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ABSTRACT  
 

In the development of modern marine technology, the hydrodynamic 

performance of submarine is very important to its maneuverability. 

However, under extreme maneuvering conditions, the complex dynamic 

behavior of submarines is difficult to accurately simulate by traditional 

experimental methods. In order to overcome the high cost and 

conditional limitations of experimental methods, numerical simulation 

technology came into being, providing an effective solution for this field. 

Based on the OpenFOAM overlapping grid method, the numerical 

simulation of the hydrodynamic coefficients of the SUBOFF full-

attached submarine model is carried out. In the numerical calculation, 

the SST k-ω turbulence model is selected to simulate the moving viscous 

flow field. The hydrodynamic coefficients of submarines under two 

horizontal conditions of pure sway and pure yaw and two vertical 

conditions of pure heave and pure pitch are studied respectively. By 

fitting and calculating the hydrodynamic coefficients under four working 

conditions, compared with the experimental results, it can be seen that 

the hydrodynamic coefficients of sway and heave motion are well fitted. 

Among them, the fitting error of the inertial hydrodynamic coefficient is 

small, and most of the errors are within 30 %, while the error of the 

viscous hydrodynamic coefficient is large, and the vertical plane results 

are similar. The numerical simulation results are similar to the results of 

the current research field, which verifies the feasibility of calculating the 

hydrodynamic coefficient of the submarine based on the overlapping 

grid method and provides a reference for its hydrodynamic performance 

analysis. 

 

KEYWORDS: SUBOFF; Overlapping grid; OpenFOAM; 

Hydrodynamic coefficient.  

 

INTRODUCTION 

 

Since ancient times, exploration of the ocean has never stopped in the 

human world. After entering the 21st century, with the continuous 

development of science and technology, various underwater vehicles 

have gradually become important tools in the fields of ocean exploration, 

resource exploitation, environmental monitoring and rescue, making 

people further develop and utilize the ocean. In the course of the 

development of underwater vehicles, submarines undoubtedly occupied 

an important position, from the 16th century Leonardo. Da Vinci first 

proposed the design of submarines to the advent of nuclear submarines 

in the 20th century. The research on the hydrodynamic performance of 

submarines by researchers around the world has deepened, and the 

maneuverability of submarines has been continuously improved. Among 

them, the study of various hydrodynamic coefficients is particularly 

important for submarines. Model test and numerical simulation are the 

two main research methods at present. Model test is mainly based on 

Planar motion mechanism (PMM) (Yang et al., 2009), which provides a 

large number of experimental data for studying the dynamic 

hydrodynamic performance of submarines. Because model tests require 

a lot of money and time, the use of numerical simulation technology to 

study the hydrodynamic coefficients of submarines provides an 

important solution in this field. 

 

Scholars around the world have carried out a lot of academic research on 

the maneuverability of submarines and the numerical simulation of 

PMM tests. Mansoorzadeh et al. (2014) studied the hydrodynamic 

coefficient of autonomous underwater vehicle (AUV) by combining 

computational and experimental fluid dynamics methods. By 

constructing a dynamic mesh model for horizontal planar motion 

mechanism testing, Lin et al. (2022) provided a comprehensive 

hydrodynamic coefficient database for autonomous underwater vehicles 

from the perspective of numerical simulation and experimental 

verification. Pan et al. (2012) and Jeon et al. (2021) used Computational 

Fluid Dynamics (CFD) method to analyze the hydrodynamic 

characteristics of underwater objects under large angle motion through 

steady-state and unsteady-state simulation. The dynamic grid method 

was used to simulate maneuvering and compare with the experimental 

data to verify the accuracy of the simulation. At the same time, their 

maneuverability and dynamic behavior were evaluated. Suzuki et al. 

(2013) used CFD and 6DOF motion simulation to numerically simulate 

the two PMM motions of underwater vehicles and solved them by forced 

vibration test. The hydrodynamic coefficients obtained were compared 
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with the experimental results to verify the accuracy of the numerical 

method. Lavrov et al. (2017) used the Navier-Stokes equations in 

OpenFOAM to simulate the flow near the 2D ship section under forced 

rolling motion and used the mixed Lagrangian-Eulerian adaptive mesh 

scheme to solve the forced motion and free surface capture problems. 

