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ABSTRACT 

 

When the underwater vehicle undergoes pitching motion, an angle of 

attack is induced, resulting in asymmetric flow characteristics on the 

upper and lower surfaces of the hull. Although some studies have 

investigated the effect of the attack angle on the hydrodynamic 

performances of underwater vehicles, it still remains a gap in research 

concerning the effect on hydroacoustic characteristics. In this paper, 

flow field and flow noise of an underwater vehicle at a Reynolds 

number of 1.2×107 with different attack angles (α=0°, α=5° and α=10°) 

are numerically simulated using wall-modeled large-eddy simulation 

(WMLES) and FW-H equation. The current numerical setup is 

validated with previous studies and shows good consistency. It is found 

that the attack angle significantly increases the pressure fluctuations at 

the stern of the hull, and simultaneously increases the radiated noise in 

almost all directions. When the attack angle is α=10°, the radiated noise 

on the side of the hull is approximately 5dB compared to the case with 

attack angle α=0°. 
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simulation; pressure fluctuation; flow noise;  

 

INTRODUCTION 

 

Flow noise generated by pressure fluctuation in the turbulent boundary 

layer is one of the major sources of hydrodynamic noise for underwater 

vehicles (Wang et al., 2006; Zhao et al., 2022). When the underwater 

vehicle undergoes pitching, the distribution of pulsating pressure on the 

hull surface changes due to the attack angles, leading to a variation in 

the flow noise characteristics. Therefore, exploring the flow noise of 

underwater vehicles with different motion postures is of vital 

importance. 

 

Considering the high cost and lengthy period of experimental tests, 

numerical simulations for underwater vehicles based on computational 

fluid dynamics (CFD) have become a reasonable alternative (Bhatti et 

al., 2020). Several high-fidelity simulations have been conducted for 

underwater vehicles recently, focusing on detailed resolution of 

turbulent flow and prediction of noise. Typically, Posa (2016, 2020) 

and Kumar et al. (2018) extensively discussed the evolution of the 

boundary layer and the bimodal distribution of turbulent stress in the 

wake flow of underwater vehicles. Qu et al. (2021) applied the Liutex 

method to identify the vortex structures of underwater vehicles, and 

explored the generation mechanisms and evolutionary processes of 

various vortices. Hu et al. (2023) discussed the errors and the 

uncertainty in the unsteady turbulent flow around the underwater 

vehicle. Liu et al. (2023) used 1.476 billion grids to simulate the 

turbulent flow around the underwater vehicle, and proposed a 

geometrical-based mesh reordering method to improve cache utilization. 

Ma et al. (2024) investigated the distributions of dipole and quadrupole 

noise of an underwater vehicle by impermeable and permeable FW-H 

methods. Wang et al. (2025) reproduced the unsteady oscillations of the 

horseshoe vortex at the sail-hull junction flow, and revealed its 

evolution process. 

 

Since large-eddy simulation (LES) requires a large amount of 

computational grids to resolve the viscous sublayer of the boundary 

layer, it becomes computationally expensive to simulate the high 

Reynolds number flows using LES, such as flow around underwater 

vehicles (Piomelli, 2008; Choi and Moin, 2012). To address this 

problem, an improved LES approach for modeling the inner layer while 

resolving the outer layer of the boundary layer is proposed, which is 

known as WMLES (Kawai and Larsson, 2012; Bose and Park, 2018). It 

has been widely proved that WMLES is capable to accurately simulate 

the mechanical properties and turbulent flow characteristics of 

underwater vehicles (Chen et al., 2023; He et al., 2023).  Furthermore, 

WMLES also has a reliable performance in predicting the flow noise of 

underwater vehicles. Wang et al. (2021) studied the hydrodynamic 

noise of underwater vehicles with different shapes of the sail. Zhou et 

al. (2022) analyzed the directivity of instantaneous sound pressure 

caused by the constructive and destructive interference between the lift 

dipole and the side-force dipole of an underwater vehicle. Jiang et al. 

(2024) provided the power spectral density (PSD) of the surface 

pulsating pressure and radiated noise of underwater vehicles using high 

order numerical scheme. Zhou et al. (2024) numerically simulated the 

turbulent flow field and hydrodynamic noise of a body of revolution at 
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a Reynolds number of 1.9×106, and captured the spectral humps near 

multiples of the blade-passing frequency and accompanying valleys. 

