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ABSTRACT 

 

The self-propelled Joubert BB2 submarine near the free surface is 

studied in homogeneous, strongly stratified, and linearly stratified 

fluids respectively. The differential effects of the flow field are 

analyzed under varying submergence conditions across these three 

kinds of fluids. The findings indicate that when the submarine operates 

very close to the free surface, the flow field results in different fluids 

are nearly identical. However, as the dive depth increases, the 

differences in flow field perturbations between strongly and linearly 

stratified fluids become more pronounced compared to a homogeneous 

density fluid, under these conditions, accounting for density 

stratification becomes essential. 

 

KEY WORDS: Submarine; self-propulsion; stratified Fluid; wakes; 

free Surface. 

 

INTRODUCTION 

 

The successful completion of underwater operation tasks by new 

marine equipment such as “Jiaolong” and “Dream” marks the 

unprecedented development and attention to China's underwater 

vehicles, creating opportunities for China's ambition to advance into the 

deep sea. As a common underwater model, SUBOFF and Joubert BB2 

submarines have therefore received the attention and research of many 

scholars.  

It is well known that submarines traveling under the free surface 

are subject to greater drag as well as lift and pitching moments relative 

to deep-water environments. Amiri et al. (2018) investigated how the 

free surface affects the hydrodynamics of a shallowly submerged 

submarines, and Sudharsun et al. (2022) investigated Bernoulli's hump 

for submarines moving underwater. Dong et al. (2022) investigated the 

hydrodynamic performance of a submarine navigating near the free 

surface with long-crested waves, analyzing the effects of irregular 

waves and underwater depth. However, the effect of propeller rotation 

on the flow field was not considered in these studies. 

A number of self-propulsion research efforts have been conducted on 

the DARPA Suboff geometry. Liefvendahl and Tröeng (2011) used 

LES to study the periodic variation of propeller blade loads on a 

submarine. Chase and Carrica (2013) computed the application of 

submarine propeller to self-propulsion, and showed that the same 

method applied to surface ships can be used to calculate the self-

propulsion of a submarine. The results showed that the same method 

applied to surface ships can be used to calculate self-propulsion in 

submarines. Sezen et al. (2018) used the RANS method to study self-

propulsion of Suboff and found that the body force method estimated 

lower propulsive efficiency and higher transferred power, while the hull 

was more efficient. Lungu (2022) studied the numerical simulation of 

self-propelled Suboff working in deep water and near free surface 

based on DES, revealing the free surface working regimes. 

Unlike the slender hull structure of the Suboff submarine, the Joubert 

BB2, a generic submarine, is shorter and fatter. Li et al. (2015a) first 

put forward the effects of the free surface on the performance of the 

Joubert BB2 submarine with a propeller, showing that operating closer 

to the water surface resulted in higher propeller loads and lower 

efficiency. Carrica et al. (2019) comparatively analyzed submarine self-

propulsion in calm water and waves, found that hull/free surface 

interactions lead to wake fluctuations. Li et al. (2021) evaluated the 

effect of free surface on the stern propeller performance and showed 

that the free surface increases the submarine self-propulsion point. 

The effect of density stratification on submarine self-propulsion has 

not been considered in the above studies, whereas the density of 

seawater varies along the depth direction in the actual ocean due to 

temperature, salinity, and other factors. There have been some studies 

considering the effect of density stratification on the submarine 

hydrodynamics wake. Ma et al. (2019) studied the internal and free 

surface waves induced by the Suboff in a strongly stratified fluid. 