The hydrodynamic characteristics of container ships with different 

geometric characteristics and the influence of viscosity on vortex 

shedding and rolling motion were studied. Under the condition of 

ignoring the influence of free surface wave, Yang et al. (2011) simulated 

the pure swaying motion of KVLCC1 bare hull under the control of 

PMM in deep and shallow water and obtained its linear hydrodynamic 

coefficient. Liang et al. (2021) and Lin et al. (2018) conducted extensive 

and comprehensive PMM tests on the SUBOFF submarine model 

through model tests and numerical simulations and obtained a series of 

reliable hydrodynamic coefficients such as pure sway, pure yaw, pure 

heave, and pure pitch. Although numerical simulation can solve some 

flow problems, it may have some limitations for some more complex 

flow phenomena (such as separation, eddy current, etc.), and it consumes 

a lot of computing resources.  

 

Based on the open source software OpenFOAM and overlapping grid 

technology, this paper takes the SUBOFF submarine model as the 

research object, and carries out four different motion forms of pure sway, 

pure yaw, pure pitch and pure heave under PMM control. Each motion 

form simulates five forced motions with different amplitudes and 

frequencies. Based on the unsteady RANS ( Reynolds-Averaged Navier-

Stokes ) equation and SST ( shear stress transport model ) k-ω turbulence 

model, the viscous flow field of various motions is numerically 

simulated, and the hydrodynamic coefficients of SUBOFF under various 

working conditions are numerically fitted. Through numerical 

simulation and fitting results, this paper provides a detailed analysis of 

the hydrodynamic characteristics of SUBOFF under different motion 

conditions and provides a new numerical simulation method and 

reference for submarine design and performance optimization as well as 

greatly saves the cost of computing resources. 

 

 

NUMERICAL METHOD  
 

Governing Equation 
  
The SUBOFF submarine model numerically simulates the motion under 

PMM control based on the incompressible RANS equation. The equation 

is as follows : 
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The meaning of each parameter in the formula is as follows : U is the 

velocity field ; Ug is the grid moving speed ; t is time ; Pd = P-ρ.g.x is the 

hydrodynamic pressure ; ρ is the liquid density ; g is the acceleration 

vector of gravity ; μeff = ρ ( v + vt ) is the effective dynamic viscosity, v 

and vt are the dynamic viscosity and turbulent eddy viscosity, and the 

latter is solved by the turbulence model. 

 

Turbulent Flow Model 
 

The SST ( shear stress transport model )  k-ω turbulence model 

significantly improves the simulation accuracy of complex flows by 

combining the high accuracy of the k-ω model in the near-wall region 

and the stability of the k-ε model in free flow, as well as the limitation of 

mixing function and turbulent viscosity. Therefore, the SST k-ω 

turbulence model is used to solve the turbulent eddy viscosity vt in  

Eq. 2. The equation is: 
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The meaning of each parameter in the formula is as follows : k is 

turbulent kinetic energy ; ω is the turbulent dissipation rate ; t is time ; β 

and β* are limiting factors ; αk and αω are modified dynamic viscosity 

coefficients ; γ is the time percentage of turbulent fluctuation in the 

boundary layer ; F1 is a mixed function, where the F1 function can realize 

the switching between the near-wall standard k-ω model and the far-field 

standard k-ε model. The equation is: 
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where y is the distance to the nearest wall; ω2 is a constant with a value 

of 0.856; the definitions of CDkω in Eq. 2 and CD*
kω Eq. 3 can be 

expressed as: 
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For Eq. 2, G
~

 is defined as follows: 
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In the formula, c1 is a constant and the value is 10; G is defined as follows: 
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In the formula, S represents the invariant of strain rate, which is obtained 

by the strain rate tensor in the standard k-ω model. The equation is: 
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The turbulent eddy viscosity vt is obtained by Eq. 8, where a1 is a constant 

and the value is 0.31. F2 is a mixed function, and its definition is shown 

in Eq. 9. 
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GEOMETRY AND WORKING CONDITION DESIGN 
 

