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Applications of Nonlinear Wave Hydrodynamics

Calculation of wave induced loads of ships and offshore structures is a classical

problem.
* For most cases, linear theory is valid under small wave steepness assumption.

* Nonlinearity is important for bodies with large-amplitude motions or in steep waves or

solutions obtained by linear theory is trivial or singular.

* Forinstance, a body moving with forward speed U and oscillate with angular velocity w is
often approximated as source points with linearized velocity potential (Haskind 1954):
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d(x,z) ~
Here € = wave steepness;

U 1 . s L .
= ?w: whent — " the solution becomes infinity, which is known as the critical

frequency.



Applications of Nonlinear Wave Hydrodynamics

e Stability and global performance analysis of
ship with forward speed:

» The combination of ship velocity U and the

encounter wave frequency w, satisfies T =
Uwe 1

~
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* Hydrodynamic loads on offshore structures

(e.g. TLP, FPSO, LNG) due to current-wave
induced motions:

» The average current speed in Gulf of Mexico is
Ucurrent = 0.3~1.2 m/sec (Data from NODC);

the natural period of TLP in heave mode is

Theqve = 2~3 sec (Johannessen, 2006),
Uw — 2ntUcyurrent ~ 1

leadingto 7 =
g g 9T heave 4




Research Purposes

Understand the role of body geometry and nonlinearity in the

. . e . _Uw 1
seakeeping solution near the critical frequency with T = 5 — 2
Develop theoretical analysis in the frequency domain to understand
the effect of nonlinearity on the seekeeping solutions for a two- and
three-dimensional bodies

Apply independent time-domain numerical nonlinear simulations to
validate the theoretical analysis
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Background

* Wave generation by an oscillating body with a forward speed:

z ¢« T =
ks k4 k; T k2 ki, ks ks = downstream waves;
/\ / /\ . 5 X k, = upstream wave

&= Ay ‘_> l ‘ r>1

ks, k4 downstream wave

-Plb-k

e At Critical Frequency T =

* Non-Dimensional Frequency: ks, k,= downstream wave;
k,, k; merge into a single wave with

group velocity I; = U. Wave energy
% cannot radiate away from the body.
. . 1
Linear solution at T = 2 may be

singular.



Existing Knowledge

(A) Linear Solution for a Single Point Source (Haskind, 1954):

' € €
d(x,z) ~ = —

V1 —4T o
e Asd =+1—41 - 0, the velocity potential becomes singular.

(B) Nonlinear Solution for a Single Point Source (Dagan & Miloh, 1982):

€

\/62 + V4 + €2

*  As8 =+/1— 41 - 0, the velocity potential remains finite, and is proportional to O(e1/2).

d(x, z) ~

(C) Linear Solution for Actual Bodies (e.g. Grue & Palm 1984)

* Frequency-domain numerical solution for a submerged circular cylinder indicates that the linear
solution is O(€) and finite. No theoretical proof was provided.

@g (1) Proof of a finite linear solution for a real body?
(2) What is the effect of nonlinearity in the case for real bodies?



Linearized Boundary-Value Problem
& (x,z,t) = ¢(x,2) + Dx, z,1) = d(x, z) + Re{o(x, z)e"")

Field equation: Gy + Py, =0

Linearized free-surface boundary condition:

(iw — U—~)d)+gg¢ 0 on z=0
Body boundary condition:
% = f(x,z) on Sg

Deepwater condition:

Vo —- 0 as z — —



Green Function

Haskind (1954):
G(x,z;x,’zl) = GO "" GI + Gz —l_ G3 + G43
where
= Lin[(x —x)* + (z ~ )] — 1n[(x —x)’ + (z +2)1}
G, — in el I-i—x)+(z+2))] ][ S A T
(1 —41:)2 (1 “4"")é m— k‘
Gz —_ iTC ekz [—i(x—x")+(z+2)] __ 1 - f w__lﬂ_em[—-i(x—x’)+(z+2')]dm ’
(1—4r)t (1—41): Jom—k
G; = U TR S 1 ][00 1 emotrversngm
(1 + )} (1 +47) Jo m—ks
G4 _ in ek4[i(x—x')+(z+2’)] . 1 fw_“Lem[l(xﬂx’)+(Z+z’)] dm ,
(1 + 47)} (1+47)t Jo m—ks

