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ABSTRACT 

 

For submarines, at the model scale, it is rare to simultaneously consider 

the effects of high Reynolds numbers and stratified flow on the wake. In 

this study, numerical simulations of the wake of the SUBOFF bare hull 

are conducted under Reynolds number (Re = 1.2×107) and Froude 

numbers (Fr = 1, 2, 3, ∞), where Fr = ∞ represents the unstratified (UNS) 

condition. The simulations are based on the Boussinesq approximation 

and the large eddy simulation (LES) method. At high Reynolds number, 

the effects of varying Froude numbers on velocity deficit, root mean 

square (RMS) values, internal waves, and turbulent kinetic energy (TKE) 

in the wake are investigated. The results reveal that the wake evolves 

through two stages: the three-dimensional (3D) stage and the non-

equilibrium (NEQ) stage. In the NEQ stage, as the Froude number 

increases, the velocity deficit along the wake centerline decreases, 

indicating a shorter lifespan of the wake. Conversely, as the Froude 

number decreases, the vertical suppression of wake vortex structures 

becomes more significant, while the horizontal extent of the wake 

expands. The RMS values of velocity components exhibit clear 

anisotropy, and the horizontal distribution of internal waves gradually 

increases. Additionally, the TKE in the wake diminishes, and spatial 

distribution demonstrates pronounced anisotropy, appearing compressed 

vertically and stretched horizontally. 

 

KEY WORDS: Stratified flow; SUBOFF; numerical investigation; 

wake; velocity deficit; large eddy simulation 

 

INTRODUCTION 

 

A submarine, as a representative of underwater navigation, is a critical 

piece of strategic equipment in military competition among major powers. 

When navigating in the ocean, a submarine generates a complex wake 

that persists for a significant duration and has far-reaching effects. These 

wake characteristics are crucial indicators of stealth performance, making 

them a focal point of research for maritime powers. The relationship 

between wake of submarine and its stealth capabilities has become a 

prominent topic in non-acoustic submarine detection and has garnered 

considerable attention from researchers worldwide (Cao et al.2023). 

 

Current research on submarine wakes, both domestically and 

internationally, primarily focuses on experimental studies and numerical 

simulations. Huang et al. (1992) conducted tests on eight basic models 

using the DARPA SUBOFF bare hull in wind tunnels and tanks. These 

experiments provided data on surface pressure distributions, boundary 

layer velocity profiles, wake flow characteristics, and the effects of 

different appendages on wake flow for various models. Their 

experimental results established a database that has since been widely 

used by researchers for CFD validation and flow mechanism analysis. 

Zheng et al. (2023) measured the towing force, lateral force, and moment 

acting on the SJTU-BX01 submarine model at various water flow 

velocities and depths in tank and focused on the hydrodynamic 

performance of the submarine at different depths and Froude numbers, 

their results indicated that turbulent boundary layer separation at the tail 

of submarine occurred earlier when the submarine was closer to the water 

surface, while flow stability improved as the submarine moved farther 

from the surface. 

 

Gross et al. (2015) investigated the flow around a hemisphere-cylinder 

geometry using a hybrid RANS/LES turbulence model, and analyzed 

three-dimensional flow separation under various angles of attack (α = 

10°,30°) and Reynolds numbers ranging from 5×103 to 5×105, the results 

showed that at an angle of attack of 30°, leeward vortices formed. Gross 

et al. (2012) also employed the direct numerical simulation (DNS) 

method to investigate flow separation phenomena for two geometries: the 

DARPA SUBOFF bare hull model (Re = 10000 – 20000, α = 10°,30°) 

and the hemispherical-cylinder geometry (Re = 2000 – 5000, α = 10°,30°). 

Their study revealed that at α = 30°, a convective vortex formed on the 

leeward side. Furthermore, as the Reynolds number increased, flow 

instability and the development of small-scale structures became more 

pronounced.  