Geometric Model 
  
In order to study the hydrodynamic coefficients of submarines, this paper 

selects the SOBOFF fully-attached submarine model specially designed 

by the US Defense Advanced Technology Research Agency DARPA for 

the establishment of submarine CFD analysis software database. The 

main body of the model consists of a hull, a command platform and four 

tail rudder wings symmetrically distributed in a cross shape. The total 

length is 104.5m.  The plane motion under the control of four PMMs is 

numerically simulated with a scale ratio of 1:24. The geometric model 

and main scale are shown in Fig.1 and Table 1. The coordinate system 

adopts two right-handed rectangular coordinate systems, which are the 

geodetic coordinate system fixed on the earth and the body coordinate 

system fixed on the hull. The geodetic coordinate system is used to 

determine the spatial position and direction, and the body coordinate 

system is used to determine the hydrodynamic load and torque of the 

submarine. The geodetic coordinate system takes the front end of the 

bow as the origin coordinate, the x-axis points to the stern of the boat as 

the positive, the y-axis points to the starboard as the positive, the z-axis 

is positive, and the origin of the body coordinate system is located at the 

center of gravity of the submarine. 

 

 
Fig. 1 SUBOFF full-attachment geometric model 

 

 

Table 1. Main scale of model  

Main dimensions Value 

Scale ratio 24 

Forebody Lf /m 1.016 

Raft body Lm /m 2.229 

Afterbody Lf /m 1.111 

Overall length L /m 4.356 

Middle rotary diameter D /m 0.508 

Vertical barycentric coordinates xG /m 2.010 

Horizontal barycentric coordinates yG /m 0.001 

Vertical barycentric coordinates zG /m 0.0022 

 

Mathematical Model Of Motion 
 

By establishing the horizontal motion equation suitable for CFD 

calculation under PMM control, the corresponding hydrodynamic 

coefficient calculation formula is obtained. Because the derivation 

process of pure sway, pure yaw, pure heave and pure pitch is similar, 

only the derivation process of pure sway is introduced. The main motion 

parameters are as follows: 
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The meaning of each parameter in the formula is as follows: η is the 

lateral displacement; ɑ is amplitude; ω is the frequency; t is time; φ is 

the speed of yaw; φ̇ is the first-order coefficient of φ; V is the transverse 

velocity; V̇ is the lateral acceleration. The motion is simplified, and the 

motion equation is as follows: 
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In the formula, Y0 and N0 are constant terms of the initial state, and the 

value is 0, which can be omitted. The four terms of YV̇V̇, YVV, NV̇V̇, NVV 

are the hydrodynamic coefficient; V is the velocity, V̇ is the acceleration, 

Y is the lateral force, N is the yaw moment. The motion parameters are 

brought into Eq. 11 and the dimensionless processing is carried out. The 

motion equation is: 
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In the formula, U is the linear velocity; L is the captain; ρ is density. 

Therefore, the dimensionless hydrodynamic coefficient is:  
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In the formula, YʹV̇ and YʹV are dimensionless hydrodynamic 

coefficients of lateral force; NʹV̇ and NʹV are dimensionless 

hydrodynamic coefficients of turning moment. Through the numerical 

simulation results of multiple working conditions, the curve fitting of 

the lateral force and the turning moment is carried out to obtain the 

fitting form of the motion equation, so as to obtain the dimensionless 

hydrodynamic coefficient. The equation is as follows:  
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where A and B are YʹV̇ and YʹV; C and D are NʹV̇ and NʹV. 

 

Similarly, the hydrodynamic coefficient of pure heave can be obtained, 

which corresponds to the pure sway, which are ZẆ 、MẆ 、ZW 、MW, 

respectively. The hydrodynamic coefficients of pure yaw are Yṙ 、Nṙ 、

1825



 

Yr 、Nr ; hydrodynamic coefficient of pure pitch Zq̇、Mq̇、Zq 、Mq. 

Therefore, the dimensionless hydrodynamic coefficients can be obtained 

as ZʹẆ 、MʹẆ 、ZʹW 、MʹW、Yʹṙ 、Nʹṙ 、Yʹr 、Nʹr 、Zʹq̇、Mʹq̇、Zʹq 、Mʹq.  