 

However, to the best of our knowledge, previous studies on the flow 

noise of underwater vehicles have been carried out under the condition 

of a zero attack angle, without considering the variations in the 

hydroacoustic characteristics of underwater vehicles in different motion 

postures. In this paper, turbulent flow structures and flow noise 

characteristics of underwater vehicles at three different attack angles 

are simulated with WMLES and FW-H equation. The findings of this 

study offer valuable insights for enhancing the acoustic stealth 

performance of underwater vehicles. 

 

 

NUMERICAL METHODS 
 

Governing Equations 
 

In this paper, WMLES is used to simulate the simulate the turbulent 

flow. Similar to wall-resolved large-eddy simulation (WRLES), 

WMLES resolve the filtered three-dimensional Navier-Stokes by 

spatial filtering. The spatial filtered governing equations for 

incompressible viscous fluid can be expressed as follows (Smagorinsky, 

1963): 
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where the subscripts i and j represent streamwise, wall-normal and 

spanwise directions, the overline symbol represents the spatial filtering, 

p is the pressure, ν is the kinematic viscosity of fluid, i jij i ju u u u = −  

is the sub-grid stress to describe the interactions between the large-scale 

eddies and small-scale eddies. 

 

The sub-grid scale model selected in this paper is wall- adapting local 

eddy-viscosity (WALE) model, which takes both the shear stress tensor 

and the rotation tensor into account based on the square of the velocity 

gradient tensor (Nicoud and Ducros, 1999). The expression of sub-grid 

viscosity νt of WALE is as follows: 
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where Cw is the model coefficient, Δ is the grid filter width defined by 

cell volume, 
d

ijS  is the tensor defined as follows: 
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Wall-stress Model 
 

For WMLES, the wall-stress model is used to describe the velocity 

distribution in the inner layer of the turbulent boundary layer. In the 

current simulation, the algebraic model is introduced to approximate 

the relationship between normalized distance y+ and normalized 

velocity u+. According to Reichardt (1951), the algebraic wall-stress 

can be expressed as follows:  
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where κ is the von Karman constant, E is the log law offset, f is the 

roughness function, and 
my+ corresponds to the theoretical 

intersection of the viscous sub-layer and the log-layer solution. 

To avoid the log-layer mismatch, the wall shear stress is 

calculated using the velocity at the second cell away from the 

wall as reference cell in the current simulation. 
 

Acoustic Model 
 

The FW-H equation, proposed by Ffowcs Williams and Hawkings 

(1969), is a reliable mathematical model for predicting hydrodynamic 

noise. Based on the Lighthill’s acoustic analogy (Lighthill, 1952; 

Lighthill, 1954), FW-H equation extends it to the scenario with 

arbitrary moving rigid boundary in the flow field. The original FW-H 

equation can be expressed as follows: 
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where p’ is the sound pressure, c0 is the sound speed of the fluid, ρ0 is 

the undisturbed density of the fluid, vn is the wall-normal velocity of 

the integral surface, ni is the normal vector to the surface, Tij is the 

Lighthill stress tensor, δ(f) is the Dirac function, H(f) is the Heaviside 

function, σij is the viscous stress tensor, δij is the Kronecker symbol. 

 

The FW-H equation represents sound sources as monopole, dipole and 

quadrupole sources, which are associated with the mass fluctuation, 

pressure fluctuation and turbulent fluctuation of the flow, respectively. 

Solution of the FW-H equation in integral form is usually obtained by 

the Farassat 1A formulation (Brentner and Farassat, 1998), in which the 

monopole and dipole sources are resolved on the sound source surface 

and the quadrupole source is resolved within the sound source volume. 

For underwater vehicles, it is generally believed that the dipole source 

is the main noise source using a stationary sound source surface. 

Therefore, the radiated noise calculated in the current simulation can be 

simplified as follows: 
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where r is the distance between the observer and sound source, the 

subscript ret is the retarded time, S is the sound source surface. 

 

Numerical Setup 
 

In this paper, the bare hull SUBOFF is adopted as the underwater 

vehicle model, as shown in  

Fig. 1. Bare hull SUBOFF is an axisymmetric revolution body 

composed of a streamlined bow, cylindrical parallel mid-body and 

tapered stern. The maximum diameter of the mid-body is D=0.508m, 

and the total length of the hull is L=8.6D. The lengths of the bow, mid-
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body and stern are 2D, 4.4D and 2.2D, respectively. The three-

dimensional Cartesian coordinate system used in the current simulation 

is also shown in  
Fig. 1. 

