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ABSTRACT 

 

A submarine usually consists of the main hull and appendages such as 

fairwater and rudders. In order to give full play to the submarine's good 

resistance and manoeuvrability, the SBD technique is used to optimize 

the shape of main hull. The six shape parameters of the main hull can 

be changed and regarded as optimization design variable, and the drag 

and tactical turning diameter are evaluated based on CFD. Furthermore, 

the Optimized Latin Hypercube Sampling method and Kriging 

surrogate model are adopted to save the computational cost. Then, the 

Multi-objective Constrained Particle Swarm Optimization algorithm is 

used to obtain the optimal hulls under several constraints. Finally, the 

applicable schemes for different working conditions are given. 

 

KEY WORDS: Submarine; SBD technique; Resistance; 

Manoeuvrability; Hull form optimization; OLHS; MOCPSO. 
 

INTRODUCTION 

 

Submarine has incomparable navigation advantages underwater due to 

its good performances including resistance and manoeuvrability, and is 

widely used in military and civil fields. Since the main hull has a strong 

influence on the resistance and maneuverability of the submarine, the 

optimization of the main hull should be prioritized. 

 

In the past, researchers often used the empirical mode of "modify-

evaluate-re-modify-evaluate" for the optimization of hull form, but this 

mode has the disadvantages of low efficiency, poor accuracy, 

ambiguous direction and empirical dominance, which limit the 

optimization process to a certain extent. In order to overcome the 

limitations of this empirical mode, a simulation-based design (SBD) 

technique has been developed, which has the advantages of high 

efficiency, large design space and good optimization results. The SBD 

technique can be divided into five parts: hull form modification, design 

of experiment, hydrodynamic performance evaluation, surrogate model 

construction and optimization algorithm. 

 

In the past decade, a lot of research has been conducted on the 

optimization of ship resistance, seakeeping and maneuverability using 

SBD technique. Hyunyul Kim and Chi Yang (2010) used KRISO 

container ship (KCS) as the initial hull and combined radial basis 

function interpolation and Lackenby's method to achieve local and 

global hull form modifications to optimize the total drag at different 

speeds. Li (2012) realized hull from modification by changing the 

cross-sectional area curve of the initial ship, and carried out multi-

objective optimization for the speed, wave resistance and 

maneuverability of the ship. Bagheri, L., Ghassemi, H. and Dehghanian, 

A. (2014) used the S60 hull and the Wigley hull as the initial hull to 

optimize the peak vertical motion characteristics at different Fr and 

obtained the optimal ship with the displacement as the design constraint. 

Lin Y, Yang Q and Guan G (2019) established an automatic 

optimization platform based on the MIGA method in conjunction with 

the response surface methodology, and analyzed the hydrodynamic 

performance of the samples generated by the RSM through CFD 

calculations, and optimized the design for the resistance of the 2.7m 

SWATH model at Fr = 0.29.  Liu, Wan and Hu (2021) used shifting 

and Radial Basis Function (RBF) methods to optimize Wigley ship 

based on calm-water wave drag with or without generating bulbous 

bow, the results show that the bulbous bow generation method 

proposed has potential for the drag optimization of medium and high-

speed hulls. 

 

Several advancements have been made to the optimization of 

submarine performance, and achieved good results. Qian and Liu (2011) 

used the dimensions and the longitudinal coordinates of the control 

surfaces are selected as the design variables, the unitary dimensional 

hydrodynamic coefficients were calculated and the submarine 

maneuverability prediction model was established. Based on the 

iSIGHT optimization platform, the Multi-objective optimization and 

Sensitivity analysis of the submarine maneuverability objects were 

carried out. Kou, Yin, Dong and Zhou (2013) came up with the idea of 

optimizing missile dome for the SUBOFF submarine based on CFD 

and iSIGHT optimization platform. With the optimization objective of 

minimizing the drag, the optimal missile dome design parameters are 

determined and the variation of the drag with each design parameter is 

analyzed. Mora Paz and Tascón Muñoz (2014) combined slender body 
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theory, hull form parametric modeling, drag evaluation and 

optimization techniques to optimize the drag and radius of turning 

using the length and radius of hull, longitudinal position of the sail, 

area and aspect ratio of rudder as design variables. Deddy, Ahmad and 

Berlian (2015) used cubic Bezier curve and curve-plane intersection 

method for parametric submarine hull form design to optimize hull 

resistance. Wu, Lin, Liu and Su (2020) proposed to improve the 

maneuverability of lifting and diving for underwater vehicle’s vertical 

motion by optimizing the L/D, the position of the foreplane and sail to 

obtain a robust design. 