 

Computational Domain Setting and Grid Independence 
 

By using the dynamic overlapping grid technology, the numerical 

simulation of SUBOFF multiple motions under the control of PMM is 

carried out. The grid setting is mainly composed of two parts, namely 

the overlapping grid area and the background grid area. Because the 

motion attitude of the submarine is different when it moves in the 

horizontal plane and in the vertical plane, the computational domain is 

larger. Fig.2 shows the setting of the computational domain. Among 

them, the background grid area range is : -1.15L < x < 3.45L, -1.15L < y 

< 1.15L, -1.15L < z < 1.15L ; the overlapping grid area is smaller than 

the background grid area, and the range is : -0.46L < x < 1.46L, -0.46L < 

y < 0.46L, -0.46L < z < 0.46L. The boundary conditions are established 

based on the principles of incompressible flow conservation and 

kinematic constraints. The boundary conditions are defined in 

accordance with the conservation laws of incompressible flow and 

kinematic constraints. The inlet velocity is specified using the 

fixedValue condition to ensure mass conservation, while the pressure is 

set with the zeroGradient condition to maintain the self-consistency of 

the pressure field. At the outlet, the inletOutlet condition is applied to the 

velocity to suppress backflow oscillations, with the pressure also set to 

zeroGradient to satisfy the Poisson equation. On the SUBOFF surface, 

the movingWallVelocity condition is used to impose a non-slip boundary, 

and zeroGradient pressure is applied to ensure the momentum balance at 

the wall. Additionally, the symmetryPlane condition is implemented on 

the bottom, ymax, and ymin surfaces, effectively reducing the size of the 

computational domain through mirror constraints. 

 

 
Fig. 2 Working condition diagram 

 

 
Fig. 3 Grid division 

 

The snappyHexMesh tool provided by OpenFOAM is used for the 
orthogonal meshing, and the meshing diagram is shown in Fig. 3. Among 

them, the inner area of the blue frame is the overlapping grid area, and 

the outer area is the background grid area. In order to ensure the accuracy 

of the calculation results, the grid size at the transition from the 

overlapping grid area to the background grid area should be basically the 

same. Therefore, the background grid is refined three times to achieve 

the same size as the outermost grid size of the overlapping grid. The blue 

line is the interpolation boundary between the two parts of the grid. The 

grid range between the yellow line and the blue line is the motion area 

under the control of PMM.  

 

For the surface boundary layer of the SUBOFF model, the isometric 

sequence division strategy ( the first layer thickness 0.00376 m, 5 layers, 

growth rate 1.2 ) is adopted, and the background domain and the 

overlapping domain are divided into three-dimensional uniform grids. 

Due to the numerical flow field simulation of SUBOFF's four PMM 

motions in the horizontal and vertical planes, it is necessary to consider 

the x, y and z directions when verifying the grid convergence. The 

number of grids in the three directions increases by a ratio of 3 2  , and 

three sets of systematic grid systems of 2.35 million ( Coarse ), 4.41 

million ( Medium ), and 8.6 million ( Fine ) were constructed. 

 

 
Fig. 4 Time history curve of swaying force for three grid sets 

 

 

 
Fig. 5 Time history curve of yaw moment for three grid sets 
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To assess the impact of grid resolution on flow field results during 

SUBOFF's PMM motion in a complex flow field, convergence 

verification is performed using unidirectional flow. Simulations are 

conducted for SUBOFF in pure sway motion with an amplitude of 0.3 m, 

frequency of 0.625 Hz, and flow velocity of 3 m/s. Three grid resolutions 

are tested: 2.35 million, 4.41 million, and 8.6 million cells. A calculation 

time of 6.4 s is used to ensure full development of the flow field. 

 

As illustrated in Fig.4 and Fig.5, numerical investigations on the 

SUBOFF model's pure sway motion demonstrate grid-converged 

hydrodynamic characteristics. Comparative analysis of three grid 

resolutions (Coarse, Medium, Fine) reveals consistent periodic sway 

force and yaw moment modes patterns during the post-flow-stabilization 

phase (fourth cycle, 1.6s window). The force amplitudes exhibit minimal 

sensitivity to grid refinement, measuring 3,312 N (Coarse), 3,359 N 

(Medium), and 3,342 N (Fine) with <1.5% inter-grid variation. Grid 

independence verification confirms the medium-resolution 

configuration (4.41M elements: 2.28M background + 2.13M 

overlapping grids) as optimal for PMM experiments, achieving 

computational economy without compromising hydrodynamic fidelity. 

