
 

 

 

 

 

 

 

 

 

Super-Resolution Reconstruction of Near-Wall Streak Structures of Turbulent Flows Based on 

Convolutional Neural Network 

 
Guoqing Fan, Maokun Ye, Weiwen Zhao, Decheng Wan* 

 
Computational Marine Hydrodynamics Lab (CMHL), School of Naval Architecture, Ocean and Civil Engineering, 

Shanghai Jiao Tong University, Shanghai, China 

*Corresponding Author 

 

 
 

ABSTRACT 

 

Traditional super-resolution convolutional neural network (SRCNN) 

typically uses the bicubic interpolation results of low-resolution images 

as input. The size of the feature maps remains unchanged during the 

training process, which prevents the upsampling process from being 

effectively learned. In this study, we perform super-resolution 

reconstruction of near-wall velocity streak by introducing transpose 

convolution layers to replace interpolation for upsampling in a 

convolutional neural network. The training data is derived from high-

fidelity wall-resolved large eddy simulations (WRLES) of turbulent 

channel flow at Reτ = 1000 . We specifically focus on the super-

resolution performance of present CNN at high ratios (r = 8, 16). The 

results show that the present CNN effectively captures the multi-scale 

features of wall-bounded turbulence and demonstrates significantly 

improved training performance compared to the traditional SRCNN, 

with peak signal-to-noise ratio (PSNR) improvements of 40% and 39.6% 

for r = 8 and r = 16, respectively. 

 

KEY WORDS:  Super resolution reconstruction; large eddy simulation; 

near-wall velocity streak; convolutional neural network.  

 

 

INTRODUCTION 

 

For high Reynolds number wall-bounded turbulence, accurately 

resolving near-wall coherent structures and capturing small-scale 

motions requires substantial computational resources, which in turn 

makes obtaining high-resolution (HR) data exceedingly challenging. 

Traditional numerical approaches, such as direct numerical simulation 

(DNS), demand prohibitively fine spatial and temporal resolutions, while 

experimental methods often fall short of delivering detailed flow field 

information. In this context, super-resolution (SR) reconstruction 

methods offer a novel perspective by reconstructing high-resolution flow 

fields from low-resolution (LR) inputs. SR methods provide a promising 

direction for alleviating computational challenges and enhancing the 

accessibility of high-fidelity flow data, thus opening new avenues for 

turbulence research and engineering applications. 

 

The concept of super-resolution convolutional neural networks (SRCNN) 

was first introduced by Dong et al. (2016) in their seminal work. This 

pioneering study demonstrated the capability of deep learning models to 

reconstruct HR images from LR inputs, marking a significant milestone 

in the field of image processing. Since its inception, SRCNN and its 

extensions have been widely adopted in various scientific and 

engineering domains, including fluid mechanics and turbulence 

modeling. In the context of near-wall turbulence, recent studies have 

explored the application of SRCNN-based methods to reconstruct small-

scale flow features from coarse-grained simulation or experimental data. 

The pioneering work by Fukami et al. (2019) introduced machine-

learning (ML) based SR methods, utilizing CNN and hybrid 

downsampled skip-connection/multi-scale models. These methods 

demonstrated the ability to reconstruct HR turbulent fields, such as two-

dimensional cylinder wake and homogeneous isotropic turbulence, from 

coarse input data with remarkable accuracy. Subsequently, Fukami et al. 

(2021) extended this approach to spatiotemporal SR reconstruction, 

integrating temporal dynamics to enhance predictive accuracy in 

turbulent channel flows. Recent advancements have incorporated novel 

architectures to further improve reconstruction capabilities. Xu et al. 

(2023) proposed a transformer-based SR model, leveraging its superior 

ability to capture long-range dependencies and multiscale features, 

enabling high-quality reconstruction of isotropic and anisotropic 

turbulent properties. Similarly, Zeng et al. (2024) developed a hybrid 

attention framework that effectively integrates multi-dimensional feature 

fusion, demonstrating its efficacy in reconstructing both laminar and 

turbulent flows from LR datasets. Sofos et al. (2025) introduced a 

spatiotemporal SR forecasting model for high-speed turbulent flows, 

utilizing a lightweight U-Net-inspired architecture to achieve both 

spatial reconstruction and temporal prediction with low computational 

overhead. 