 

In this Study, the SUBOFF model is considered as the initial hull. The 

hull form can be globally deformed by the improved shifting method 

which is based on the translation of section planes along the 

longitudinal direction. The multi-objective constrained particle swarm 

optimization (MOCPSO) algorithm is taken as optimization technique 

leading to three optimal submarine model considering the surface 

resistance, underwater resistance and tactical turning diameter. All the 

sample points are generated by the Optimal Latin Hypercube Sampling 

(OLHS) method and their resistances and tactical turning diameters are 

evaluated by RANS-based CFD solver STAR-CCM+. After doing the 

optimization through MOCPSO combined with Kriging surrogate 

model, three optimization cases will be given. The whole optimization 

process is implemented using the in-house ship hull optimization 

platform based on Python language. 

 

OPTIMIZATION THEORIES 

 

Hull Form Modification 

 

Hull form modification is an important part of SBD technique, which 

determines the deformation pattern of the hull during the optimization 

process. The hull form modification can be broadly classified into two 

categories based on ship form parameters and geometric parameter. 

When choosing the modification method, the focus should be on the 

design requirements and features suitable for the optimized ship, and 

the design space should be as large as possible by using as few design 

variables as possible. Since the main emphasis of this study is on how 

globally modification of the hull form of SUBOFF affect the resistance 

and manoeuvrability, the shifting method are utilized to generate new 

ship form based on design variables. 

 

The shifting method was first proposed by Lackenby (1950), and was 

extended with various forms. In the early shifting method, the hull 

modification is controlled by the section area curve which is a quadratic 

polynomial consisting of the prismatic coefficient, longitudinal center 

of buoyancy and parallel midbody position. Although the curve can be 

approximated to a certain extent, the hull form can only be modified by 

the above variables. Kim, Yang and Noblesse (2010) proposed to 

describe the section curve by spline polynomials, the new formulation 

consists of four variables that control the slope of the sectional area 

curve, the location of fixed station and the shifting range, this approach 

improves some flexibility, but still does not provide sufficient control 

over the section curve.  

 

In the present study, the section area modification curves constructed 

by B-Spline curves (Piegl, Les and Tiller, Wayne, 1997), which can 

control both the position and size of the modified function and the 

curvature of the fore and after part of the modified function are applied 

to the original hull section area curves (SAC), and then the new section 

area curves are used to obtain the new hull. The new formulation has 

been applied as follows: 
0

0 1 0 1 0 1( ) ( ) ( , , , ),     nf x f x g x x x x x = +                                  (1) 

 

where ( )nf x  denotes the new sectional area curve, 
0 ( )f x  represents 

the initial sectional area curve, 0 1 0 1( , , , )g x x       is a B-spline 

curve, which represents the modified function, 0x and 1x  represent the 

start and end points of the shifting range in x direction, 0x and 1x  

represent the position of the each end of curve, 0  and 1  represent 

the tangent angle of the each end of curve. Table 1 shows the variables 

for SAC modified function of run part and entrance part, the SAC of 

the initial hull and deformed hull is shown in Fig. 1. 

 

Table 1. Variables for SAC modified function 

 

 Run part Entrance Part 

Beginning 

0Rx  

End 

1Rx  

Beginning 

0Ex  

End 

1Ex  

Position 
0Rx  1Rx  0Ex  1Ex  

Tangent 

angle 
0R  1R  0E  1E  

 

 
Fig. 1 SAC comparison of the original and deformed hulls 

 

Design of Experiment 
 

In order to save the computational cost, the surrogate model will be 

built, before which the sample points need to be selected reasonably. 

The sample points can be obtained by the design of experiment, and an 

excellent design method can effectively reduce the number of 

simulation calculations. 