 

Posa et al. (2016) employed high-resolution wall-modeled large eddy 

simulation (WMLES) combined with a semi-implicit time-stepping 

method to investigate flow characteristics, at Re = 1.2×106 and an angle 

of attack of 0°, they found that, compared to the command tower, the 

shear layer at the trailing edge of the appendage and the turbulent 

boundary layer at the tail of model had a greater influence on the wake, 

the turbulent stress in the wake exhibited a bimodal distribution, which 

was further amplified by the presence of the appendage. Additionally, the 

interaction between the appendage and the command tower increased the 
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turbulence intensity in the wake. Posa et al. (2020) also analyzed the 

effects of Reynolds numbers (Re = 1.2×106, 1.2×107) on the turbulent 

boundary layer and wake characteristics, they revealed that the thickness 

of the tail boundary layer of the DARPA SUBOFF model decreases with 

increasing Reynolds number, additionally, as the Reynolds number 

increases, the peak turbulent kinetic energy (TKE) in the wake decreases, 

its distribution becomes more uniform, and the TKE distribution 

gradually approaches axisymmetry. Jiang et al. (2024) utilized the Large 

Eddy Simulation (LES) method with wall modeling (WMLES) and the 

Finite Volume Method (FVM) for third-order reconstruction (FVMS3) to 

calculate turbulent noise at high Reynolds numbers (Re = 1.2×107), and 

found that the pressure fluctuations on the wall exhibited a low-frequency 

broadband spectrum, with energy primarily concentrated in the low-

frequency range. 

 

Previous studies have primarily focused on unstratified flow, with limited 

attention given to stratified flow. However, a key characteristic of the 

actual marine environment is stratification, where the physical properties 

of seawater, such as temperature and density, vary with depth. Wake 

behavior in stratified flow differs significantly from that in unstratified 

flow. Research methods for studying stratified flow are predominantly 

based on experiments and numerical simulations (Cao et al.2024). 

 

Spedding et al. (1997) measured the velocity field and turbulence 

characteristics in the wake behind a sphere using high-precision digital 

particle image velocimetry (DPIV) in a stratified water channel. They 

proposed that the evolution of the wake can be divided into three stages: 

the three-dimensional turbulence stage (3D), the non-equilibrium stage 

(NEQ), and the quasi-two-dimensional stage (Q2D). Bonnie et al. (2002) 

utilized digital particle image velocimetry (DPIV) to measure velocity 

and vorticity distributions in a linearly stratified saltwater environment. 

They concluded that the evolution of the wake can be divided into four 

distinct stages: the near-wake region, collapse region, transition region, 

and far-wake region. 

 

Pal et al. (2017) employed direct numerical simulation (DNS) methods to 

investigate the wake characteristics of a sphere in a stratified flow. Their 

study revealed that the wake evolution can be divided into three stages: 

the near-wake region, the non-equilibrium region (NEQ), and the quasi-

two-dimensional region (Q2D), the velocity deficit along the centerline 

of the wake follows u∼x −0.25 in the NEQ stage and u∼x −0.76 in the Q2D 

stage, additionally, it was found that stratification significantly enhances 

the anisotropy of the flow field. Chen et al. (2021) investigated the 

temperature and salinity variations in the wake of a full-scale submarine 

in a stratified flow using large eddy simulation (LES). They found that 

the degree of temperature and salinity disturbance was positively 

correlated with the velocity of submarine. In the near-wake region, strong 

mixing of temperature and salinity occurred within the wake, whereas in 

the far-wake region, the vortex structure gradually weakened. 

 

Huang et al. (2022) compared the flow characteristics of submarine 

wakes in unstratified and stratified flows using the RANS method and the 

SST k-ω turbulence model on a full-scale Joubert BB2 submarine. They 

revealed that in stratified flow, the resistance of submarine increased by 

5.5%, while the height and width of the wake decreased, exhibiting 

significant anisotropy. In our earlier work, Gao et al. (2024) focused on 

underwater vehicles and employed large eddy simulation (LES) to 

analyze the effects of the Froude number, depth, and density ratio of a 

two-layer fluid on the free surface and inner interface, this research 

provided a foundation for subsequent numerical simulations of linearly 

stratified flow. 

