method requires
19,464.4s. This represents a 33.47% improvement in computational
efficiency.

Transversely oscillating cylinder in a free-stream

The case of a moving object is considered, as shown in Fig. 13, where a
cylinder oscillates laterally in a free-stream flow. The cylinder's motion
is described by the equation y(t)=Asin(2xnf e t), with A=0.2D. The
motion frequency of the cylinder is f_e/f_0=0.8, where vortex shedding
frequency of a stationary cylinder f_0=0.195. The Reynolds number
Re=185, and the minimum grid size is 0.146D.

inlet outlet

-—»

32D !

motion |-y

J1 000

| 64D |
Fig. 13 Computing domain setting for transversely oscillating cylinder
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Fig. 14 The velocity and vorticity contour when cylinder is located at its
extreme upper position;
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Fig. 15 The time curve of lift coefficient and drag coefficient for
transversely oscillating cylinder

Fig. 14 illustrates the instantaneous velocity streamlines and vorticity
fields, while Fig. 15 compares the computed forces on the oscillating
cylinder with results from other studies. Overall, the present study
effectively captures the flow field variations and the forces acting on the
cylinder during lateral oscillation.

Water impact and entry problem

2.5D

2.5D

15D

Fig. 16 Computing domain setting for water impact and entry problem

To evaluate the application of the current method in two-phase flow,
numerical simulations are performed for two cases: a cylinder entering
the water from air and a cylinder exiting the water. As shown in Fig. 16,
the cylinder has a diameter of D = 2 m, with a minimum grid size of
0.146D, and gravity acceleration is set to g = 1 m/s?.For the water-
entry case, the cylinder initially starts at a height h = 1.25 m, above the
free surface with a velocity of U = 1 m/s. For the water-exit case, the

2610

cylinder starts at h = —1.25 m below the free surface with a velocity of
U=-039m/s.

As shown in Fig. 17, upon entering the water, two jets are generated on
either side of the cylinder, propagating outward. Subsequently, two
vortex centers form in the air near the free surface and detach. As the
cylinder moves deeper underwater, the free surface on both sides
converges, colliding to form a large upward jet.

vorticity
-2.0 -1.0 0.0 1.0 2.0
-— ‘ -
Present work Yang and Stern (2009)
T=0.0 E
T=02 i '
o
T=1.0 .
T=25 oY 5//
<9 [) o) —
T=4.0 ——
O 9

Fig. 17 Free surface evolution and vorticity contour for water entry
problem.

As shown in Fig. 18, compared to the water-entry case, the water-exit
case produces two vortex dipoles in the wake of the cylinder while it
remains submerged. After the cylinder exits the water, some liquid is still
carried upward at its trailing edge. Compared to the results of Yang and
Stern (2009), the current study uses a finer mesh, leading to the
generation of more vortex dipoles. Additionally, after the cylinder fully
exits the water, the droplets falling back significantly affect the vorticity
field in the wake.
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Fig. 18 Free surface evolution and vorticity contour for water exit
problem

Wave breaking phenomena around a wedge-shaped bow

In this section, the ship's bow is simplified into a wedge-shaped structure,
and simulations are conducted to analyze the wave-breaking phenomena
around the wedge (Wang et al., 2010). As shown in Fig. 19, the wedge
has a slanted edge length of 0.75 m, an incoming flow angle of 30°, and
a draft of d = 0.0745 m. The computational domain dimensions are
Ly = L, = L, = 2m, with an incoming flow velocity of U = 2.5m/s
and a minimum grid size of 2mm . The Reynolds number is
pproximately Re = pUd/u = 1.64 x 105, and the Froude number is

Fr=U/,/gd = 2.93.
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Fig. 19 Computing domain setting for bow wave breaking

Experiment Present work

Fig. 21 Underwater bubble entrainment phenomenon

The comparison between the computational results and experimental
data is shown in Fig. 20. The current study successfully captures the
interaction between the wedge-shaped structure and the free surface. The
incoming flow climbs along the sides of the wedge and overturns,



forming breaking waves. The overall wave-breaking pattern closely
matches the experimental observations. Moreover, the secondary
overturning of the waves and the resulting droplet structures are
accurately reproduced. Fig. 21 presents an underwater perspective,
where the air tubes formed by wave overturning and the bubble sweep-
down phenomena caused by the wedge’s sharp trailing edge are also well
captured.

CONCLUSIONS

In this paper, we propose a novel direct-forcing immersed boundary
method that is well-suited for implementation in the open-source
adaptive mesh solver Basilsik. The core of the algorithm lies in
interpolating the velocity at the forcing points in the fluid domain and
incorporating the force source terms into the discrete equations. The
accuracy of the proposed method in single-phase flow is validated
through simulations of flow around a cylinder at Re = 40,100 and
9500. Additionally, the method's reliability in cases involving simple
structure motion is verified using the transversely oscillating cylinder in
a free-stream and water impact and entry problems. Finally, wave-
breaking phenomena around a wedge-shaped structure are simulated,
resembling the bow wave-breaking phenomenon in the ship
hydrodynamics field, demonstrating the potential of the method for
studies involving simple structures in marine environments. Our future
work is to extend present method to the simulation of elastic structures
(e.g., ship hull deformation) and multi-body coupled motions (e.g.,
propeller-rudder interactions).
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