K K 1
kip = E—;—T-E(l —2t+ (1 —47)1) ; kys = 8—1_5(1 + 21+ (1 4 47)?) ;

1=Uw/g kK =40’/g



Asymptotic Expansion of Green Functionneart = 1/4

For convenience, we define 82 = |1 — 47|. For 62«1, we have

ki, =k[1+0(0)], 6’ <l
G+ G, = %e”f-“x-x’ HEH L G +0(5), 6*<1.
%G’ +1 = k[—i(x — X) + (z + 2))e*I7 ¢ E+] ][ -;-em[-“x-x’)ﬂm'ﬂ dm

G; and G, are regular and O(1)



Solution for a Submerged Body neart = 1/4

Using source formulation:

d)(x,z)=/ o(x',z2)G(x,z;x',z')ds
SB

Imposing the body boundary condition to find unknown source distribution o

no(x,z) + + o(x, z’)%G(x,z;x’,z’)ds’ = f(x,2z), (x,2z) € S
SB

In the neighborhood of T = i:

2 : L !
no(x,z) + —7;-E(nx + in,)e ix+2) / o(x',z')e" ™ ) dy
Sp
+ ][ o(x,2)Gu(x,2;x,2)ds = f(x,z) + O(5), 5%<1
Sa

We now define the Kochin function

o= / o(x,z)e"* ) dg
SB

2ot K(—ix+z)

Then, o(x,z) = — _E—(Rx + 1n;)e

_ l)[ (x,2)VGu(x,2; X, 2')ds’ +
SB

T

f (’;’ 2 L 0w), 52 <l



0
= — 4 4 ! ! 9 2
o G+ I_)[J'" A o(x,z)P(x',z)ds'] + 0(6°),

where the kernel P is given by

P(xl,zf) — f K(ix+2) aa (Gl + Go)d
SB

and the constants &% and I are given by

- / fer,z)eags, = [ (<inc+n)e™ds
Sg

S

ForI' + 0, < +1n, i
1o (x, Z) _ (n +1n ) erc(—lx+z)

! 7 P f’ !d !
5/2% + il fsﬁ"("’z) O, 2)ds

+ ][a(x’,z’)én(x,z;x’, z')ds' = F(x,z) + 0(9) ,
Sp

where

F(x,z) = f(x,2) — ;';3:;"1;,&‘"”‘“ 0(1).

o=0(1), a= 0(9)

Blx,2) = T eroieen 4 / o (¥, 2)G(x, 23 ¥, 2)ds + 0(5)=0(1)

\Y:

ForT =0, a =0(1), 6 = 0(67'), ¢ = unbounded
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Body Geometry Parameter

I'= | (—in, + n,)e”™*ds

Sz

With the use of the divergence theorem, we obtain immediately

r= 2K//62”zdS,
B

where B is the (mean) body section. Since the integrand in (3.14) is positive definite,
I’ #+ 0 if and only if the (submerged) body has non-zero cross-section area. The
known singular solution for a point source turns out to be a special case of I'= 0.



Comparison of Theoretical Solution with Direct Numerical Computation

5
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FIGURE 3. Amplitudes of the k; (upper branch) and k, (lower branch) waves radiated by the
heave and sway oscillations of a submerged circular cylinder as a function of 7 = Uw/g.
Asymptotic solution (5.13) (——); direct numerical calculations (Grue & Palm 1985) (- - -).

(F, = U/(gR):=04, h/R=2).



Theoretical Analysis of Nonlinear Effects in
Frequency Domain

Step 1: Potential Flow Theory
(Governing Equations)

Step 2: Perturbation Method
(Nonlinear FSBC by adding 3rd-order Nonlinear Terms)

Step 3: Combine the Nonlinear FSBC and
Body Boundary Condition (BBC)
to obtain the Boundary Integral Equation (BIE)

Step 4: Solve BIE for
Nonlinear Potential Solution ¢(x,z)
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Step 2—Nonlinear Free-Surface Boundary Condition

* Following Dagan & Miloh (1982), for a single source, assumed perturbation for
potential: ¢ = ¢1 +d2 +d3 + ...