 

These investigations have shown promising results, indicating that SR 

techniques can enhance the representation of near-wall coherent 

structures while potentially reducing computational demands. 

Nevertheless, two key challenges remain. First, traditional SRCNN 

architectures, while effective, are relatively simple and often rely on 

bicubic interpolation to preprocess LR data, which may limit the model's 
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ability to fully learn the upsampling process during SR reconstruction. 

Second, most existing studies have primarily focused on LR data with 

relatively small downsampling ratios. The effectiveness of SR methods 

under higher downsampling ratios, where the LR data becomes 

substantially coarser, remains less explored and warrants further 

investigation. Addressing these challenges is essential for enhancing the 

robustness and applicability of SR methods, particularly in scenarios 

involving highly coarse LR data. 

 

In this study, we perform super-resolution reconstruction of near-wall 

velocity streak by introducing transpose convolution layers to replace 

interpolation for upsampling in a convolutional neural network. The 

training data is derived from high-fidelity WRLES of turbulent channel 

flow at Reτ = 1000 (Fan et al., 2024). We specifically focus on the super-

resolution performance of present CNN at high ratios (r = 8, 16). The 

results are compared with SRCNN and bicubic. The paper is structured 

as follows: In Sec. II, we introduce the flow setup of WRLES, data 

creation for ML training and architecture of present CNN. Sec. III 

presents the results and detailed discussion. The final conclusions are 

drawn in Sec. IV. 

 

 

METHODOLOGY 

 

Governing Equations 

 

The high- fidelity WRLES in based on finite volume method (FVM). By 

applying a filter to the incompressible N-S equations, the governing 

equations for LES can be obtained. 
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where ũi (i = 1, 2, 3) is the filtered velocity component in the xi direction 

of the flow field, p̃ is the filtered pressure of the flow field, ν is the 

kinematic viscosity of the fluid and τij

sgs
 is the SGS stress term. τij

sgs
 is 

given by 
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where ijS  is the resolved strain-rate tensor, δij is the Kronecker delta, 

νsgs  is the SGS eddy viscosity. In this study, the wall-adapting local 

eddy-viscosity (WALE) model (Nicoud and Ducros, 1999) is applied as  
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where Cw = 0.325 is the WALE coefficient, ∆ is the cube root of local 

cell volume, d

ijS  is the traceless symmetric part of the square of the 

velocity gradient tensor. 

 

 

Flow setup and data creation 

 

Fig. 1 shows the computational domain of WRLES and the size is set to 

Lx × Ly × Lz = 2πδ × 2δ × πδ, where δ = 1m is the channel half-height, x, 

y and z denote the streamwise, wall-normal and spanwise directions, 

respectively. As for the boundary conditions, periodic boundary 

conditions are applied in the streamwise and spanwise directions, while 

a no-slip velocity boundary condition and a zero-gradient pressure 

condition are prescribed at the top wall and bottom wall. A source term 

is introduced into the momentum equation to maintain the bulk mean 

velocity Ub  to a constant. The Reynolds numbers based on the bulk 

velocity and friction velocity are Reb = Ubδ ν⁄  = 20000  and Reτ = 

uτδ ν⁄  = 1000, where uτ = √τw ρ⁄  is the friction velocity on the wall.  

 

 
Fig. 1 Computational domain 

 

In terms of the computational meshes, The key parameters of meshes are 

demonstrated in Table 1, where Nx × Ny × Nz are the numbers of grid 

points in three directions, Ntotal is the total number of grid points, ∆x+, 

∆y+  and ∆z+  are the non-dimensional grid spacings, ∆t+  is the non-

dimensional computational time step. In this paper, variables with 

superscript ‘+’ are non-dimensionalized using characteristic length ν uτ⁄  

and characteristic velocity uτ. The non-dimensional cell sizes in the wall-

normal direction grow gradually from 0.79 at the wall to 15.0 using a 

linear stretching ratio of 1.05, after which it is uniform. The total number 

of cells is approximately 22.1 million. 

 

Table 1. Parameters of computational meshes 

 

Case Nx × Ny × Nz ∆x+ ∆y+ ∆z+ ∆t+ 

WRLES 321 × 217 × 321 19.6 0.79 ~ 15.0 9.8 0.1 

 

In terms of the numerical schemes and solver, the coupled pressure-

velocity is solved using the PISO algorithm (Issa, 1986), with three 

pressure corrections at each time step. In addition, the temporal term 

employs the second-order implicit backward scheme (Jasak, 1996). The 

gradient and Laplacian terms are discretized using the second-order 

linear scheme. Regarding the discretization of the convective term, the 

second-order central differencing is used for the convection term in the 

N-S equations.  