Huang et al. (2022) compared and analyzed the difference between the 

wake and free surface characteristics of the Joubert BB2 submarine in a 

homogeneous and linearly stratified fluid. Cao et al. (2023) numerically 

simulated the hydrodynamic performance and wake of Suboff in 

continuously stratified fluid. However, these studies still represent the 

fixed speed of a submarine by the incoming flow method and do not 

involve the rotation of the propeller. This paper devoted to analyzing 

the effect of density stratification on a self-propelled generic submarine 

near the free surface. 
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NUMERICAL METHODS 
 

Governing equations 
 

In this paper, in addition to the continuity and momentum equations 

under the Boussinesq approximation, the heat equation is also solved in 

the numerical simulation of the linear density stratified fluid (Cao et al., 

2021), and the governing equations are shown in Eqs. (1) to (3) below. 
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where u, ρ, P, υ, α, β, g, T′, and f respectively denote velocity, density, 

pressure, kinematic viscosity, thermal diffusivity, volume expansion 

coefficient, gravitational acceleration, temperature fluctuation, and 

large-scale forces. 

 

The thermocline model 
 

In this paper, the density is set as a polynomial function of 

temperature, and the linear stratification of the density is achieved by 

setting the temperature to vary with the depth direction, and the 

expressions for the temperature T and the density are shown as Eqs. (4) 

and (5). 
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0 2
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Linear stratified fluids can be realized by coupling equations (1) to 

(5). For homogeneous and strongly stratified fluids, c1 and c2 are set to 

0 and the temperature is treated as a constant. 

 

Turbulence modeling 

 

In order to keep the equations closed, the SST k-ω turbulence model 

is chosen for the solution, and the transport equations for k and ω are as 

Eqs. (6) and (7). 
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where Гk, Гω represent the effective diffusivity; Gk, Gω represent the 

turbulent kinetic energy, Yk, Yω represent the energy dissipation, Sk, Sω. 

represent the source item (Menter, 1994). 

 

The volume of fluid method 

 

The VOF method is used in present numerical simulation to capture 

the fluid interfaces that are not compatible with each other. The VOF 

method deals with the interface problem by calculating the volume 

fraction occupied by different fluids in each grid.  
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The interface between the two fluids is defined in the range 0 < r < 1. 

Depending on the different values of the volume fraction r, we can 

distinguish the position of the interface. 

 

PI-controller 

 

The rotational speed of the submarine propeller at self-propulsion 

point is determined by the PI controller method, which continuously 

adjusts the rotational speed according to the difference between the 

target speed and current speed of the submarine during numerical 

iterative solving process. The expression of the PI controller is Eq. (10). 
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R t R K error K error= +  +     (10) 

Where R(t) is the rotational speed at different times, R0 is the initial 

value of the rotational speed, error is the target speed of the submarine 

minus the current speed, Kp is the gain of the proportional component, 

and Ki is the gain of the integral component. 

 

COMPUTATIONAL SETUP AND VALIDATIONS 

 

The Joubert BB2 submarine model 
 

The geometric object studied in this paper is the Joubert BB2, a 

generic submarine designed by Joubert and adapted by MARIN in the 

Netherlands. The geometry is shown in the Figure 1, the main 

parameters are shown in the Table 1. 

 

 
Fig. 1 The Joubert BB2 geometry 

 

Table 1. Main parameters of the Joubert BB2 (model scale 1:18.348) 

 

Parameters Symbol Value (m) 

Overall length L  3.826 

Beam B  0.523 

Draft to Duck Dd 0.578 

Draft to Sail top Ds 0.883 

Diameter of propeller Dp  0.273 

 

Computational domain and discretized mesh 

 

This study adopts a computational domain that follows the motion of 

the submarine, significantly reducing the length of the computational 

domain compared to traditional methods. The total length of the 

computational domain is 3L, with 1L in front of the submarine, 2L 

behind it, and 2L on each side. The top boundary of the computational 

domain is set as a pressure outlet, while all other boundaries are 

configured as velocity inlets, ss shown in the Figure 2. 

 
Fig. 2 The computational domain and boundary conditions 
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The trimmed cell mesh was used to discretize the computational 

domain, with mesh refinement applied near the free surface region and 

around the propeller. Boundary layer meshes were added on the 

submarine surface to capture near-wall flow phenomena. The final 

mesh consists of approximately 16 million cells. The mesh results are 

shown in the Figure 3. 

