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ABSTRACT 

 

As a heavy weapon of great powers, submarines play an important role 

in the strategic competition in the polar region. The existence of ice 

sheet in the polar region has an impact on the navigation of submarines, 

especially hindering their surfacing movement. The bond-based 

peridynamics (BBPD) method is used to simulate the ice-breaking 

process of submarine surfacing. The accuracy of the numerical model is 

verified by the four-point bending of columnar ice. The numerical ice-

breaking model is simplified to the interaction between the structure 

and an ice sheet. During the ice-breaking process of the structure, the 

formation and evolution process of ice fractures is concerned as well as 

the time history of load on the structure is recorded. 

 

KEY WORDS: Peidynamics (PD); ice-structure interaction; ice 

failure process; ice load.  

 

INTRODUCTION 
 

With the increase in global resource demand, the value of channel 

development and resource development in polar regions has gradually 

become prominent. In polar engineering, it is of great application value 

to break ice through rigid structures. Under the impact of structure, the 

dynamic fracture mechanism of ice is very complicated. It is very 

important to study the fracture behavior of ice under impact conditions 

to reveal its material properties and failure mechanism. It can not only 

provide valuable reference for polar engineering but also has practical 

significance for the exploration of polar resources and the development 

of equipment and technology.  

 

At present, many methods have been applied to the numerical 

simulation of ice-structure interaction at home and abroad. The finite 

element method (FEM) is widely used to evaluate the fracture behavior 

and load characteristics of ice sheets. Kim et al. (2013 & 2014) used the 

FEM model to numerically study the resistance performance of 

icebreakers under floating ice conditions. The accuracy of the 

numerical model was verified by comparing the experimental results. 

Based on this model, the resistance performance of icebreakers at 

different waterline angles was studied. Although the FEM method can 

simulate the fracture process of ice, its assumption based on continuity 

does not apply to the discontinuous displacement field at ice fractures, 

which poses a challenge in solving complex dynamic discontinuities, 

especially for predicting the dynamic propagation path of fractures and 

revealing the mechanism of ice failure. 

 

The meshless method has gradually emerged in the study of ice 

structure interaction, such as the discrete element method (DEM). Ji et 

al. (2016) established the three-dimensional DEM with bonded-

particles to simulate the failure process of sea ice. Through the DEM 

simulation of the uniaxial compressive and flexural strength of sea ice, 

the influence of the friction coefficient between particles and the 

bonding strength of the bonded particles on the failure process of sea 

ice were analyzed. According to the numerical simulation results, the 

relationship between interparticle strength and macrostrength are 

determined. Long et al. (2020) applied the DEM model to simulate the 

ice failure mode and ice load during the interaction between sea ice and 

conical structure. The effects of ice thickness, ice velocity, cone 

diameter and cone angle on ice breaking length and ice load are 

considered in the simulation. Finally, the calculation formula of ice 

load considering the influence of ice breaking length is proposed. DEM 

has advantages in simulating the discontinuous stage of the fracture 

process, but the accuracy of the continuous stage makes it possible to 

make mistakes in simulating the whole process from continuous to 

discontinuous. 

 

Proposed by Silling (2000), Peridynamics (PD) method is a nonlocal 

continuum solid mechanics method, which has the characteristics of a 

meshless method. Different from the partial differential equations 

commonly used in traditional mesh-based methods, the equation of 

motion in the PD method is defined in the integral form, so it is 

applicable to solve discontinuous problems. PD can spontaneously 

simulate the generation and propagation of fractures without presetting, 

making it well-suited for solving material damage and fracture 

problems such as fracture formation and extension processes. Based on 

the bond-based PD (BBPD) method, Wang et al. (2018) established a 
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constitutive model to characterize the elastic-brittle mechanical 

properties of ice at high strain rates to study the crushing effect of 

underwater explosion load on the ice sheet. The formation and 

propagation of fractures in the damage process were simulated, which 

agreed well with the experimental results. Focusing on the process of 

propeller-ice, Xiong et al. (2020) applied a PD numerical model to 

study the influence mechanism of shadow effect on sea ice failure 

mode and the load acting on the propeller. Additionally, a new 

analytical shadowing effect coefficient on the ratio of the front and 

back contacts divided by the axial length of the damaged ice is 

proposed. Zhang et al. (2023) conducted a numerical simulation of the 

high-speed impact of rigid balls on the ice sheet based on the BBPD 

method. According to different impact velocities, ice thicknesses and 

boundary constraints, the detailed fracture characteristics that were not 

observed in the experiment were well demonstrated in the numerical 

simulation. The above research proves that the PD method is suitable 

for a wide range of problems and the simulation effect is ideal. 

