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Applications of Nonlinear Wave Hydrodynamics 
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Calculation of wave induced loads of ships and offshore structures is a classical 
problem.

• For most cases, linear theory is valid under small wave steepness assumption. 

• Nonlinearity is important for bodies with large-amplitude motions or in steep waves or 
solutions obtained by linear theory is trivial or singular.

• For instance, a body moving with forward speed U and oscillate with angular velocity ! is 
often approximated as source points with linearized velocity potential (Haskind 1954):

Here ϵ = wave steepness; 

" ≡ $%
& : when " → )

*, the solution becomes infinity, which is known as the critical 
frequency. 



Applications of Nonlinear Wave Hydrodynamics 
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• Stability and global performance analysis of 
ship with forward speed:

Ø The combination of ship velocity U and the 
encounter wave frequency ωe satisfies   ! =
#$%
&
≈ (

)
.

• Hydrodynamic loads on offshore structures 
(e.g. TLP, FPSO, LNG) due to current-wave 
induced motions:

Ø The average current speed in Gulf of Mexico is 
*+,--./0 = 0.3~1.2 7/9:; (Data from NODC);
the natural period of TLP in heave mode is 
<=.>?. = 2~3 9:; (Johannessen, 2006), 
leading to ! ≡ #$
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• Understand the role of body geometry and nonlinearity in the 
seakeeping solution near the critical frequency with ! ≡ #$

% = '
(

• Develop theoretical analysis in the frequency domain to understand 
the effect of nonlinearity on the seekeeping solutions for a two- and 
three-dimensional bodies

• Apply independent time-domain numerical nonlinear simulations to 
validate the theoretical analysis

Research Purposes
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Background
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• Wave generation by an oscillating body with a forward speed:

• Non-Dimensional Frequency:

• ! < #
$ ,

k1, k3, k4  = downstream waves; 
k2 = upstream wave

• ! > #
$ ,

k3, k4 = downstream wave

• At Critical Frequency ! = #
$ ,

k3, k4 = downstream wave;
k1, k2 merge into a single wave with 
group velocity () = *. Wave energy 
cannot radiate away from the body. 
Linear solution at  τ = ,

- may be 
singular.
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Existing Knowledge

(A) Linear Solution for a Single Point Source (Haskind, 1954):
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• As ! = 1 − 4& → 0, the velocity potential becomes singular. 

(B) Nonlinear Solution for a Single Point Source (Dagan & Miloh, 1982):

• As δ = 1 − 4τ → 0, the velocity potential remains finite, and is proportional to O(+,/.).

(C) Linear Solution for Actual Bodies (e.g. Grue & Palm 1984)

• Frequency-domain numerical solution for a submerged circular cylinder indicates that the linear 
solution is O(+) and finite.  No theoretical proof was provided.

(1) Proof of a finite linear solution for a real body?  
(2) What is the effect of nonlinearity in the case for real bodies?
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Linearized Boundary-Value Problem 

Field equation:                  !"" + !## = 0

Linearized free-surface boundary condition: 

Body boundary condition: 

Deepwater condition: 

∇! ⟶ 0 () * ⟶ −∞
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Green Function 
Haskind (1954):
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Asymptotic Expansion of Green Function near ! = #/%

G3 and G4 are regular and O(1)
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Solution for a Submerged Body near ! = #/%
Using source formulation: 

Imposing the body boundary condition to find unknown source distribution &: 

In the neighborhood of ' = (
) :

Then, 
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! = # $ , & = # '

=O(1)

For ( ≠ *,

For ( = *, & = # $ , ! = # '+$ , , = -./0-.121
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Body Geometry  Parameter 
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Comparison of Theoretical Solution with Direct Numerical Computation 



Theoretical Analysis of Nonlinear Effects in 
Frequency Domain
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Step 1: Potential Flow Theory
(Governing Equations) 

Step 2: Perturbation Method
(Nonlinear FSBC by adding 3rd-order Nonlinear Terms) 

Step 3: Combine the Nonlinear FSBC and 
Body Boundary Condition (BBC) 

to obtain the Boundary Integral Equation (BIE)

Step 4: Solve BIE for 
Nonlinear Potential Solution φ(x,z)



• Add the cubic term to the free surface boundary condition (FSBC) :

when δ = 1 − 4τ → 0, the magnitude of the cubic term would be comparable 
with the leading order terms.  
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Step 2—Nonlinear Free-Surface Boundary Condition

Linear Terms Cubic Term

(Uniform Convergence)

• Following Dagan & Miloh (1982), for a single source, assumed perturbation for 
potential: 

When δ = 1 − 4τ → 0 : (Non-uniform Convergence)

The analysis showed:

Perturbation valid only when:
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• Construct the potential solution for a submerged body into two parts:

Step 3—Apply Body Boundary Conditions

U

z

x

g

FSBC

• Consider steady harmonic oscillation problem: i.e.

Nonlinear FSBC:

BBC:

Here body forcing F(x,z,t) is related to the body velocity and is known. 

Laplace Eq.:

BBC:

FSBC:

Bottom BC:

Source distribution 
on body surface

Surface wave effect
(free & evanescent waves)
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Step 4—Nonlinear Solution
• Velocity potential could be obtained:

1. Γ = 0:  !~ #$
#$
∝ &(()/+) at δ = 0 (i.e. τ = ¼), consistent with Dagan and Miloh (1982); 

2. Γ ≠ 0:  total nonlinear solution remain finite, ! ∝ &(() at δ = 0 with

Body volume effect:

Body forcing :

• Total nonlinear corrections ∝ &(() :

Ø ν represents the nonlinear correction: spatial damping coefficient to the resonance waves A1 , A2.
Ø Nonlinear Correction due to cubic interactions is of the same order of magnitude as the leading-

order linear solution. 

~&(()
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Analytical Nonlinear Solution for Submerged Circular Cylinder

• Approximation method: treat the potential of steady flow past the circular 
cylinder as that around a dipole (e.g. Grue & Palm 1984).

• The d term will take the form as:

• The resonant waves                            with
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Verification of Analytical Solution for Submerged Circular Cylinder by 
Comparison with Independent Time-Domain Nonlinear Simulation
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Verification of Analytical Solution for Submerged Circular Cylinder by 
Comparison with Independent Time-Domain Nonlinear Simulation
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Verification of Analytical Solution for Submerged Circular Cylinder by 
Comparison with Independent Time-Domain Nonlinear Simulation
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Time-Domain Nonlinear Simulation Confirms that Cubic Interactions 
Gives Leading-Order Contribution at the Critical Frequency 
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Added Mass and Damping Coefficient of S60 Ship 
at the Critical Frequency by Nonlinear Time-Domain Simulation



Time Dependence of Wave Resistance of a Body 

Accelerating from Rest

• For a 2D body:

for t>> 1

• For a 3D body:
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for t>> 1

Comparison between the asymptotic prediction (⏤) and direct 

time-domain simulation result (- - -) for the unsteady wave 

resistance on a Wigley hull. 



Conclusion
For the general 2D and 3D seakeeping problems:

Ø when Γ ≠ 0, the nonlinear correction due to self cubic interactions of 
resonant waves near the critical frequency is proportional to O(ϵ), which 
is in the same order as the leading-order (linear) solution. 

Ø In the prediction of seakeeping solution near the critical frequency, the 
nonlinear cubic terms in the free-surface boundary conditions should be 
included since they will provide the leading-order contribution. 

25



26



27

Added Mass and Damping Coefficient of S60 Ship 
near the Critical Frequency by Nonlinear Time-Domain Simulation