 

For submarines, most current research at high Reynolds numbers is 

conducted in unstratified flow, with limited attention given to stratified 

flow. Studies in stratified flow primarily focus on simple geometric 

bodies, such as spheres, or full-scale submarines. However, it is rare to 

simultaneously consider both high Reynolds numbers and stratified flow 

at the model scale. Therefore, it is essential to conduct corresponding 

numerical simulations to address this gap. 

 

This study employs the large eddy simulation (LES) method and 

Boussinesq approximation to approximate the stratified flow of 

submarines at the model scale and high Reynolds numbers. The primary 

focus is on examining the effects of the Froude number on velocity deficit, 

vortex structure, internal waves, turbulent kinetic energy, and other wake 

characteristics. The structure of the article is organized as follows: first, 

the governing equations for the numerical simulation are presented. Next, 

the submarine model, computational domain, and boundary condition 

settings are introduced. Subsequently, grid sensitivity analysis and 

method validation are performed. Finally, the results of the numerical 

simulation are discussed and analyzed. 

 

NUMERICAL METHODS 

 

Governing Equation 

 

Numerical simulations in this study are conducted using the commercial 

software STAR-CCM+ 2023, a widely used multiphysics platform. The 

Large Eddy Simulation (LES) method is employed under the Boussinesq 

approximation, solving the spatially filtered governing equations. To 

model subgrid-scale (SGS) turbulence, this study adopts the Wall-

Adapting Local Eddy-viscosity (WALE) model, which is particularly 

effective for resolving near-wall turbulence in stratified flows. Compared 

with other SGS models, such as the Smagorinsky and dynamic 

Smagorinsky models, the WALE model offers improved accuracy for 

complex boundary conditions. The governing equations in dimensionless 

form are provided as follows. 
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Where Fr and Re represent, respectively, Froude numbers and Reynolds 

numbers. ui and xi represent velocity and position in different directions, 

respectively. The terms ρd, δi3, νsgs, ν and p denote, respectively, the 

density fluctuation relative to the background density, the Kronecker 

delta, the subgrid-scale viscosity, the constant kinematic viscosity, and 

the filtered pressure. 

 

Numerical Scheme 

 

The numerical simulation adopts the SIMPLE algorithm, utilizes first-

order time discretization, and employs an implicit unsteady solver for 

unsteady flow. Additionally, the Segregated Flow model is used to 
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simulate complex flows. A time step of 0.002s is chosen to ensure that 

the Courant number remains less than 1. 

 

NUMERICAL VALIDATION 

 

Geometric Model 
 

As shown in Figure 1, the geometric model used in this study is the 

SUBOFF model, designed by the US Navy Laboratory. The model is a 

rotational body composed of three sections: an arc-shaped head, a 

cylindrical middle section, and a tapered tail section. L represents the total 

length of the model, which is 4.356 m, and D represents its diameter, 

which is 0.508 m. 

 

 
Fig. 1. Geometric model 

 

Simulation Setup and Boundary Setting 

 

As shown in Figure 2, the bow of the SUBOFF model is taken as the 

coordinate origin. The computational domain is defined with the 

following dimensions: to prevent flow reflection caused by close 

proximity, the distance from the inlet of domain to the bow of the 

SUBOFF is 20D, the distance from the outlet to the stern is 57D, the 

SUBOFF model has an aspect ratio of 8.575, with a distance of 65D from 

the bow to the outlet of the computational domain. the distance from the 

left and right boundaries to the SUBOFF axis is 10D, and the distance 

from the upper and lower boundaries to the axis is 5D. The inlet of the 

computational domain is defined as a velocity inlet, the outlet is set as a 

outlet, and the left, right, upper, and lower boundaries are all specified as 

velocity inlets. For the surface of geometric object, no-slip wall boundary 

condition is applied. 