 

 
 

Fig. 1 Geometry of bare hull SUBOFF model 

 

 

In the current simulation, three cases corresponding to attack angles of 

α=0°, α=5° and α=10° are considered, as shown in Fig. 2. Among them, 

α=0° is regarded as the base case, where the axis of the hull is aligned 

with the free-stream direction. Cases α=5° and α=10° are obtained by 

rotating the hull around the y-axis by 5° and 10° from the case α=0° 

respectively, with the rotation centered at the hull’s center. Apart from 

the differences in the attack angles, the three cases have the same 

calculation setup, including the computational domain, computational 

mesh and numerical schemes. Therefore, the following schematics are 

presented based on the case α=0°. 

 

 
Fig. 2 Schematic of cases with different attack angles α 

 

 

The computational domain is a rectangular cuboid with dimensions of 

38D in the streamwise direction, 11D in the vertical direction and 11D 

in the spanwise direction, as shown in Fig. 3. The velocity inlet 

boundary is located 8.5D upstream the stagnation point of the hull, 

while the outlet boundary is positioned 20.9D downstream the stern of 

the hull. The sides of computational domain are set to symmetry planes, 

and the surface is specified as a no-slip wall. Uniform incoming flow is 

generated at the inlet boundary with (U∞, 0, 0), where U∞ is the free-

stream velocity. The Reynolds number based on L and Mach number 

based on U∞ are ReL=1.2×107 and M=2×10-3. 

 

 
Fig. 3 Schematic of computational domain 

 

 

Unstructured hexahedral grids are employed to spatially discretize the 

computational domain, as shown in Fig. 4. A cylindrical region 

surrounding the SUBOFF model is applied for the mesh refinement, 

with an isotropic grid size of 1.85×10-2D, to capture the vortical 

structures in the flow field. Since resolving the viscous sub-layer of the 

boundary layer is not required for WMLES, the height of the near-wall 

grid is set to 1.10×10-3D, corresponding to y+≈30. At the mid-body 

region, the aspect ratio of the near-wall grid is approximately 4.2, as 

shown in the enlarged view in Fig. 4. Besides, 30 prism layers with a 

total thickness of 7.09×10-2D are added to the SUBOFF surface to 

ensure a reasonable transition between the near-wall grids and the 

innermost volumetric grids. The total number of grids is about 73×106. 

 

 
 

Fig. 4 Schematic of computational mesh on the plane section y=0 

 

 

Before executing WMLES, unsteady RANS with a normalized time-

step of Δt1U∞/D=0.012 for a normalized duration of T1U∞/D=60 is 

carried out for a fully developed initial flow. Subsequently, the 

turbulence model is adjusted to WMLES, and the convection scheme is 

set to bounded-central for high numerical accuracy and stability. The 

time-step is set to Δt2U∞/D=3×10-4 with the second order temporal 

discretization, to ensure that the Courant-Friedrichs-Lewy (CFL) 

number is no more than 0.1. The calculation of WMLES lasts for 

T2U∞/D=30, and all the numerical results mentioned below are 

collected for at least T3U∞/D=6. 

 

 

Numerical Validation 
 

In this section, numerical simulation results based on the case α=0° are 

compared with Kumar et al.’s simulation (2018) and Huang et al.’s 

experiment (1992), focusing on the pressure coefficient on the hull and 

the velocity profile at the stern. Pressure coefficient Cp is defined as 

follows: 
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where p∞ is the free-stream pressure. Distributions of time-averaged Cp 

along the upper meridian of the hull are shown in  

Fig. 5. At the bow and stern of the hull, time-averaged Cp value 

fluctuates due to the influence of the streamwise pressure gradient, 

while it remains nearly constant around 0 at the mid-body region. 

Similar magnitudes and evolutions of time-averaged Cp are also 

reported in previous studies. 
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Fig. 5 Distributions of time averaged Cp along the upper meridian of 

the hull 

Normalized time-averaged and root-mean-square streamwise velocity 

profiles at x/L=0.904 are presented in Fig. 6 and Fig. 7, respectively, 

where r0 in the vertical coordinate denotes the local radius of the hull. It 

can be seen that the current simulation has slightly overestimated the 

time-averaged streamwise velocity by approximately 10% within a 

distance of 0.2D from the hull. However, at greater distance from the 

hull, the results align well with those from Kumar et al.’s WRLES 

study. Regarding the root-mean-square streamwise velocity, both the 

current simulation and Kumar et al.’s WRLES have reported higher 

values at the near-wall region, compared to Huang et al.’s experiment. 