 

 

Architecture of convolutional neural network 

 

To investigate the effectiveness of SR methods for turbulent flow fields, 

we employed three CNN architectures. The first network adopts the 

classic SRCNN architecture, initially proposed by Dong et al. (2016). As 

shown in Fig. 2(a), the LR data, preprocessed through bicubic 

interpolation, serves as the input to the SRCNN. The network comprises 

three convolutional layers with kernel sizes of 9×9, 5×5, and 5×5, 

respectively. Each layer is followed by a ReLU activation function. The 

final convolutional layer directly outputs the HR flow field, without 

applying an activation function, to ensure that the output values remain 
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consistent with the continuous nature of physical variables. 

 

The second architecture extends the classic SRCNN by increasing the 

network depth, as illustrated in Fig. 2(b). Additional convolutional layers 

are introduced to enhance the model's capacity to extract multiscale 

features from the input data. By deepening the network, this architecture 

aims to improve the accuracy of high-frequency feature reconstruction, 

which is critical for capturing the small-scale details of turbulent flows. 

Similar to the classic SRCNN, the input data is interpolated to the target 

resolution before being fed into the network. Notably, the size of feature 

maps of the above two architectures remains constant throughout the 

network, maintaining the same spatial resolution as the input. 

 

 
(a) classic SRCNN 

 
(b) Deep SRCNN 

Fig. 2 Architecture of classic SRCNN and deep SRCNN 

 

The third architecture incorporates transposed convolution layers as an 

explicit upsampling mechanism, replacing the bicubic interpolation step 

used in the previous architectures. As depicted in Fig. 3, the LR data is 

directly fed into the network without preprocessing. The transposed 

convolution layers progressively upscale the input data, enabling the 

model to learn the upsampling process directly from the training data. 

The architecture alternates between convolutional layers and transposed 

convolutional layers, with kernel sizes of 3×3 and 4×4, respectively. The 

network architecture in Fig. 3 corresponds to the case with a 

downsampling ratio of r = 8, while for r = 16, an additional convolutional 

layer and transposed convolutional layer are included. 

 

 
Fig. 3 Architecture of present CNN with transposed convolution layers 

 

The input data consists of LR streamwise velocity fields generated by 

downsampling HR fields at a specific ratio (r = 8 and 16). The 

downsampling process discretizes the HR data and the LR data are 

obtained by selecting discrete points from the HR data. For instance, in 

the case of r = 8, one data point is selected for every eight points. For all 

architectures, the output is the reconstructed SR flow field, matching the 

resolution of the original HR data (320×320). During training, the 

models were optimized using the mean squared error (MSE) loss 

function, which quantifies the pixel-wise difference between the 

reconstructed SR image and the ground truth HR data. The Adam 

optimizer was employed with an initial learning rate of 5×10-4, and we 

reduced it by 1/5 when the training loss did not decrease.  

 

 

RESULTS AND DISCUSSIONS 

 

In this section, we first provide the validation of the training data. Then 

we present the results of super-resolution reconstruction of turbulent 

flow fields using different CNN architectures. The study focuses on two 

downsampling ratios, r = 8 and r = 16. Considering that the near-wall 

turbulence is characterized by coherent streak structures and multiscale 

features, the analysis prioritizes the ability of different models to 

reconstruct these important characteristics. Quantitative metrics, 

including loss and Peak Signal-to-Noise Ratio (PSNR) trends during 

training, are analyzed to assess model performance and provide detailed 

insights into the reconstruction of near-wall turbulence. 

 

 

Validation of training data 

 

Fig. 4 shows the instantaneous near-wall vortical structures visualized 

by the Q-criterion. Due to the approximate symmetry of the channel flow, 

only the vortex structures from the bottom wall to the center of the 

channel are presented here. As the distance from the wall increases, the 

size of the vortices also increases. The multi-scale phenomena of wall-

bounded turbulent flow is well observed.  

 

 
Fig. 4 Instantaneous near-wall vortical structures visualized by the Q-

criterion (Q = 0.05). 