 

 
(a) Longitudinal profile for domain grids 

 
(b) Grids near the submarine 

Fig. 3 Mesh details for the domain 

 

Initial density fields for the stratification simulation 

 

In this paper, the density at the center of mass of the submarine is 

uniformly set to 997.56 kg/m3, and the position of the free surface H 

determines the interface between air and water. When the fluid is 

strongly stratified, 0.32 L below the center of mass of the submarine is 

set to be heavy-density fluid with the density of 1020 kg/m3. The 

coefficients c1, c2(in Eqs. 4 and 5) are 1.5 and 18.3 respectively, when 

the fluid is continuously stratified. The density fields of the three kinds 

of fluid at the initial moment are shown in the Figure 4. 

 

   
(a) Homogeneous          (b) strongly stratified      (c) linearly stratified 

Fig. 4 Initial density fields for the three kinds of fluids 

 

Numerical validation 

 

To verify the reliability of the submarine's self-propulsion results in 

the homogeneous fluid, the experimental results under deep-water 

conditions from Overpelt (2015) were used for comparison. The results 

are shown in the Table 1. 

 

Table 1. Results of present and experiments 

Parameters Present Experiment Error 

Velocity (m/s) 1.2  1.19 —— 

Rotating speed (rpm) 272 268 1.49% 

Thrust (N) 24.92 26.6 -6.32% 

 

Table 1 presents the comparison of propeller rotational speed and 

thrust between the current numerical results with the experimental 

results of Overpelt (2015). The error in propeller rotational speed is 

only 1.49%, and the error in thrust is still within 7%. Therefore, the 

numerical method used in this study is reliable for submarine self-

propulsion simulations. 

The results of surface waves induced by the motion of a submarine 

with a constant speed in a strongly stratified fluid have been compared 

with the results of liu et al (2021) in previous work (li et al. 2023), and 

the result is shown in Figure 5. 

 

 
Fig. 5 Verification of surface wave height results in the strongly 

stratified fluid 

 

As for the results of surface waves induced by the motion of 

submerged structures in a linearly stratified fluid have been published 

in previous articles of our research team (Cao et al., 2021; Huang et al., 

2022; Cao et al., 2023), and more details can be found in references. 

 

RESULTS AND DISCUSSIONS 
 

Hydrodynamic results of Self-propulsion 
 

The rotational speeds and thrusts corresponding to the self-propelled 

points of the Joubert BB2 submarine for the nine conditions considered 

in this paper are shown in the Table2. The speed of the model scale 

submarine is 1.2m/s, which corresponds to 10kn in the full scale, and 

the submerged depths include 0.17L, 0.21L, and 0.26L. The density 

stratification of the fluid is divided into 3 categories, which are 

homogeneous density fluid, strongly stratified fluid, and linearly 

continuous stratified fluid. 

 

Table 2. Rotational speed and thrust results for 9 cases 

Case Depth/

L 

Fluid Rotating speed 

(rpm) 

Thrust 

(N) 

1 

0.17 

homogeneous 320.7 39.23 

2 strongly stratified 315.2 39.39 

3 linearly stratified 316.7 39.35 

4 

0.21 

homogeneous 288.4 29.05 

5 strongly stratified 281.4 29.89 

6 linearly stratified 283.9 29.78 

7 

0.26 

homogeneous 280.8 26.64 

8 strongly stratified 277.6 26.67 

9 linearly stratified 278.3 26.98 

 

From the Table 2, it can be seen that the rotational speed and thrust 

are smaller as the dive depth increases, which is due to the fact that the 

farther away from the free surface, the smaller the rising wave 

resistance. And at the same dive depth, relative to the homogeneous 

density fluid, the changes of rotational speed and thrust in the two kinds 

of density stratification are within 3%, which indicates that when the 

submarine is self-propelled in near-surface conditions, the effect of 

density stratification on rotational speed and thrust is very small. 