It suggests that accurately predicting the near-wall velocity pulsations 

at high Reynolds numbers using WRLES or WMLES still remains a 

challenge. However, this issue is not the focus of the present study. 

 

 
Fig. 6 Normalized time-averaged streamwise velocity profiles at 

x/L=0.904 

 

 
 

Fig. 7 Normalized root-mean-square streamwise velocity profiles at 

x/L=0.904 

 

 

In general, the current numerical setup successfully captures the 

distributions of pressure coefficient and reproduces the velocity profiles 

at the stern, which validates the accuracy of the numerical methods. 

Further analysis of the flow field will be discussed in the following 

section. 

 

 

RESULTS AND DISCUSSIONS 

 

Normalized instantaneous streamwise velocity on the plane section y=0 

and time-averaged Cp on the hull with different attack angles are shown 

in  

Fig. 8. For the case α=0°, both the velocity and pressure have exhibited 

a uniform distribution in the radial direction of the hull. At the mid-

body region, the extent of streamwise velocity fluctuations 

progressively increases, indicating the gradual growth of the turbulent 

boundary layer thickness. Under the influence of the adverse pressure 

gradient, the streamwise velocity at the stern of the hull decreases, 

leading to the formation of a separation vortex. Additionally, with the 

appearance of the attack angle, the flow exhibits distinct behaviors on 

the upper and lower surfaces of the hull. On the upper surface, the 

fluctuations in streamwise velocity are observed over a broader region, 

particularly at the stern of the hull. In contrast, the fluctuations on the 

lower surface of the hull are considerably smaller. Besides, with the 

increase of the attack angle, the pressure on the lower surface at the 

bow has increased significantly. 

 

 
 

Fig. 8 Normalized instantaneous streamwise velocity on the plane 

section y=0 and time-averaged Cp on the hull with different attack 

angles 

 

 

In order to identify the three-dimensional instantaneous turbulent flow 

structures in the flow field, Q-criterion proposed by Hunt (1988) is 

introduced in this paper, which can be expressed as follows: 
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where S is the strain rate tensor, Ω is the rotation rate tensor. Three-

dimensional vortical structures around SUBOFF with different attack 

angles are shown in Fig. 9. Similar to the streamwise velocity evolution, 

vortical structures are almost evenly distributed  on the upper and 

lower surfaces of the hull for the case α=0°. Due to the effect of the 

attack angle, wall-attached vortices and separation vortices primarily 

concentrate on the upper surface of the hull. Flow on the lower surface 

of the hull remains nearly laminar, with significantly fewer vortex 

formations. It suggests that when the underwater vehicle is inclined 

upward, the upper surface of the hull may serve as a stronger sound 

source. 

 

Instantaneous vortical structures at cross-sections x=0.5L (at the mid-

body) and x=0.9L (at the stern) with different attack angles are shown 

in Fig. 10. When the attack angle is 0, the vorticity distribution is very 

uniform in the radial direction of the hull. The turbulent boundary layer 

thickens under the adverse pressure gradient at the stern, resulting in a 

more extensive high-vorticity region at the cross-section x=0.5L 

compared to the cross-section x=0.9L. With the increase of the attack 
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angle, the high-vorticity region beneath the hull decreases, while the 

high-vorticity region on both sides of hull become thicker, particularly 

at the cross-section x=0.9L. When the attack angle α=10°, vortices shed 

from the mid-body are observed in the region away from the hull, 

showing no significant influence on the turbulent boundary layer at the 

stern. 

 
Fig. 9 Instantaneous three-dimensional vortical structures around the 

SUBOFF with different attack angles identified by the iso-surface 

Q×D2/U2=0.3 colored by normalized instantaneous streamwise velocity 

 

 
(a) α=0° (b) α=5° (c) α=10° 

 
(d) α=0° (e) α=5° (f) α=10° 

Fig. 10 Instantaneous vortical structures at two typical cross-sections 

with different attack angles 

 

Several probes are arranged on the surface of the hull to monitor the 

pressure fluctuation, as shown in  

Fig. 11. Probes P1, P3, P5, P7 are located on the upper, lower, right and 

left surfaces of the hull at the mid-body part, respectively. At the 

corresponding azimuthal positions, probes P2, P4, P6, P8 are positioned 

at the stern of the hull. When there is an attack angle between the hull 

and the free-stream, the relative positions of the probes with respect to 

the hull remain constant. 