 

 
Fig. 5 Instantaneous contours of streamwise velocity fields at y+ ≈ 15 
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Fig. 5 shows the instantaneous contours of streamwise velocity fields 

(320 × 320) at y+ ≈ 15. The near-wall flow field is organized into streaky 

quasi-streamwise structures composed of high-speed and low-speed 

flow. These flows are elongated in the streamwise direction and 

alternately arranged in the spanwise direction. The low-speed flow 

primarily originates from the ejection effect, while the high-speed flow 

results from the sweeping effect of large-scale vortices from above.  

 

Fig. 6 shows the mean streamwise velocity profile and the resolved 

Reynolds stresses in inner scaling, which are compared with the DNS 

data (Yang and Yang, 2022). The results of WRLES match well with 

empirical formulas in both the viscous sublayer and logarithmic layer. 

For the Reynolds stress 〈uu〉+, a peak of Reynolds stress is observed at 

y+ = 15. The agreement between the DNS data and present WRLES is 

satisfactory. Considering that y+ = 15 corresponds to the location of the 

near-wall turbulent kinetic energy peak, where turbulent motions are 

most active, we chose to perform super-resolution reconstruction on the 

streamwise velocity field at y+ = 15. 

 

 

(a) Streamwise velocity profiles 

 
(b) Inner-scaled Reynolds stresses 

Fig. 6 Validation of present WRLES. (The red line represents the results 

of WRLES, the black line shows the DNS data.) 

 

 

Results for downsampling rate r = 8 

 

Fig. 7 display the LR input, bicubic interpolation, HR target flow fields, 

and the reconstructed near-wall streak under different neural network at 

r = 8. The LR input exhibits a coarse representation of the near-wall flow 

field. Bicubic interpolation improves spatial resolution to some extent 

but introduces smoothing effects that obscure the streak structures and 

fail to capture their dynamic characteristics. In contrast, the HR flow 

field resolves these streak structures in detail, providing an accurate 

reference for evaluating SR performance.  

 

 

     

     
Fig. 7 Reconstructed near-wall streak under different neural network at r = 8. 

 

 

In terms of the reconstructed results, the SRCNN (Dong et al., 2016) 

partially recover large-scale features but fail to capture the coherence and 

small-scale details of the streak structures. The deep SRCNN 

architecture enhances the representation of multiscale features, showing 

better alignment with the streak structures compared to SRCNN. The 

present CNN architecture, incorporating transposed convolution, 

534



 

exhibits the best reconstruction performance. The present CNN, 

incorporating transposed convolution layers, provides the most accurate 

reconstruction. It effectively resolves the anisotropic and multiscale 

features of near-wall turbulence, restoring both the coherence and small-

scale fluctuations of the streaks. 

 

Fig. 8 presents the loss and PSNR trends during training for r = 8. The 

definition of PSNR is given as:  

 
2

I I
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where, MAXI represents the maximum pixel value of the image, and the 

unit of PSNR is dB. The loss curves shown in Fig. 8(a) indicate that the 

present CNN achieves the lowest final loss, reflecting its superior ability 

to minimize reconstruction errors. Notably, the SRCNN exhibits signs 

of gradient vanishing, as evidenced by its slower convergence and higher 

final loss values. The PSNR trends in Fig. 8(b) further confirm this 

observation, with the present CNN achieving a final PSNR of 45 dB, 

representing a 40% improvement over SRCNN's 32 dB and a 32% 

improvement over Deep SRCNN's 34 dB. The incorporation of 

transposed convolution layers allows the model to directly learn the 

upsampling process, contributing to its higher accuracy in capturing 

streak structures. 

 

 
(a) Training loss 

 
(b) PSNR 

 Fig. 8 Training loss and PSNR trends of three architectures at r = 8 

 

 

Results for downsampling rate r = 16 

 

Figures 9 display the reconstructed near-wall streak under different 

neural network r = 16. The LR input represents an even coarser flow 

field compared to r = 8, where the streak structures are almost completely 

lost. Bicubic interpolation provides minimal improvement, with the 

streak structures remaining indistinguishable. Fig. 9 also presents the 

reconstructed flow fields using the SRCNN, deep SRCNN, and present 

CNN architectures. The SRCNN results offer limited improvement over 

bicubic interpolation, failing to recover the streak structures. The Deep 

SRCNN performs better, reconstructing some large-scale features but 

still lacking in the resolution of small-scale fluctuations. The present 

CNN architecture, however, demonstrates superior performance. It 

accurately reconstructs the streak structures near the wall, recovering 

their elongated and coherent characteristics, even under the challenging 

r = 16 condition. This highlights the robustness of the present CNN 

architecture in learning complex anisotropic features from highly coarse 

input data.  