] é € 6.’2 ; €3
The analysis showed: ¢1 ~ 3 by ~ 5 3 ~ —
@ €2 )
When§ =v1—-41t->0: d)—j ~ 57 (Non-uniform Convergence)

Perturbation valid only when: 2 ~ |¢|*, a < 1

* Add the cubic term to the free surface boundary condition (FSBC) :

8¢ ?¢y 9%y 99 1 |
S B + + -V vV(VeL1Ve1)=0 z=0
‘ ot? Otox Ox2 oz 2 |
Y Y

Linear Terms Cubic Term

when 6 = V1 — 41 — 0, the magnitude of the cubic term would be comparable
with the leading order terms.
@3

2 .
5 € (Uniform Convergence)
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Step 3—Apply Body Boundary Conditions

* Construct the potential solution for a submerged body into two parts:

d(x,z,t) = / o(s't)In(r/rn)ds’ + H(x, z, t) 42 FSBC

5B

v S ,/\ s
v(x.z,t) Surface wave effect 96 U
Source distribution (free & evanescent waves) i =F(x,z,t) —_— lg
on body surface
1

Nonlinear FSBC:  Hee — 2Huc + Hoc + Hz + = VHv(VHYH)=—-v: 2z=0
BBC: O‘U’(X z, t)+ ﬁ(X,Z, t) = F(x.z,t) on Sg

on

on

Here body forcing F(x,zt) is related to the body velocity and is known.

* Consider steady harmonic oscillation problem: i.e. F(x,z t) = ®{f(x, 2)e™}

H(x,z,t) =

—

Laplace Eq.:

FSBC:

BBC:

Bottom BC:

R{h(x.2)e "} Uy(x,z.t) = R{P(x,2)e" '} (x,z, 1) = R{X(x,2)e'“}

1
— w?h — 2iwhy + hy + hy + S VhV(VhVh) = —P(x,0) z=0

Xn(x,z) + hp(x,z) =f(x,z) (x,z) € Sg
Vh—0 z— —o0
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Step 4—Nonlinear Solution

* Velocity potential could be obtained:
ng(lll() 6‘_?'&"19’29&1—1_“"19’29|/3

hyp(x,z) = _ ,
Vil ) Vo2 + 4d + i2k, I

. 2kcz’
ody volume effect: I = /5 (—inx + nz)e”* ds’ ~ O(1);
/Sg

Body forcing : Fk)= [ [f(x, 2) — Xy(s)]e** = ds. ~0(¢€)
Sg

1. =0: qb~L x 0(61/2) at 6 =0 (i.e. T = %), consistent with Dagan and Miloh (1982);
|1
2. T #0: total nonlinear solution remain finite, ¢ o< O(¢€) at 6 = 0 with

1 1
kg = S(l=2r+V 62 +4d);  koy = 5(1 — 27 — /0% + 4d)

1 /82
dip =5 ({T + ﬁ-;r?) +

&

5 ’ el
( +A~§r?) +4£‘j|.ﬂ’-—{ﬂ'n}2]

[

4

* Total nonlinear corrections < O(¢€) :

2F (k,)eke? (T — 1)
52 + 4k212

v =Im(8% +4d,)"?/2.

hcora(z,2) = |hne| — |he| ~

» v represents the nonlinear correction: spatial damping coefficient to the resonance waves A, , A,.
» Nonlinear Correction due to cubic interactions is of the same order of magnitude as the leading-
order linear solution.




Analytical Nonlinear Solution for Submerged Circular Cylinder

* Approximation method: treat the potential of steady flow past the circular
cylinder as that around a dipole (e.g. Grue & Palm 1984).

f = wkeR*e~*cH (w + ke U)(—¢&x + i€5)

I = 2wRe—2kcH | (2K R)

e The d term will take the form as:
L[ | . 9,959 _akHy2p
dy = — 3 T_d"‘ k2R2e—4kH 129k R)

oy

L8, 2p2p2, akt 2 i Sk H (2 ’
-3 { [T +4m’ kR ekl If{ﬂkaﬁ']} + 16k m Rie 1 (63 + -:if}} :

. 1 .
 Theresonant waves Aja(r)~ e 2" with vi2==+53(0" 1 4ds)



