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ABSTRACT  
 

A submerged floating tunnel (SFT) is an underwater transportation 

structure designed for all-weather operation in deep-water 

environments. Although its submerged position reduces the impact of 

conventional waves, it remains vulnerable to extreme events such as 

tsunamis. This study applied the Smoothed Particle Hydrodynamics 

(SPH) method to analyze the hydrodynamic behavior of SFTs under 

tsunami-like N wave conditions. The fluid dynamics were governed by 

the continuity, momentum, and state equations, while the motion of the 

SFT was described by Newton's second law. The mooring system was 

modeled as massless, linear elastic springs. The convergence and 

accuracy of the SPH model were validated by numerically reproducing 

a laboratory experiment involving wave interactions with a moored 

floating structure. After validation, the SPH model was used to 

simulate the interactions between a representative N wave and an SFT 

with a circular cross-section shape (CSS), a buoyancy-weight ratio 

(BWR) of 1.3, and an inclined mooring angle (IMA) of 52.55°. The 

motion responses and mooring forces of the SFT were analyzed. 

 

KEY WORDS:  submerged floating tunnel; N-wave; motion 

response; computational fluid dynamics. 

  

INTRODUCTION 

 

A submerged floating tunnel (SFT), also known as an Archimedes Bridge, 

operates by balancing buoyancy, gravitational force, and mooring tension 

to remain positioned at a specific depth below the water surface. Its 

submerged location ensures that it neither obstructs maritime traffic nor is 

significantly affected by tidal fluctuation, conventional wave force, or ice 

coverage. Furthermore, the mooring system allows the SFT to be 

effectively deployed in deep waters and under varying geological 

conditions. While no SFTs have been built to date, several countries are 

actively exploring their potential for practical engineering applications 

(Faggiano et al. 2016; Kanie 2010; Larssen & Jakobsen 2010; Seo et al. 

2015a). 

 

Existing research has predominantly concentrated on the parameter 

design of SFTs under conventional wave conditions, with particular focus 

on submergence depth, cross-sectional shape (CSS), buoyancy-weight 

ratio (BWR), and mooring configuration. Through theoretical analyses, 

Paik et al. (2004) investigated the effects of submergence depth on the 

coefficients of added mass, radiation damping, and wave excitation force 

of an SFT. Kunisu (2010) studied the influence of CSS on the drag and 

inertia forces acting on an SFT. By laboratory experiments, Seo et al. 

(2015a) identified significant lateral displacement of an SFT with a single 

vertical mooring system and suggested the adoption of a W-type double 

mooring system as an alternative. Yang et al. (2020) compared the 

motion characteristics of SFTs across varying submergence depths, 

BWRs, and inclined mooring angles (IMAs), proposing empirical 

equations to estimate SFT motion. Using numerical simulations, Chen et 

al. (2021) examined the influence of submergence depth and BWR on the 

kinematic response and mooring force of an SFT.  

 

Fig. 1 illustrates three types of water-spanning structures: pier-supported 

or floating bridges above water, SFTs, and immersed tunnels. SFTs, 

stabilized by buoyancy, gravity, and mooring tension, avoid obstructing 

maritime traffic and are resilient to waves, tides, and ice. Their mooring 

systems enable use in deep waters and diverse geological conditions, 

unlike immersed tunnels. 

 

Extreme disasters pose serious threats to marine structures. Therefore, it 

is essential to assess both the hydrodynamic behaviours of SFTs under 

conventional wave conditions and their safety in extreme scenarios. 

Fogazzi & Perotti (2000) studied the dynamic behaviour of an SFT under 

seismic excitation. Seo et al. (2015b) evaluated the global response of an 

SFT subjected to shock pressure by underwater explosion. Luo et al. 

(2019) simulated the collision between a submarine and an SFT, 

analysing the energy transfer among the water, the submarine, and the 

SFT. Xiang et al. (2018) investigated the dynamic responses of SFTs 

during sudden mooring system failures, identifying key factors 

influencing the mooring-breakage stage. 