 

 

CALCULATION CONDITION SETTING 
 

The SST k-ω turbulence model is used to simulate the various motions 

under the control of PMM. The same working conditions as the model 

scale test carried out by the David Taylar Experimental Center of the 

United States are adopted. The flow velocity is 3 m/s to simulate the 

speed of the submarine. The total calculation time is set to 5 cycles, and 

the time step is 0.001 seconds, which accelerates the calculation 

efficiency.  

 

For pure sway and pure heave motion, the working conditions are similar 

and are designed using the control variable method, as shown in Table 2. 

Similarly, for pure yaw and pure pitch motion, the conditions are 

comparable. In terms of pure yaw motion, its motion is achieved by 

changing the yaw angle at the same speed and is accompanied by lateral 

displacement. In the numerical calculation, the motion is completed by 

the superposition of the lateral and yaw motions. The two frequencies 

are the same, and the phase difference is 1 / 4 period, both of which are 

sinusoidal motions. Among them, the lateral displacement of the pure 

yaw motion can be derived from the motion process of the underwater 

vehicle, and the maximum rotation angle ψ0 = 10 °. The working 

conditions are set as shown in Table 3. 

 

 

Table 2. Pure sway and pure heave condition setting 

Operating 

conditions 

a /m f/Hz T/s ω/(rad/s) 

1 0.3 0.2 5 1.2566 

2 0.3 0.25 4 1.5708 

3 0.3 0.3125 3.2 1.9635 

4 0.3 0.4 2.5 2.5133 

5 0.3 0.5 2 3.1416 

6 0.3 0.625 1.6 3.9270 

 

Table 3. Pure yaw and pure pitch condition settings 

Operating 

conditions 

a /m f/Hz T/s ω/(rad/s) 

1 0.4167 0.2 5 1.2566 

2 0.3333 0.25 4 1.5708 

3 0.2667 0.3125 3.2 1.9635 

4 0.2083 0.4 2.5 2.5133 

5 0.1666 0.5 2 3.1416 

6 0.1333 0.625 1.6 3.9270 

 

RESULT ANALYSIS  
 

Aiming at the plane motion of SUBOFF under the control of four kinds 

of PMM, this study will discuss in detail from two aspects. The first 

aspect analyzes the submarine's motion characteristics through flow field 

results, while the second explores the impact of different control modes 

on the dynamic response via numerical fitting of hydrodynamic 

coefficients. These analyses aim to comprehensively assess the effect of 

PMM control on submarine plane motion performance and provide a 

theoretical foundation for submarine design and operation. 

 

Flow Field Analysis 
 

For the results of four kinds of motion flow fields at different frequencies, 

because the flow field results of pure sway and pure heave, pure yaw and 

pure pitch are similar, we only analyze the velocity field and pressure 

field of pure sway and pure yaw at different frequencies and take f = 0.2 

Hz and f = 0.625 Hz to analyze their motion in the fifth calculation cycle. 

For pure sway motion, only the velocity and pressure fields at the 

maximum amplitude are considered, as shown in Fig. 6. For pure yaw, 

both the flow field results at the maximum motion amplitude and 

maximum rotation angle are included, as shown in Fig. 7. 

 

 
(a) When t = 0.25 T, f = 0.2 Hz and f = 0.625 Hz, the pressure cloud 

diagram is shown. 

 

 
(b) When t = 0.25 T, f = 0.2 Hz and f = 0.625 Hz, the velocity cloud 

diagram is shown. 

 

Fig. 6 Results of the maximum amplitude flow field of pure swaying 

motion 
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(a) When t = 0.25 T, f = 0.2 Hz and f = 0.625 Hz, the pressure cloud 

diagram is shown. 

 

 
(b) When t = 0.5 T, f = 0.2 Hz and f = 0.625 Hz, the pressure cloud 

diagram is shown. 