 

 
 

Fig. 11 Schematic of pressure fluctuations probes on the hull 

PSD of pressure fluctuations normalized by pref are shown in  
Fig. 12, where pref is the reference sound pressure in the water. 

Frequency of the spectra is nondimensionalized using the Strouhal 

number St=fD/U∞. It can be seen that even with an attack angle on the 

hull, there is no significant variation in the pressure fluctuations at the 

mid-body across the majority of frequency ranges. Small differences 

are observed in PSD at probe P1 with α=0° and at probe P3 with α=10°, 

which have higher pressure fluctuation magnitudes at the range of 

20<St<30. Since this frequency range exceeds the plateau region of the 

PSD, it can be inferred that the effect of the attack angle on the pressure 

fluctuations of the mid-body is limited. Pressure fluctuations at the 

stern of the hull have relatively obvious differences. When the attack 

angle α=10°, probes P2 and P4 exhibit higher PSD magnitudes in the 

middle and high frequency range (St>10), while probes P1 and P3 

display increased PSD magnitudes in the low frequency range (St<10). 

It indicates that the impact of the attack angle on the pressure 

fluctuations of the hull surface is predominantly reflected at the stern. A 

larger attack angle results in a substantial increase in the pressure 

fluctuations across all azimuthal positions at the stern of the hull. 

 

 
 

Fig. 12 Normalized PSD spectra of pressure fluctuations with different 

attack angles 

 

In order to characterize the directivity of radiated noise, 36 noise 

observers are distributed on the plane sections x=0.5L, y=0 and z=0, 

respectively. These observers are all positioned 100D from the center 

of the hull, with a 10° interval between adjacent observers. The overall 

sound pressure level is introduced to describe the magnitude of the 

radiated noise at each observer, which can be expressed as follows: 
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where N is the number of frequency points within the frequency band, 

SPLN is the sound pressure level (SPL) value corresponding to the Nth 

frequency. Directivity of radiated noise with different attack angles on 

the typical section planes are shown in  
Fig. 13. It is observed that the shape of sound directivity has obvious 

dipole noise characteristics. The radiated noise propagates uniformly in 

the radial direction of the hull, and noise levels much higher than those 

in the bow and stern directions of the hull. The most important effect of 

attack angle on the flow noise is an increase in magnitude across all 

directions. Furthermore, it can be seen that the sound directivity on the 

plane section y=0 is deflected with the increase of the attack angle. The 

location of the maximum radiated noise still appears at an angle of 

approximately 90° relative to the axis of the hull. However, it is noted 

that the radiated noise above the hull is slightly lower than that at the 

side of the hull when attack angle is taken into consideration. 

 

 
(a) section plane z=0 (b) section plane y=0 

  

 
(c) section plane x=0.5L  

 

Fig. 13 Directivity of radiated noise with different attack angles 

 

 

CONCLUSIONS 

 

In this paper, WMLES is applied to simulate the turbulent flow around 

a bare hull SUBOFF at a Reynolds number of 1.2×107 with different 

attack angles. When the hull has an upward attack angle, the flow on 

the upper surface of the hull is more intense than the lower surface, 

including streamwise velocity and vortical structures. It is revealed 

from the PSD of the surface pressure fluctuations that the attack angle 

significantly enhances the magnitudes of pressure fluctuations at the 

stern of the hull. Finally, FW-H equation is adopted to predict the 

sound directivity at the far-field of the SUBOFF with different attack 

angles. With the increase of the attack angle, the magnitude of the 

radiated noise increases significantly in almost every direction. 

Moreover, the symmetry axis of sound directivity is deflected on the 

plane section perpendicular to the rotation axis of the attack angle, with 

the maximum radiated noise observed on the lateral side of the hull. 

The current numerical simulation provides valuable data support for the 

flow field characteristics and hydroacoustic characteristics of the 

underwater vehicle with pitching motion. The present study focuses on 

the hydrodynamic noise performance of the underwater vehicle at 

specific attack angles. Future work will further investigate the 

hydroacoustic characteristics of underwater vehicles considering multi-

degree-of-freedom motion. 
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