 

A tsunami is a gravity wave resulting from the sudden displacement of a 

large volume of water caused by rapid changes in the equilibrium 

position of a water body. These massive waves are typically triggered by 

seismic activity, volcanic eruptions, landslides, or any other vertical 

disturbance within a water body. Tsunami waves are characterized by 

exceptionally long wavelengths and exhibit significant nonlinearity, 
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particularly when propagating through the relatively shallow waters of 

the continental shelf. Due to their highly destructive nature, it is critical to 

study the hydrodynamic responses of marine structures to tsunami waves. 

However, to the best of our knowledge, the specific interactions between 

N waves and SFTs have not yet been investigated. 

 

 
Fig. 1. Illustrations of water-spanning transportation structures with a 

focus on the SFT. 

 

 

Simulating tsunami waves has long been a challenging task, both in 

laboratory experiments and numerical simulations. Researchers have 

typically relied on solitary waves or N waves to approximate the 

modeling of tsunami waves. However, recent studies have raised 

concerns about the accuracy of using solitary waves to simulate tsunamis 

(Madsen 2008; Chan & Liu, 2012). The primary issue is that the initial 

tsunami wave, when approaching the shore, often manifests as either a 

leading depression or a leading elevation, which a solitary wave cannot 

accurately represent. In contrast, N waves are better able to capture this 

phenomenon. However, relatively little work has been done on 

generating N waves in laboratory experiments or simulating them 

numerically. Goseberg et al. (2013) developed an innovative approach 

utilizing high-capacity, loop-controlled pipeline pumps to facilitate long-

wave generation, significantly enhancing the ability to simulate tsunamis. 

Likewise, Lima et al. (2019) successfully generated N waves in 

laboratory conditions using a piston-type wavemaker. In numerical wave 

generation, Zhang et al. (2024) employed the piston-type wavemaker 

method to generate N waves in an SPH-based wave tank. 

 

To effectively capture the interaction between N wave and SFTs, this 

study employs the Smoothed Particle Hydrodynamics (SPH) method to 

solve the Navier-Stokes equations. Widely utilized in marine engineering, 

The mesh-free and Lagrangian characteristics of SPH make it particularly 

well-suited for handling moving solid boundaries and free surface flows 

without mesh distortion, thereby enabling efficient capture of the 

complex behaviors involved in N wave interactions with SFTs. 

 

The remainder of this paper is structured as follows: Firstly, the SPH 

model is introduced. Then, the convergence and accuracy of the model 

are validated. Following that, the hydrodynamic behavior of the SFT 

under N wave action is analyzed. Subsequently, the effects of structural 

parameters are investigated. Finally, the key conclusions are summarized. 

 

SPH MODEL 

 
A numerical model based on the SPH method is established to simulate 

wave interactions with a moored floating structure. This section 

outlines the governing equations for fluid dynamics, the motion 

equations of the structure, and the time-stepping scheme.  

 
Governing Equations for Fluid Dynamics 

 
The SPH method is generally categorized into Weakly Compressible 

SPH (WCSPH) and Incompressible SPH (ISPH). In WCSPH, the 

governing equations for fluid dynamics, consisting of the continuity 

and momentum equations, can be discretized as follows (Antuono et al. 

2010): 
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Here, subscripts I and j denote the target and neighbouring particles, 

respectively. t is the time. , p, V, u, and r are the density, the pressure, 

volume, velocity, and position, respectively; 0 = 1000 kg/m3 is the 

reference density. g is the gravitational acceleration. W is the Wendland 

C2 kernel function (Wendland 1995). h = 1.5p is the smoothing length, 

where p is the initial particle spacing. c0 = 10(gd )1/2 is the numerical 

speed of sound (He et al. 2019), where d is the water depth. = 0.1 is 

the diffusive coefficient.  =   (hc) is the artificial viscosity 

coefficient, where  is the kinematic viscosity. 