 

 

     

     
Fig. 9 Reconstructed near-wall streak under different neural network at r = 16. 
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Figures 10 shows the loss and PSNR trends during training for r = 16. 

The loss curves reveal that all models converge to stable values, but the 

present CNN achieves the lowest final loss, significantly outperforming 

the other architectures. Similarly, the PSNR trends show that the present 

CNN reaches a final PSNR of 44 dB, indicating a 39.6% improvement 

over SRCNN's 31.5 dB and a 31.3% improvement over Deep SRCNN's 

33.5 dB. The results highlight the effectiveness of the transposed 

convolution layers in learning the upsampling process for highly coarse 

input data. 

 

 
(a) Training loss 

 
(b) PSNR 

Fig. 10 Training loss and PSNR trends of three architectures at r = 16 

 

The comparisons between r = 8 and r = 16 highlight the increasing 

challenges of reconstructing near-wall turbulent streak structures as the 

downsampling ratio grows. While all models exhibit some performance 

degradation with coarser input data, the present CNN consistently 

outperforms the SRCNN and deep SRCNN architectures. Notably, in 

both SRCNN and deep SRCNN architectures, the feature map 

dimensions remain constant during training, but the number of channels 

decreases progressively. This reduction likely leads to information loss 

during neural network propagation, resulting in poorer training outcomes, 

especially at higher downsampling ratios. In SR reconstruction tasks, 

which essentially involve upsampling, the first two architectures 

delegate the upsampling process to bicubic interpolation. In contrast, the 

present CNN architecture incorporates transposed convolution layers, 

allowing the neural network to learn the upsampling process directly, 

leading to better training performance. These findings underscore the 

potential of the present CNN architecture for applications requiring high-

fidelity reconstructions of near-wall turbulence in engineering and 

scientific contexts. 

CONCLUSIONS 

 

In this study, we perform super-resolution reconstruction of near-wall 

velocity streak by introducing transpose convolution layers to replace 

bicubic for upsampling in the convolutional neural network. The training 

data is derived from high-fidelity WRLES of turbulent channel flow at 

Reτ = 1000  (Fan et al., 2024). We specifically focus on the super-

resolution performance of present CNN at high ratios (r = 8, 16). The 

results demonstrate the significant potential of SR techniques in 

recovering critical features of near-wall turbulence, such as coherent 

streak structures and multiscale dynamics, even under substantial data 

degradation. 

 

The findings highlight the limitations of traditional SRCNN and Deep 

SRCNN architectures. These models rely on bicubic interpolation for 

upsampling, which bypasses the network’s ability to learn this critical 

process, resulting in information loss, particularly as feature map 

channels are progressively reduced during training. This limitation is 

especially evident at higher downsampling ratios, where the 

reconstruction of fine-scale and anisotropic features becomes 

increasingly challenging. 

 

In contrast, the present CNN architecture incorporates transposed 

convolution layers, enabling the network to directly learn the upsampling 

process. This design effectively addresses the challenges associated with 

large downsampling ratios, achieving higher PSNR values and 

demonstrating superior reconstruction accuracy. The present CNN 

successfully captures both the spatial coherence and intermittent small-

scale fluctuations of near-wall turbulent streak structures, showcasing its 

robustness and scalability. 

 

Overall, this study establishes the feasibility of using SR methods, 

particularly the present CNN architecture, to address the challenges 

posed by high-resolution reconstruction of turbulent flows. Future work 

could extend this approach to testing datasets, explore generalization to 

diverse flow scenarios, and investigate further optimization of network 

architectures for turbulence modeling and engineering applications. 

Additionally, Since the current LR flow field data are obtained by 

downsampling from HR data, it is challenging to acquire paired high-

resolution and low-resolution data from actual CFD simulations for 

training. Future work could further explore the incorporation of 

unsupervised learning architectures, including cycle generative 

adversarial networks (cycleGANs), to address this issue. 
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