Verification of Analytical Solution for Submerged Circular Cylinder by
Comparison with Independent Time-Domain Nonlinear Simulation

] 1 ] | | ]
290 -60 =30 0 30 60 80
x/R

FIGURE 2. Representative instantaneous free-surface shape of steady-state wave profile above
the submerged circular cylinder (with its center at 2=0) obtained by the time-domain nonlinear
simulation with M =3 (——). Analytical solution of the envelop of decaying wave amplitude of
resonant waves at downstream (2 < 0) and upstream (2 > 0) of the body A; 2(2) ~ e=*22% from
equation (4.6) (- - -) is also plotted for comparison. (H/R=6, F,=0.75, 7=0.25, &,/ R=0.05).
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Verification of Analytical Solution for Submerged Circular Cylinder by
Comparison with Independent Time-Domain Nonlinear Simulation
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FIGURE 3. Comparison of the damping factor v, of the resonant wave upstream of the
body (A»(x)) between the analytic solution from (4.6) with H/R=4 ( ) and 6 (——-),
and nonlinear simulations (M =3) with H/R—=4 (A) and 6 (W) as a function of the surge

motion amplitude &,/R. (Here, T =0.25 and F, =0.75.)
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Verification of Analytical Solution for Submerged Circular Cylinder by
Comparison with Independent Time-Domain Nonlinear Simulation
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FIGURE 4. Comparison of the damping factor v, of the resonant wave upstream of the
body (A,(x)) between the analytic solution from (4.6) at t =0.245 (——-) and 0.25 ( ),
and nonlinear simulations (M = 3) at T =0.245 (W) and 0.25 (A) as a function of body

submergence H/R. (Here, &,/R=0.05 and F, =0.75.)
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Time-Domain Nonlinear Simulation Confirms that Cubic Interactions
Gives Leading-Order Contribution at the Critical Frequency
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FIGURE 6. The imaginary part (a) and real part (b) of the radiation force in the horizontal
direction on the cylinder at 7=0.25 as a function of the surge motion amplitude (£;/R) obtained
by nonlinear simulations with M =1 (e), 2 (A), and 3 (). The results with M =2 and 3 overlap

each other graphically. (H/R=6 and F,=0.75).
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Added Mass and Damping Coefficient of S60 Ship
at the Critical Frequency by Nonlinear Time-Domain Simulation
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Ficurg 9. Heave damping coefficient (a) and added mass coefficient (b) of a Series 60 ship hull
at the critical frequency 7=0.25 as a function of the heave motion amplitude £; /L, obtained by
linear (o) and fully-nonlinear (A) numerical simulations (F,.=0.2).
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Time Dependence of Wave Resistance of a Body
Accelerating from Rest

* Fora 2D body:

%(I)—?_ 251

a3
(372 cos(@ct +a3) for t>> 1

pga® ot (o
1.0 -
(x107% %\_\
* Fora3D body: os [\
F)y-F ay as s =
= + cos(w.t +a FO-%
pgabh ()P (w.1)? (@ 3) pgabh
fort>>1 05
~1.0 T I N N AN TN S
20 30 40 S0
w.t

Comparison between the asymptotic prediction (—) and direct
time-domain simulation result (- - -) for the unsteady wave
resistance on a Wigley hull.



Conclusion

For the general 2D and 3D seakeeping problems:

» when T # 0, the nonlinear correction due to self cubic interactions of
resonant waves near the critical frequency is proportional to O(e), which

is in the same order as the leading-order (linear) solution.

» In the prediction of seakeeping solution near the critical frequency, the
nonlinear cubic terms in the free-surface boundary conditions should be

included since they will provide the leading-order contribution.



THANK YOU!

QUESTIONS??



Added Mass and Damping Coefficient of S60 Ship
near the Critical Frequency by Nonlinear Time-Domain Simulation
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FIGURE 10. The heave damping coefficient (a) and added mass coefficient (b) of a S60
ship hull in the neighbourhood of the critical frequency v = 0.25 obtained by linear (@)
and fully nonlinear (A) numerical simulations. The linear numerical solution by Bingham
(1994) (m) is shown for comparison. (Here, F, =0.2 and &./L =0.01.)
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