 

In Equation (1), ij is a numerical diffusive term for smoothing the 

pressure field, given by 
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where 

L


 denotes the renormalized density gradient (Randles & 

Libersky 1996). 

 

 
In Equation (2), pij is an artificial viscosity term employed to stabilize 

the WCSPH scheme, defined as 
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Equations (1) and (2) are not yet closed, and thus a linearized state 

equation is introduced: 

 

( )2

0 0i ip c  = −   (5) 

 
Motion Equations of Moored Floating Structure 

 
Following the Newton’s second law, the translational and rotational 

motions of the structure are calculated by 

 

f m

d
M M

dt
= + +


F F g   (6) 

f m

d
I

dt
= +


T T   (7) 

here, M, I, , and  are the mass, moment of inertia, translational 

velocity, and rotational velocity of the structure, respectively. Ff and 

Fm are the fluid and mooring forces acting on the structure, respectively. 

Tf and Tm are the moments generated by Ff and Fm about the center of 

mass of the structure, respectively. 

 

 
Fluid force 

 
The solid boundaries are represented by three layers of dynamic 

boundary particles (Crespo et al. 2007). These particles, like fluid 

particles, participate in the calculations of Equations (1) and (5) to 

determine densities and pressures, respectively. However, they are not 

involved in the calculation of Equation (2) for velocity; instead, they 

either remain stationary or move with the solid body. The main 

drawback of dynamic boundary particles is the unrealistic absorption or 

repulsion of fluid particles at the solid boundary. To address this issue, 

the calculated densities of the dynamic boundary particles, obtained 

using Equation (1), are corrected as Cheng et al. (2021). 

 

Based on Equation (2), the fluid force exerted on a dynamic boundary 

particle can be calculated by  

 

( ) 0 0k i k k ki i k ki k ki i k

i i

p p W VV hc W VV  = − + + f    (8) 

 

Ff and Tf are then obtained as 

 

f k

k
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( )f k c k
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where rc is the position of the center of mass of the structure. 

 
Mooring force 

 
The mooring system is modelled as massless, linear elastic springs 

capable of bearing only tensile forces. Following the Hooke’s law, Fm 

is calculated by 
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where Fm0 is the pre-tension; km is the coefficient of elasticity; lm and 

lm0 are the real-time and initial lengths of the mooring line, respectively; 

 is a unit vector pointing from the mooring position on the structure to 

the anchor position on the water bottom. 

 

Tm is then obtained as 

 

( )m m c m= − T r r F   (12) 

where rm is the mooring position on the structure. 

 
Time-stepping Scheme 

 
The explicit Symplectic scheme (Domínguez et al. 2022) with second-

order computational accuracy is employed for time integration. The 

time step is variable and determined by the following equation: 
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In Equation (13), the first term on the right-hand side represents the 

Courant-Friedrich-Lewy (CFL) condition with viscous control 

(Monaghan & Kos 1999), the second term limits the particle 

acceleration (Monaghan 1992), and the third term accounts for viscous 

diffusion (Morris et al. 1997). 

 

MODEL VALIDATION 
 

The convergence and accuracy of the established SPH model are 

validated through the numerical reproduction of a laboratory 

experiment. This section presents both the experimental and numerical 

setups, followed by a comparison of the numerical and experimental 

results.  

 

Experimental and Numerical Setups 

 

An experiment on wave interactions with a moored floating structure 

was conducted in a wave flume at Nagoya University (Peng et al. 2013), 

with dimensions of 30 m in length, 0.7 m in width, and 0.9 m in depth. 

Regular waves, characterized by a height (H) of 0.046 m, a period (T) 

of 1.0 s, and a wavelength () of 1.538 m, were generated using an 

upstream wave paddle and dissipated by a downstream rubble mound. 