 

In this paper, the BBPD method is used to establish the numerical 

model of the interaction between ice and structure. The accuracy of the 

numerical model is verified based on the four-point bending experiment 

(Ehlers and Kujala, 2014). Based on the above validation, the 

numerical simulation of the ice-breaking process of a cylindrical 

penetrating ice sheet and submarine surfacing is carried out. In the 

simulation, the characteristics of ice fractures and the variation of ice 

load are focused on. 

 

NUMERICAL METHOD 
 

Motion Equations and Constitutive Relation 
 

The discrete PD can be regarded as macroscopic molecular dynamics in 

a continuous state. The core idea of PD is to discretize the research 

target into a series of material points. The interaction between these 

material points is not limited to directly adjacent points. In the theory of 

BBPD, at time t, the motion equation of any material point with 

position x in the reference configuration (shown in Fig.1) can be 

written as follows: 
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where  is the material density; u  is the acceleration vector; xH  is the 

collection of other material points within the horizon range of the 

material point x , i.e.  ' : 'xH R =  − x x x ,   is the radius of 

the horizon; f  is the interaction force density of the material points x  

and 'x  at time t; u  is the displacement vector; 'xV  is the volume of 

the material point 'x ; b  is the body force density. 

 

 
 

Fig. 1 Interaction between material points with the horizon 

In the horizon range, '= −x x  is defined as the relative position of 

the material points x  and 'x , as well as ( ', ) ( , )t t= −u x u x  is 

defined as the relative position of the above pair of material point at 

time t. In this study, the prototype microelastic brittle (PMB) model 

proposed by Silling et al. (2005) is used to describe the constitutive 

relationship of ice sheet. It is isotropic in the initial state. In the theory 

of BBPD, the pairwise force function between material point pairs can 

be expressed as follows: 
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where ( , )    is the microscopic elastic strain energy density of the 

bonds, which is a scalar function; c is the microelastic modulus of the 

material, which represents the elastic stiffness of the bonds; s is the 

bond stretch between the material points at any time t; ( , )t   will be 

introduced in the next section. The expressions of ( , )    and s are as 

follows: 
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The energy density of the volume contained in the target material point 

within the horizon range should be equal to the strain energy density in 

the classical theory of elasticity for the same material and the same 

deformation (Silling et al., 2005). Therefore, the elastic stiffness of the 

ice sheet can be written as follows: 
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where k is the bulk modulus; E is the elastic modulus;   is the 

Poisson's ratio, which is 1/4 in the three-dimensional simulation. When 

PD is used to simulate the impact damage problem, Poisson's ratio has 

little effect on the fracture propagation speed and path (Silling et al., 

2007). Therefore, Poisson's effect is not discussed in this study. 

 

Failure Model of Ice Sheet 
 

In order to describe the ice fracture phenomenon under the impact of 

the structure, the following time-dependent breaking criterion function 

needs to be introduced: 

 

01    if  ( , )    for all   0 ,
( , )
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where 0s  is the critical stretch for bond failure, which means that when 

the bond between any two material points is stretched to exceed a 

certain critical value, the bond connecting the two material points will 

break and fail, and there is no force between the material points. This 

failure will not change over time. For the ice sheet used in this study, 

the critical stretch 0s  is expressed as follows: 
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where 0G  is the critical energy release rate of the material, also known 

as fracture energy. 

 

Although the ice sheet in this study is isotropic in the initial state, the 

bond failure in a certain direction will lead to the anisotropy of the 

subsequent response. Here, a damage index is introduced to describe 

the damage degree of the material point: 
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where [0,1] . When 1 = , the bonds between all the material 

points within the horizon of target material point are all of failure; when 

0 = , the material is in the initial state, the bonds between the material 

points do not fail. It is not difficult to see that the damage index 

indicates the degree of damage of the material point within a certain 

time range, that is, the ratio of the bond failure to all the bonds in the 

horizon range of the target material point. 

 

RESULTS AND DISCUSSIONS 
 

Validation of Numerical Model 
 

Numerical model 

 

To demonstrate the accuracy of the present numerical model, we used 

the BBPD method to simulate the failure process of columnar ice in the 

four-point bending test. In this section, the convergence analysis is 

carried out by simulating three models with different particle spacing. 

The numerical results are compared with the experimental 

measurement of Ehlers and Kujala (2013). 

 

The size settings in the experiment are used to establish the numerical 

model of four-point bending, which consists of three parts, namely, the 

columnar ice, the upper and the lower supports. The length, width and 

height of columnar ice are 4.32 m, 0.36 m and 0.39 m. The upper and 

lower supports are regarded as rigid bodies, which are 2 m and 0.5 m 

away from the ice center, respectively. The two lower supports move 

upward at a speed of 0.003 m/s. The material parameters of ice are set 

as shown in Table 1. The three particle spacings are dx=0.015 m, 

dx=0.02 m and dx=0.025 m, while the radius of the horizon  = 4dx. 