 

Free surface waves 
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Similar to a ship navigating on the water surface, a submarine 

operating near the free surface under self-propulsion generates a 

Kelvin-like wave system on the free surface. The surface wave patterns 

for 9 cases are shown in Figure 6, while the wave heights along the 

submarine's longitudinal profile are presented in Figure 7. 

 

   
(a) case 1                    (b) case 2                    (c) case 3 

   
(d) case 4                    (e) case 5                    (f) case 6 

   
(g) case 7                    (h) case 8                    (i) case 9 

 
Fig. 6 Free surface wavee shapes for 9 cases 

 

   
(a) case 1                    (b) case 2                    (c) case 3 

Fig. 7 Surface wave heights for 9 cases 

 

 

From the Figures 6 and 7, it can be observed that when the 

submarine is at a depth of 0.17 L from the free surface, the surface 

wave patterns and wave height results in the three types of fluids are 

very similar, indicating that density stratification has no effect on the 

surface waves generated by the self-propulsion of the submarine under 

these conditions. When the depth increases to 0.21 L, the surface wave 

patterns remain almost identical, but the wave height in the strongly 

stratified fluid is slightly lower compared to the other two fluids. At a 

depth of 0.26 L, the differences in surface wave patterns are most 

pronounced. The surface waves generated in the uniform-density fluid 

are less complete than those in the other two cases, as evidenced by a 

significantly lower wave height along the submarine's centerline. 

 

Internal waves 
 

When a submarine operates under self-propulsion in a density-

stratified fluid, it generates not only surface waves but also internal 

waves. In strongly stratified fluids, the internal waves are located at the 

interface between the two density layers. For comparative analysis, the 

internal waves in continuously stratified fluids are represented by the 

isosurface of a density of 1020. The internal wave patterns for six 

density stratification conditions are shown in Figure 8, while the wave 

height results along the submarine's longitudinal profile are presented 

in Figure 9. 

 

   
(a) case 2                    (b) case 5                    (c) case 8 

   
(d) case 3                    (e) case 6                    (f) case 9 

 
Fig. 8 Internal wave shapes for 6 cases 

 

 
Fig. 9 Internal wave heights for 6 cases 

 

From Figure 8, it can be observed that for the Joubert BB2 

submarine model moving at a speed of 1.2 m/s above the internal 

interface, the internal wave patterns consistently show a trough directly 

beneath the submarine and a crest forming behind it. Figure 9 reveals 

that when the distance between the submarine and the internal interface 

remains constant, the closer the submarine is to the free surface, the 

greater the numerical values of the internal wave crest and trough. 

Under the strongly stratified fluid condition, the trough values are 

slightly larger than those under the continuously stratified condition, 

while the opposite trend is observed for the crest values. 

 

Pressure coefficients 

 

Figures 10 and 12 show the pressure coefficient results on the upper 

and lower surfaces of the self-propelled submarine under 9 cases. 

Figures 11 and 13 present the pressure coefficient distributions along 

the centerline of the upper and lower surfaces, respectively. The 

expression for the pressure coefficient is Eq. (11). In the homogeneous 

and strongly stratified fluids, ρh is 997.56 kg/m³. In the linearly 

stratified fluid, ρh varies with depth. 

2

)
1

( ) / (
2

p h h
C P P U= −    (11) 

From the Figures 10~13, it can be observed that under the same 

depth condition, the effect of strongly stratified density fluid on the 

pressure coefficient of the submarine's upper and lower surfaces is 

minimal. For the linearly stratified fluid, the effect on the upper surface 
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is also small, but it has a significant impact on the lower surface, as 

indicated by the pressure coefficient being higher than that in the 

uniform density fluid. 