A cuboidal floating structure, measuring 0.4 m in length (Lf), 0.68 m in 

width, and 0.15 m in height (Hf), with M = 28.6 kg and I = 0.435 kg/m2, 

was moored near the centre of the flume. d = 0.6 m, and the submersion 

depth (ds) of the structure, measured from the still water level to its 

centroid, was 0.177 m. The mooring system comprised two high-

stiffness chains on both the upwave and downwave sides, each forming 

a 60° angle with the flume bottom. Four wave gauges, labelled 1# to 4#, 

were mounted on both sides of the structure to measure wave elevations. 

Mooring forces were recorded using two load cells installed to the 
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chains. A laser system captured the kinematic response of the structure.  

 

The simulation was performed in the 2D SPH wave flume, as depicted 

in Fig. 2. Identical waves were generated by an upstream piston-type 

active absorbing wavemaker and dissipated by a downstream sponge 

layer with a length of . Wave elevations were measured using wave 

gauges #1 to #4, positioned identically to the experimental setup in 

relation to the structure. Due to the dimensional difference between the 

2D simulation and the 3D experiment, M and I of the numerical 

structure were adjusted to 42.06 kg and 0.64 kgm2, respectively, while 

Lf, Hf, ds, d, and IMA remained unchanged. The high-stiffness chains 

were modelled with km set to 106 N/m. To check the numerical 

convergence, three particle resolutions (H / p) of 5, 10, and 15 were 

adopted. 

 

 

 
 

Fig. 2. Schematic of the numerical setup used to reproduce a laboratory 

experiment on regular wave interactions with a mooring floating 

structure 

 

 

Comparisons of Numerical and Experimental Results 

 

Fig. 3 shows the time histories of dimensionless wave elevations ( / H) 

at wave gauges 1# to 4# for different H / p, comparing these results 

with experimental data. Satisfactory agreement is observed at wave 

gauges 1# to 3#. At wave gauge 4#, while the primary peak aligns well, 

the secondary peak is under-predicted. This discrepancy, as Ren et al. 

(2017) speculated, may be attributed to the artificial viscosity in 

Equation 2 which caused greater attenuation of high-frequency waves. 

Regarding numerical convergence, when H / p increases from 5 to 10, 

the agreement at wave gauges 1# and 2# shows little change, but the 

predictions of double peaks at wave gauges 3# and 4# improves 

significantly. As H / p increases further from 10 to 15, no noticeable 

improvement is observed across all wave gauges. These observations 

indicate that the established SPH model converges concerning 

numerical wave elevation, with H / p = 10 offering the optimal particle 

resolution, balancing both computational efficiency and numerical 

accuracy. 

 

In Fig. 4, the dimensionless sway displacements (s / H), heave 

displacements (h / H), and roll angles (rLf / (2H)) of the structure for 

different H / p are compared with experimental data. Herein, a positive 

s corresponds to displacement in the direction of wave propagation, a 

positive h represents vertical upward movement, and a positive r 

means the structure tilts toward the incoming waves. Although the 

amplitude of s / H and the secondary valley of h / H are slightly 

under-predicted, the overall agreement remains satisfactory. Moreover, 

close numerical results are obtained for different H / p, indicating that 

H / p = 5 is sufficient to capture the kinematic response of the structure. 

However, due to the higher requirement for numerical wave elevation, 

H / p = 10 is still necessary. 