 

 
Fig. 2. Computational domain 

 

Grid Generation 
 

As shown in Figures 3 and 4, an unstructured grid is used to discretize 

the surface and flow field surrounding the SUBOFF model. The grid near 

the SUBOFF surface is refined to accurately capture the flow 

characteristics of the boundary layer, while the grid size is gradually 

coarsened in regions farther away from the model to reduce 

computational complexity. Additionally, the grid is further refined in the 

tail and rear wake regions of the SUBOFF to finely simulate the wake 

evolution process. 

 

 
Fig. 3. Computational mesh (overall view) 

 

 
Fig. 4. Computational mesh (enlarged view) 

 

Validation and Verification 
 

A sensitivity analysis of the grid is first conducted using three grid 

resolutions: coarse, medium, and fine, with grid sizes of 11 million, 18 

million, and 30 million cells, respectively. In STAR-CCM+ 2023, these 

grid resolutions are controlled by varying the basic size, which differed 

by factors of 1.2. Numerical simulations are performed for all three grids, 

focusing on the velocity deficit along the centerline of the wake and the 

pressure coefficient distribution on the SUBOFF surface, as shown in 

Figures 5 and 6. The results indicate that the pressure coefficient 

distribution remains consistent across all grids. However, for the velocity 

deficit along the centerline of the wake, the medium and fine grids 

produced similar results, while the coarse grid showed significant 

deviations. To balance computational cost and accuracy, the medium grid 

is selected for subsequent simulations. 

 

As shown in Figure 7, validation of the numerical method is conducted 

by comparing the pressure coefficient distribution on the SUBOFF 

surface with the results of Huang et al. (1992) The comparison shows 

close agreement over most regions of the hull surface, demonstrating the 

accuracy of the numerical simulation method employed in this study. 

 

 
Fig. 5. The mean surface pressure coefficients with different grid 
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Fig. 6. The normalized velocity deficit with different grid 

 

 
Fig. 7. The mean surface pressure coefficients 

 

RESULTS AND DISCUSSION 

 
Firstly, several dimensionless parameters required for the numerical 

simulation are introduced. The Reynolds number is defined as shown in 

Equation (4), and the Froude number is given in Equation (5), where U, 

D, and ν represent the characteristic velocity, characteristic length, and 

dynamic viscosity of the fluid, respectively. The buoyancy frequency, N, 

is defined in Equation (6). The Prandtl number is expressed in Equation 

(7), where ν and α denote the momentum diffusion rate and heat diffusion 

rate of the fluid, respectively. 

 

The main parameters used for the numerical simulation in this study are 

listed in Table 1. The Prandtl number and Reynolds number remain 

constant, while the influence of different Froude numbers on the wake is 

the primary focus, where Fr = ∞, represents unstratified flow. Based on 

the study by Stadler et al. (2010), the Prandtl number is set to 1. And the 

Reynolds number is defined as Re = 1.2×107. The Reynolds number is 

selected due to the availability of experimental data for method validation 

and because such high Reynolds numbers are rarely considered in 

stratified flow research. 

 

It is worth noting that, due to the large aspect ratio of the SUBOFF 

geometry, the characteristic length can be defined as either the length L 

or the diameter D of the model. In this study, the Reynolds number and 

Froude number are defined based on the length L, and are denoted as ReL 

and FrL, respectively. 
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Table 1. Computational cases 

Case Fr Pr Re 

1 1 1 1.2×107 

2 2 1 1.2×107 

3 3 1 1.2×107 

4 ∞ 1 1.2×107 

 

The velocity deficit 

 