 

   
(a) case 1                      (b) case 2                       (c) case 3 

   
(d) case 4                      (e) case 5                       (f) case 6 

   
(g) case 7                      (h) case 8                       (i) case 9 

 
Fig. 10 Pressure distribution on the upper surface of the submarine 
 

   
(a) H = 0.17 L                (b) H = 0.21 L                (c) H = 0.26 L 

Fig. 11 The pressure coefficient along the longitudinal section of the 

submarine's upper surface 
 

   
(a) case 1                      (b) case 2                       (c) case 3 

   
(d) case 4                      (e) case 5                       (f) case 6 

   
(g) case 7                      (h) case 8                       (i) case 9 

 
Fig. 12 Pressure distribution on the lower surface of the submarine 
 

   
(a) H = 0.17 L                (b) H = 0.21 L                (c) H = 0.26 L 

Fig. 13 The pressure coefficient along the longitudinal section of the 

submarine's lower surface 
 

 

Velocity field and density fluctuation  
 

To investigate the reasons behind the significant differences in 

surface wave results generated by the submarine's self-propulsion at a 

depth of 0.26L in the three types of fluids, an analysis of the velocity 

field for this submergence condition was conducted. The horizontal and 

vertical velocity field results along the submarine's longitudinal profile 

are shown in Figure 14. 

 

From Figure 14, it can be observed that when the submarine is in a 

uniform fluid, the horizontal and vertical velocity fields behind the 

propeller exhibit an upward motion toward the water surface. However, 

this upward trend is absent in the strongly stratified and linearly 

stratified fluids, which explains the differences in the surface wave 

results shown in Figure 6(g)~ (i). This is consistent with More and 

Ardekani (2023), in density stratified fluids, the density gradient 

inhibits fluid motion in the vertical direction, compared to a 

homogeneous fluid where the wake is more likely to spread upstream. 

 

  
(a) case 7 u                                    (b) case 7 w 

  
(c) case 8 u                                    (d) case 8 w 

  
(e) case 9 u                                    (f) case 9 w 

  
Fig. 14 Velocity field at the submergence depth of 0.26 L 

 

 

 

 
Fig. 15 Density field in the wake region of the linear stratified fluid 

 

In addition, due to the suction effect of the propeller, mixing and 

oscillation of fluids with different densities are observed in the wake 

region within the linearly stratified fluid in Figure15. Low-density fluid 

rises, while high-density fluid sinks, causing the horizontal velocity in 

the wake to converge toward the propeller axis over a certain distance, 

as illustrated in the Figure 16. 

 

 

 
Fig. 16 The horizontal velocity field in the wake region of the linearly 

stratified fluid 

 

CONCLUSIONS 

 
This study conducted numerical simulations of the BB2 submarine 

model operating near the free surface under self-propulsion at a speed 

of 1.2 m/s in three different fluid environments: homogeneous fluid, 

strongly stratified fluid, and linearly stratified fluid. Simulations were 

performed for three different depths, resulting in a total of nine cases, to 

analyze the effects of density stratification on the flow field of a near-

surface self-propelled submarine. The main findings are as follows: 

(1) When the submarine operates near the free surface under self-

propulsion, both the propeller rotational speed and thrust are minimally 

affected by strong stratification or linear stratification compared to the 

homogeneous fluid environment. 

(2) If the submarine operates at a very shallow depth, such as the 

0.17L cases calculated in this study, the surface wave results generated 

by self-propulsion are almost identical across the three kinds of fluids. 

However, as the depth increases, the differences become more 

pronounced. At a depth of 0.26L, the wave shape in the homogeneous 

fluid is less complete than in stratified environments and the wave 
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height along the submarine's longitudinal profile is significantly lower. 

(3) Regarding the pressure coefficient on the submarine's surface, the

values on the submarine's lower surface are higher in the linearly

stratified fluid compared to those in the homogeneous fluid and

strongly stratified fluid.
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