 

 
Fig. 3. Comparisons between the numerical and experimental wave 

elevations: (a) 1# wave gauge; (b) 2# wave gauge; (c) 3# wave gauge; 

(d) 4# wave gauge 
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Fig. 4. Comparisons between the numerical and experimental kinematic 

responses: (a) sway displacements; (b) heave displacements; (c) roll 

angles 

 

 

 
Fig. 5. Comparisons between the numerical and experimental dynamic 

mooring forces: (a) upwave side; (b) downwave side 

 

Fig. 5 presents comparisons of the numerical and experimental 

dynamic mooring forces on the upward side (Fmu - Fm0) and downwave 

side (Fmd - Fm0) of the structure. To account for the differences in 

dimensions and the number of mooring lines between the experiment 

and simulation, the numerical Fmu - Fm0 and Fmd - Fm0 were adjusted 

prior to comparison. The numerical time history curves effectively 

reproduce the double-peak and single-valley features of the 

experimental data, with the first peak and the valley aligning closely, 

while the second peak is slightly under-predicted. Additionally, the 

numerical Fmu - Fm0 and Fmd - Fm0 for H / p = 5, 10, and 15 exhibit 

minimal differences and all closely agree with experimental data. 

Although the numerical time history curve for H / p = 15 is the most 

stable, H / p = 10 is preferred due to its superior computational 

efficiency. 

 

N wave Generation by a Piston-type Wavemaker 

 

Tadepalli and Synolakis (1996) described an N wave with an H in a 

water tank of d: 

 
2( , ) ( ) sech ( )x t H     =  −     (14) 

 
where  is defined as: 

 

1( )x t x = − −c   (15) 

 
In equation (14),  is a scaling factor ensuring the wave height reaches 

the desired height H, δ = x₂ - x₁ is an eccentricity parameter, defined as 

the distance between x = x₂, the location of the inflection point of the 

wave profile at t = 0, thus η(x₂, 0) = 0, and x = x₁, the location at t = 0 of 

the crest of a solitary wave of the same height H and length λ (cf. Fig. 

6).  represents the generalized wavenumber, determined by the 

following equation: 

 

 represents the generalized wavenumber, determined by the following 

equation: 

 

1 3

4

H

d d
 =   (16) 

 
The  of the N wave is defined by the equation: 

 

2

k


 =   (17) 

 
Fig. 6. N wave profile and corresponding solitary wave of the same 

height H and length λ. 
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Svendsen and Justesen (1984), following the reasoning of Goring and 

Raichlen (1980), assumed that the N wave has a permanent wave 

profile and a constant wave speed c, and derived the expression for an 

N wave with a permanent form: 

 

s
d

dz Q d



−

=  + +  cu c U   (18) 

 
Here, u represents the particle velocity directly in front of the 

wavemaker, Qs denotes the non-linear mass flux averaged over a wave 

period, and Uc is the current speed, defined as the average particle 

velocity beneath the wave trough level. For an infinitely long wave, the 

right-hand side of equation (18) simplifies to c∙ (Grilli and Svendsen, 

1990). Since the piston motion generates a depth-uniform horizontal 

velocity ( )t=u u , equation (18) simplifies to: 

  

( )d   + = u c   (19) 

 
and thus, the particle velocity is given by 
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+

c
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or in terms of the wavemaker's paddle velocity: 

 

d

dt d
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


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+

c
  (21) 

 
Here,  (t) is the paddle trajectory, which can be obtained through 

integration of equation (21). 

 
From Equation (21), an expression for the piston velocity can be 

obtained as: 

 

2

( )

( ) cosh

d H

dt H d

   

   

−
=

− +

c
  (22) 

HYDRODYNAMIC BEHAVIOUR OF SFT 

 
The validated SPH model is applied to analyse the hydrodynamic 

behaviour of an SFT under N wave action. This section details the 

numerical setup, motion response, and mooring force. 