 

 
(c) When t = 0.25 T, f = 0.2 Hz and f = 0.625 Hz, the velocity cloud 

diagram is shown. 

 

 
(d) When t = 0.5 T, f = 0.2 Hz and f = 0.625 Hz, the velocity cloud 

diagram is shown. 

 

Fig. 7 The flow field results at the maximum amplitude of pure yaw 

motion and the maximum amplitude of rotation angle (The motion 

amplitudes of a and c are the largest, and the rotation amplitudes of b and 

d are the largest) 

 

 

Fig. 6 shows that at t = 0.25T, the SUBOFF submarine reaches maximum 

sway amplitude. At f = 0.2 Hz, the lateral displacement velocity is slower 

than at f = 0.625 Hz, with a relatively stable flow field, regular velocity 

distribution, and dispersed vortex structure. However, both inflow and 

outflow sections exhibit some speed jump. The flow disturbance is 

mainly concentrated on the submarine's sides, and the pressure field 

remains more uniform with a small gradient. At f = 0.625 Hz, the 

increased motion frequency significantly alters the flow field, 

intensifying vortex formation and flow irregularity, while the flow 

velocity increases. The pressure field exhibits noticeable fluctuations, 

especially on the submarine's sides, with an increased pressure gradient 

and pronounced fluid separation and backflow. 

 

Fig. 7 shows that SUBOFF undergoes pure yaw motion, with t = 0.25T 

and t =0.5T corresponding to the maximum motion and angle amplitudes, 

respectively. At f = 0.2 Hz, the submarine bow moves slowly, with gentle 

fluid motion, a symmetrical velocity field, a uniform pressure 

distribution, and minimal fluid separation. At f = 0.625 Hz, increased 

inertia amplifies the submarine’s motion, intensifying flow disturbances 

and promoting vortex formation. This causes noticeable pressure 

fluctuations at the bow and stern, with a large pressure gradient, 

especially at the bow, where flow separation leads to local pressure 

increases and flow instability. 

 

Comparing the flow field changes at different frequencies reveals that 

motion frequency significantly affects water flow disturbance. High-

frequency motion causes more intense changes in the flow and pressure 

fields, leading to a more complex flow structure and greater 

hydrodynamic effects. These changes are crucial for the hydrodynamic 

design and motion control of submarines. 

 

 

Hydrodynamic Coefficient Analysis 
 

By analyzing the hydrodynamic numerical calculation results of 

SUBOFF submarine under different PMM motion modes, the values of 

A, B, C and D under four kinds of motion are obtained, and the 

hydrodynamic coefficients related to various PMM motions are obtained 

by linear fitting. Fig.8, Fig.9, Fig.10 and Fig.11 represent the 

hydrodynamic coefficient fitting curves of pure sway, pure heave, pure 

yaw and pure pitch respectively. 

 

 

 
 

Fig. 8 Pure sway hydrodynamic coefficient fitting curve 
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Fig. 9 Pure heave hydrodynamic coefficient fitting curve 

 

 
Fig. 10 Pure yaw hydrodynamic coefficient fitting curve 

 

 
Fig. 11 Pure pitch hydrodynamic coefficient fitting curve 

By dimensionless processing of various hydrodynamic coefficients 

obtained by fitting and comparing with the hydrodynamic data published 

in the SUBOFF full-attachment maneuverability test done by the Taylor 

Research Center of the United States (Roddy, 1990), the first 8 items in 

the table are inertial hydrodynamic coefficients, and the last 8 items are 

viscous hydrodynamic coefficients. The calculation results are shown in 

table 4. 