The time step is set to 5.0×10− 5 s. 

 

Table 1. Parameters of ice material 

 

Young 's 

Modulus 
Density 

Critical 

Stretch 

Poisson's 

Ratio 

5.0 GPa 900 kg/m3 0.0015 0.25 

 

Comparison of numerical and experimental results 

 

In the numerical simulation, due to the upward movement of the lower 

supports, the columnar ice presents a state where the bottom is 

compressed and the top is stretched. Finally, fractures are first 

generated on the upper surface. The fracture forms a cross-section in a 

very short period, which means the ice failure. The comparison of the 

ice failure in the four-point bending test obtained by the simulations of 

PD and SPH (Das et al., 2014) is shown in Fig.2. Two simulation 

results are in good agreement, while more detailed descriptions of the 

damage degree are shown in the PD result. 

As shown in Fig.3, the time history curves of bending force obtained by 

the PD numerical models with different particle spacing agree well with 

the experimental result. With the decrease of particle spacing, the early 

oscillation of the curve is alleviated. The maximum force with 

corresponding time in numerical simulations of different particle 

spacing and experimental results are presented in Table 2. Considering 

both the accuracy and efficiency of computation, particle spacing of 

dx=0.02 m is suitable for simulation. 

 

 

 

(a) PD (b) SPH 

 

Fig.2 Comparison of ice failure by two numerical methods 

 

 
Fig.3 Comparison of PD results and experiment 

 

Table 2 Comparison of maximum force in PD and experimental results 

 

Case Maximum Force Corresponding Time 

dx=0.015 m 6.201 kN 0.430 s 

dx=0.02 m 6.226 kN 0.415 s 

dx=0.025 m 6.152 kN 0.425 s 

Exp. 6.286 kN 0.413 s 

 

Simulation of a Cylinder Penetrating Ice Sheet 
 

For further study of the interaction between ice and structure, the 

simulation of the vertical upward movement of a cylinder penetrating 

ice sheet is carried out in this section. The schematic graph of the initial 

numerical model is shown in Fig.4. The length, width and thickness of 

the ice sheet are L=4 m, W=4 m and H=0.1 m, respectively. The 

material of the ice sheet is the same as in Table 1. The diameter of the 

cylinder is 0.2 m. At a constant velocity of v=0.1 m/s, the cylinder 

moves upwards below the center of the ice sheet. In this process, the 

cylinder is regarded as a rigid body, and the edge of the ice sheet is 

fixed. The particle spacing, radius of horizon and time step are the 

same as validation. 

 

As is shown in Fig.5, the PD simulation results of the fracture 

propagation on the ice sheet are compared with the sketch obtained by 

the experimental observation (Ashton, 1986). The time instants given in 

Fig.5 are limited to the description of numerical simulation, which are 

t=0.08 s, t=0.26 s, t=0.40 s and t=0.90 s, respectively. From the law of 

fracture propagation, radial fractures occur earlier than circumferential 

fractures. With the upward motion of the cylinder, the number of radial 
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fractures gradually develops from 2 to 4, and then to 8, corresponding 

to (a), (b) and (c) in Fig.5. When the circumferential fracture is 

generated, it also means the failure of the ice sheet, and the ice sheet 

produces obvious conical damage, corresponding to (d) in Fig.5. The 

time history curve of vertical ice load force is shown in Fig.6. During 

the first half of the cylinder upward movement, the ice load increases 

slowly, and the length and number of radial fractures develop. At about 

t=0.40 s, the ice load reaches the maximum value, while eight radial 

fractures are formed in the ice sheet. At about t=0.9 s, the 

circumferential fracture occurs, the ice load decreases sharply in a short 

time, and finally tends to zero, which also means the failure of the ice 

sheet. 

 
 

Fig.4 Schematic graph of cylinder moving upward 

 

  

  
 

(a) t=0.08 s 

  
 

(b) t=0.26 s 

  
 

(c) t=0.40 s 

  
 

(d) t=0.90 s 

 

Fig.5 Comparison of numerical results (at typical instants) and sketch 

from experimental observation 

 

 
 

Fig.6 Time history of the vertical ice load during cylinder moving 

upward 

 

Simulation of ice-breaking process of submarine surfacing 

 

After the above simulations of the simple model, the feasibility of the 

PD model used in this paper has been verified. In this section, the PD 

model will be used to simulate the ice-breaking process of submarine 

surfacing, focusing on the characteristics of ice fractures and the law of 

ice load. The target numerical model (shown in Fig.7) will be 

simplified as the interaction between the structure and the ice sheet. 