Figure 8 illustrates the normalized velocity deficit along the wake 

centerline. As the Froude number (Fr) decreases, the stratification 

intensifies, leading to an increase in velocity deficit and a slower rate of 

decay. When Fr = 1, the velocity deficit decreases to a local minimum, 

marking the first region of the wake, known as the three-dimensional 

region (3D), where buoyancy effects are relatively weak. Beyond this 

position, the velocity deficit gradually changes, entering the second 

region of the wake, referred to as the non-equilibrium region (NEQ), 

where buoyancy effects become more pronounced. At higher Froude 

numbers (Fr = 2 and Fr = 3), stratification weakens, and no local 

minimum is observed as seen with Fr = 1. For Fr = ∞, the decay rate 

increases significantly. These observations suggest that stratified flow 

can prolong the lifespan of wake by reducing the rate of velocity decay. 

 

 
Fig. 8. The normalized velocity deficit along the wake centerline 
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The vortex structure under different Froude numbers is analyzed using 

the Q-criterion method, as illustrated in Figure 9. The vortex structures 

are visualized with flow velocity (ux / U) as the scalar field. At Fr = 1, 

strong stratification significantly suppresses the vortex structure in the 

vertical direction in regions far from the SUBOFF body, leading to 

vertically flattened and horizontally extended vortices. The vortex 

structure exhibits pronounced anisotropy. At Fr = 2 and Fr = 3, the 

stratification weakens, resulting in a reduced vertical suppression effect 

on the vortex structure and a notable decrease in anisotropy. At Fr = ∞, 

the wake vortex structure transitions to a fully three-dimensional 

configuration, with vortices evenly distributed in both vertical and 

horizontal directions, and the anisotropy is significantly diminished. 

Overall, the vortex structures reveal that as the Froude number increases, 

the wake evolves from a predominantly two-dimensional structure to a 

fully three-dimensional. 

 

 
Fig. 9. Vortex structure at different Froude Number (Q = 1). (a) Fr = 1; 

(b) Fr = 2; (c) Fr = 3; (d) Fr = ∞ 

 

Internal waves 

 

The generation of internal waves requires two key conditions: the 

presence of disturbance sources and density stratification. The 

propagation of internal waves is governed by density gradients. Research 

of Spedding et al. (2014) suggests that the divergence of the horizontal 

velocity field can be employed to identify internal waves, as expressed in 

Equation (8). By calculating this divergence, its positive and negative 

values correspond to the expansion and contraction of the fluid in the 

horizontal plane, respectively. Specifically, when divh > 0, it indicates 

fluid expansion in the horizontal plane, whereas divh < 0 signifies fluid 

contraction. The full velocity divergence in three dimensions satisfies 

continuity equation, in stratified flow, vertical velocity variations 

compensate for changes in the horizontal divergence. 

h

u v
div

x y

 
= +
 

                                                                                       (8) 

 

In unstratified flow, although density stratification is absent, a horizontal 

velocity field still exists. Therefore, the divergence of the horizontal 

velocity field is also calculated under unstratified conditions. While the 

physical interpretation of the divergence values differs from those in 

stratified flow, this approach serves as an effective method for comparing 

unstratified and stratified flow.Figure 10 compares internal waves at z = 

0 under different Froude numbers (Fr). As the Froude number decreases, 

distinct striped patterns emerge, characterized by periodic expansion and 

contraction, with alternating positive and negative divergence 

distributions. Conversely, as the Froude number increases, the 

stratification weakens, vertical mixing intensifies, and the horizontal 

range of divergence distribution significantly diminishes. At Fr = ∞, the 

divergence values are notably reduced, and the striped patterns disappear. 

In the case of uniform flow, the divergence values are primarily 

influenced by the inherent vortex structures. 

 

 
Fig. 10. The contour of internal waves at z = 0. (a) Fr = 1; (b) Fr = 2; 

(c) Fr = 3; (d) Fr = ∞ 

 

Turbulence levels 

 

The root mean square (RMS) values of velocity components in different 

directions, as well as the RMS values of density, are computed. Figures 

11–14 illustrate these results. The RMS values of the velocity 

components are non-dimensionalized using the flow velocity, while Δbg, 

representing the density difference between the upper and lower 

boundaries of the computational domain, is used to non-dimensionalize 

the RMS values of density. 