 

Table 4. Non-dimensional hydrodynamic coefficient calculation results 

Dimensionless 

hydrodynamic 

coefficients 

Numerical 

simulation 

values 

Test 

values 

Absolute 

value of 

error/% 

YʹV̇ -0.0165901 -0.016191 2.47 

NʹV̇ 0.0002511 0.000396 36.57 

ZʹẆ -0.0154078 -0.014529 6.05 

MʹẆ 0.0000804 -0.000561 114.26 

Yʹṙ 0.0002944 0.000398 26.03 

Nʹṙ -0.0007691 -0.000897 14.27 

Zʹq̇ -0.0000023 -0.000633 100.36 

Mʹq̇ -0.0007385 -0.000861 14.13 

YʹV -0.0495629 -0.027830 78.08 

NʹV 0.0001186 -0.013650 100.86 

ZʹW -0.0204478 -0.013910 47.84 

MʹW -0.0085630 0.010324 179.61 

Yʹr -0.0110320 0.005250 309.52 

Nʹr -0.0034118 -0.004440 23.16 

Zʹq 0.0130335 -0.007550 272.18 

Mʹq -0.0028011 -0.003700 24.32 

 

From the calculation results in Table 4, it can be seen that the 

dimensionless hydrodynamic coefficients obtained by fitting the 

SUBOFF submarine model under the control of PMM as a whole, the 

inertial hydrodynamic coefficients are in good agreement with the 

experimental results of the Taylor Research Center in the United States, 

while the viscous hydrodynamic coefficients have large errors, 

especially in the angular velocity coefficients related to pure yaw and 

pure pitch. There is a significant deviation between the calculation 

results and the experimental data. From the perspective of numerical 

simulation, this error is mainly due to the poor simulation accuracy of 

the separated flow in the simulation of submarine PMM motion by the 

currently used SST k-ω turbulence model. In addition, the mathematical 

model used in PMM motion is based on the assumption of small 

amplitude linearity, and the interaction between nonlinear terms and 

coupling effects is not considered, which is also one of the important 

reasons for the error. It should be pointed out that the large error of 

viscous hydrodynamic coefficient is a common problem in this field. 

 

By calculating the hydrodynamic coefficients, the Matlab-based 

underwater vehicle rotation trajectory prediction module is employed for 

numerical simulations to determine the tactical diameter, positive 

transverse distance, and advance distance of the SUBOFF model. The 

results are found to exhibit a small error when compared with those 

derived from hydrodynamic coefficients in existing literature. This 

discrepancy may be attributed to the relatively limited influence of 

viscous hydrodynamic coefficients on the maneuverability predictions of 
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underwater vehicles. 

 

 

CONCLUSIONS 
 

In this study, the open-source software OpenFOAM is employed, and 

the SUBOFF submarine is chosen as the research object using the 

overlapping grid method. The unsteady Reynolds-averaged Navier-

Stokes (RANS) equations, coupled with the SST k-ω turbulence model, 

are used to simulate the four motions—pure sway, pure heave, pure yaw, 

and pure pitch—under the control of the Planar Motion Mechanism 

(PMM). The flow field results for each motion, along with various 

hydrodynamic coefficients obtained through numerical fitting, are 

thoroughly analyzed. Regarding the flow field results, the vertical plane 

exhibits similar characteristics to the horizontal plane. Under low-

frequency conditions (f = 0.2 Hz), both the pure sway and pure yaw 

motions of the SUBOFF submarine generate relatively stable flow fields, 

where the vortex structures are dispersed and the pressure field remains 

uniform. In contrast, under high-frequency conditions (f = 0.625 Hz), as 

the submarine's motion frequency increases, significant changes in both 

the flow field and pressure field occur. The vortex and flow irregularity 

intensify, pressure fluctuations become more pronounced, and fluid 

separation is enhanced; In terms of various hydrodynamic coefficients 

obtained by fitting, the error of inertial hydrodynamic coefficients is 

small, and the error of viscous hydrodynamic coefficients is large, 

especially in the angular velocity coefficients. The reason for the analysis 

error may be due to the insufficient accuracy of the turbulence model to 

simulate the separation flow and the PMM motion mathematical model. 

The interaction between the nonlinear term and the coupling term is not 

considered, but this is similar to the calculation results in the current field. 

Through the analysis of the above calculation results, it can be seen that 

it is feasible to use the overlapping grid method to calculate the 

hydrodynamic coefficient of the submarine. The maneuverability index 

obtained by numerical simulation through the Matlab underwater vehicle 

rotation trajectory prediction module is compared with the relevant 

literature. The error is small, which provides an important reference for 

the analysis of submarine hydrodynamic performance. 
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