The length, width and thickness of the ice sheet are L=6 m, W=1.5 m 

and H=0.02 m, respectively. The submarine in simulation is carried out 

on the model-scale model of SUBOFF, whose main parameters are 

presented in Table 3. The surfacing velocity of the submarine is set to 

v=0.25 m/s. The treatment of the structure and the ice sheet boundary is 

the same as in the previous section. 

 

 
 

Fig.7 Schematic graph of submarine surfacing process 

 

Table 3 Main parameters of SUBOFF with model scale 

 

Parameters Values 

Overall length 4.356 m 

Maximum diameter of hull 0.508 m 

Maximum height 0.734 m 

Length of conning tower 0.368 m 

 

As is shown in Fig.8 (a), in the whole ice-breaking process, the conning 

tower first contacts with the ice sheet, resulting in a fracture similar to 

its contour shape. In this process, the hull will not contact with the ice 

sheet, so the damage of the ice sheet presents local characteristics, 

which are shown in Fig.8 (b) and (c). With the upward motion of the 

submarine, the top of the hull begins to contact with the ice sheet. As 

shown in Fig.8 (d), a slender fracture along the direction of the hull is 
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generated. As shown in Fig.8 (e), the contact between the tail fin and 

the ice sheet will produce crossed radial fractures, which will accelerate 

the failure of the ice sheet. Finally, the ice sheet is lifted upward, 

resulting in overall fractures, which is shown in Fig.8 (f). 

 

The time history of ice load during the surfacing process is shown in 

Fig.9. Only the load in z direction is shown since the ice load in x and y 

directions is too small compared to the load in z direction. The moment 
t=0 s is defined as the time when the conning tower contacts the ice 

sheet causing damage. The damage of the ice sheet can be roughly 

divided into three stages. In the first stage, the damage is mainly caused 

by the impact of the conning tower on the ice sheet, while the first load 

peak value appears in the early period. After the first stage, a 

completely broken ice block is formed at the top of the conning tower. 

During the period of the conning tower penetrating the ice sheet, i.e. the 

second stage, there is no direct contact between the structure and the ice 

sheet in the vertical direction, leading to the ice load approaching zero. 

In the third stage, the load reaches the second peak, and the ice sheet 

produces a larger-scale fracture due to the contact of the upper hull. 

Finally, the ice load tends to zero again, which means the failure of the 

ice sheet. 

 

 

  
(a) t=0 s (b) t=0.06 s 

  
(c) t=0.30s (d) t=0.48 s 

  
(e) t=0.50 s (f) t=0.56 s 

 

Fig.8 Schematic graph of submarine surfacing process obtained by 

numerical simulation 

 

CONCLUSIONS 

 

In this paper, a numerical solution of the PD method is given for the 

problem of interaction between rigid structures and the ordinary ice 

sheet. Combined with the theoretical research of the PD method, a 

three-dimensional PD numerical model for simulating the damage 

degree of ice is established in the corresponding problem. Through 

comparison with the experimental results, the accuracy of the numerical 

model based on the PD method is validated. Based on the above 

validation, the numerical simulations of the ice-breaking process of the 

cylinder penetrating the ice sheet and the submarine surfacing are 

carried out, focusing on the characteristics of fracture and the law of ice 

load under the dynamic motion of the structure. The following main 

conclusions can be drawn: 

 

In the simulation of the four-point experiment of columnar ice, the time 

history curves of bending force agree well with the experiment in the 

simulations of different particle spacing, and the ice fracture is similar 

to the SPH result. 

 

In the simulation of a cylinder penetrating ice sheet, the occurrence of 

radial fractures is earlier than that of circumferential fractures. The 

number of radial fractures increases first, while the occurrence of the 

circumferential fractures means the failure of ice sheet. The damage 

degree of the ice and the development of the fracture can be captured. 

The characteristics of fractures are in good agreement with the 

experimental observation. 

 

The interaction between the structure and the ice sheet during the 

process of the ice-breaking process of submarine surfacing is vividly 

depicted by numerical simulation. Local fractures are generated by the 

upward movement of the conning tower, while the overall failure of the 

ice sheet occurs after the impact of the upper hull. Through the analysis 

of the time history of ice load, the ice-breaking process is divided into 

three stages. The peak load appears in the first and third stages, which 

are due to the impact of the conning tower and the hull, respectively. In 

the second stage, the load is close to zero since the submarine has 

almost no contact with the ice sheet. 

 

This study helps understand the damage process of ice and the variation 

of ice load in the interaction between ice and structure, which lays a 

good foundation for the future study of complex ice-water-structure 

coupling problems. 

 

 
 

Fig.9 Time history of ice load during the surfacing process 
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