 

For the root mean square (RMS) value of flow velocity, the results show 

that when x/D < 27, the RMS value decreases with increasing Froude 

number (Fr), although the rate of decrease slows down. In contrast, when 

x/D > 27, the RMS value gradually increases with Fr. For the spanwise 

and vertical velocity components, the RMS values increase as Fr 
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increases. However, at Fr = 1, the RMS of vertical velocity exhibits 

periodic fluctuations in both directions, a phenomenon not observed in 

the streamwise and spanwise velocity components. This indicates that 

stratification primarily impacts the vertical velocity component. 

Regarding the RMS variation of density, the largest density fluctuations 

and peak values occur at Fr = 1, accompanied by the fastest attenuation. 

 

 
Fig. 11. Root mean square value of streamwise velocity 

 

 
Fig. 12. Root mean square value of lateral velocity 

 

 
Fig. 13. Root mean square value of vertical velocity 

 

 
Fig. 14. Root mean square value of density 

 

Turbulent kinetic energy 

 

Figure 14 shows the area-integrated turbulent kinetic energy (TKE) at 

different positions in the SUBOFF wake. In studies of wake in sphere, 

the area-integrated TKE initially increases to a peak and then gradually 

decreases. However, in contrast to wake in sphere, the area-integrated 

TKE in the SUBOFF wake decreases consistently across different Froude 

numbers (Fr). In the near-wake region, the area-integrated TKE values 

are nearly identical for different Fr, indicating that momentum dominates 

in this region. As the distance increases and Fr decreases, the area-

integrated TKE decays more rapidly, suggesting that enhanced 

stratification suppresses turbulence generation. When Fr = ∞, where no 

density gradient is present, the wake undergoes strong mixing, allowing 

turbulence to persist for a longer duration. 

 

 
Fig. 15. Area integrated turbulent kinetic energy for different Froude 

numbers 

 

Similarly, the turbulent kinetic energy (TKE) distribution in the wake at 

different Froude numbers (Fr) and positions is analyzed, as shown in 

Figure 15. When the positions are close to the body, the TKE distribution 

at various Fr values exhibits a similar circular shape and is isotropic in 

all directions. As the distance increases and Fr decreases, the TKE 

distribution transitions from a circular shape to a spindle-like structure 

that is vertically compressed and horizontally extended. For Fr = ∞, the 

TKE distribution remains isotropic in all directions. 
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Fig. 16. Distribution of turbulent kinetic energy 

 

CONCLUSIONS 
 

In this study, the simulations are based on the Boussinesq approximation 

and the large eddy simulation (LES) method. At high Reynolds numbers, 

the effects of varying Froude numbers on velocity deficit, root mean 

square (RMS) values, internal waves, and turbulent kinetic energy (TKE) 

in the wake are investigated. 

 

(a) As the Froude number (Fr) decreases, the velocity deficit decays more 

slowly, leading to a longer wake lifespan. At Fr = 1, the wake can be 

characterized by two distinct stages: the three-dimensional region and the 

non-equilibrium region. 

 

(b) As the Froude number (Fr) decreases, the vortex structure becomes 

increasingly suppressed in the vertical direction, while its distribution and 

the divergence values expand significantly in the horizontal direction. 

The divergence distribution exhibits distinct striped patterns, 

characterized by periodic expansion and contraction with alternating 

positive and negative divergence values. 

 

(c) As the Froude number (Fr) decreases, the root mean square (RMS) 

values of velocity components in all directions diminish, the area-

integrated turbulent energy gradually decreases, and the turbulent energy 

distribution exhibits pronounced anisotropy, forming a spindle-like shape 

that is vertically compressed and horizontally extended. 
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