 
Numerical Setup  

 
The interaction between a representative N wave and an SFT was 

simulated in the SPH wave flume, as depicted in Fig. 7. The N wave 

with H = 30 m was generated by a piston-type wavemaker. d = 100 m, 

and thus, under the Boussinesq assumption,  was determined to be 

1324.6 m. Despite full reflection occurring at the downstream end of 

the flume, the length of the flume was set to 3 to ensure that the 

incident wave-SFT interaction was completed before any interference 

from the reflected wave. The SFT, featuring a circular CSS with a 

diameter of 40 m, was moored at the centre of the flume. ds = 30 m, 

IMA = 52.5°, and km = 3.36106 N/m. The BWR was set to 1.3, leading 

to M = 9.67105 kg and Fm0 = 1.79 MN. Assuming M was uniformly 

distributed along the perimeter of the SFT, I was calculated to be 

3.87108 kgm2. A wave gauge was mounted at the location of the SFT 

to measure the wave elevation. Based on the convergence check in the 

previous section, H / p = 10 was adopted, which gives p = 3 m for H 

= 30 m.  

 
Fig. 7. Schematic of the numerical setup used to simulate the N wave 

interaction with an SFT 

 

 

Motion Response and Mooring Force 

 

Figs. 8 and 9 plot the time histories of (s, h, r) and (Fmu, Fmd) 

induced by the N wave acting on the SFT. Four key moments are 

highlighted: t0 denotes the initial moment at t = 0s when wave 

generation begins t1 signifies the moment when the SFT reaches its 

maximum s in the direction of wave propagation; t2 marks the moment 

when the SFT first returns to s = 0; t3 corresponds to the moment of 

maximum s in the opposite direction of wave propagation. Fig. 10 

displays the wave profiles, SFT postures, and mooring states at these 

four moments. The particles representing the SFT and the mooring 

system are coloured red, while the fluid particles are color-coded 

according to their pressures. 

 

 
Fig. 8. Motion response of the SFT under N wave action: (a) sway 

displacement; (b) heave displacement; (c) roll angle. (t0 at t = 0s not 

shown) 
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As observed from Fig. 8 to 10, at moment t0, the water surface is calm 

and the SFT is in static equilibrium. As the wave approaches, the SFT 

begins to move in the direction of wave propagation. The mooring 

system restricts this movement, causing the SFT to descend and tilt 

toward the incoming wave. This motion results in an initial increase in 

Fmu followed by a decrease, while Fmd decreases consistently. By 

moment t1, s reaches its maximum positive value, whereas h and r 

reach their maximum negative values. Simultaneously, both Fmu and 

Fmd drop to local minima. As the wave passes, the SFT moves in the 

opposite direction of wave propagation. The asymmetry in the mooring 

system produces a restoring moment, causing the SFT to rotate toward 

the departing wave while it ascends. This motion leads to a general 

increase in both Fmu and Fmd. At moment t2, s, h, and r approach zero, 

and both Fmu and Fmd peak at nearly equal values. Subsequently, under 

the combined effects of residual wave force and inertia, the SFT 

continues moving in the opposite direction. Once more, the asymmetric 

mooring system forces the SFT to descend and tilt toward the departing 

wave. This motion reduces both Fmu and Fmd, although fluctuations are 

observed during the reduction. By moment t3, s and h hit their 

maximum negative values, whereas r reaches its maximum positive 

value. At this point, both Fmu and Fmd fall to zero. Throughout the 

entire wave-SFT interaction, the pressure field remains continuous and 

smooth. 

 

 
Fig. 9. Mooring force of the SFT under N wave action: (a) upwave 

mooring force; (b) downwave mooring force. (t0 at t = 0s not shown) 

 

 

CONCLUSIONS 
 

This study investigated the hydrodynamic behavior of SFTs under the 

action of a representative N wave. The interactions between the wave 

and the SFT were simulated using the SPH method, and the reliability 

of the method was validated by numerically reproducing laboratory 

experiments. Future research will compare the motion responses and 

mooring forces of submerged floating tunnels under N waves, solitary 

waves, and regular waves, as well as examine the dynamic responses of 

submerged floating tunnels with different design parameters. 

 
 

Fig. 10. Snapshots of N wave interaction with the SFT: (a) moment t0; 

(b) moment t1; (c) moment t2; (d) moment t3. 
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