 

The Latin Hypercube Sampling (LHS) design method was proposed in 

1979 (Mckay M D, Beckman R J, Conover W J). LHS can sample 

points uniformly and randomly in the design space. The value range of 

each variable 1( , )nX x x=  is divided equally into n  parts, after 

which the 1n +  levels of each of these variables are arranged in 

random combinations to generate n+1 sample points, and each level of 

each variable is guaranteed to be used only once. Fig.2 gives the 

example of the sample points with 2 variables and 9 levels. 

 

 
Fig.2 The sample points with 2 variables and 9 levels 

 

Although the Latin Hypercube Sampling is able to provide full 

1091



 

coverage of the range of variables, it lacks uniformity and orthogonality 

in the design space for the distribution of sample points, and it is 

difficult to ensure the robustness of sampling quality with randomly 

combination. To address the shortcomings of LHS, Thomas M C (2002) 

and Morris M D, Mitchell T J (1995) improved the orthogonality and 

uniformity of the LHS, respectively, on the basis of which this study 

will improve the LHS using simulated annealing algorithm (Liu, Chen, 

Jin, Chen, 2011) to ensure that the sampling points are uniformly 

distributed throughout the design space, while taking into account the 

orthogonality so that the collection of experimental case can be a 

representative subset of the points in the hypercube of explanatory 

variables. 

 

Uniformity of design matrix is first studied. Fang, Lin, Winker and 

Zhang (2000) define a uniform design as one in which the sampling 

points are evenly distributed throughout the entire experimental region. 

The criterion used to measure the uniformity of the design matrix is the 

“Minimax and Maximin distance design” proposed by Johnson, Moore, 

Ylvisaker (1990).  

 

In this paper, the distance between two sample points, i.e., the distance 

between each column in the design matrix, is defined as Euclidean 

distance: 
1/2

2

1

( , ) ( ) ,1 , ,
m

i j ij ik jk

k

d x x d x x i j m i j
=

 
= = −    

 
                         (2) 

 

where ikx  and 
jkx  denote the level values on different columns of the 

design matrix. 

 

For a given design D , define a distance list 1 2( , , , )md d d d=  in 

which the element are the distinct values of distance, sorted from the 

smallest to the largest. Also, define an index list 1 2( , , )mJ J J J= , in 

which iJ  is the number of pairs of points whose distance satisfies id . 

 

In the following, in order to obtain a design criterion function with 

scalar values that can be used to obtain the distance characteristics 

between sampling points in design space, “Minimax and Maximin 

distance design (Mm)” criterion is introduced as follow: 

1/

1
min[ ]

s p p

p i ii
J d −

=
=                                                                 (3) 

 

where p  is a positive integer, for large enough p , each term in the 

sum in Eq. 3 dominates all subsequent terms, and so from any design 

class, the design that minimize   are the Mm designs in that class, we 

take 15p = . iJ  and id characterize the design D .  

 

Next, orthogonality of design matrix is discussed. Orthogonality is used 

to ensure independence among the coefficient estimates in a regression 

model. Ye (1998) construct orthogonal Latin hypercubes (OLHC) to 

enhance the utility of Latin hypercube designs for regression analysis, 

which is zero correlation for every pair of columns. In order to measure 

the degree of orthogonality, the maximum pairwise correlation of the 

columns of a design matrix is used. 

 

The correlation between two columns in a design matrix: 

1

2 2

1 1

( )( )

( ) ( )

n
i i j j

b b

b
ij

n n
i i j j

b b

b b

x x x x

x x x x

 =

= =

 − −
 

=

− −



 
                                                  (4) 

 

The maximum pairwise correlation of the columns measures the two 

most correlated columns in the matrix, that is: 

 max max ij
i j

 


=                                                                        (5) 

 

A value of 0  is the best (signaling orthogonality), and a value of 1 is 

worst (at least one column is a linear combination of the remaining 

columns), a design matrix will be classified as nearly orthogonal if it 

has a maximum pairwise correlation no greater than 0.03. Thus, by 

minimizing max  it is possible to control the correlation between 

columns to achieve nearly orthogonality. 

 

In order to create new designs that perform well in both orthogonality 

and uniformity, i.e., Optimal Latin Hypercube Sampling (OLHS), this 

study uses the simulated annealing (SA) algorithm to optimize 

orthogonality and uniformity on the basis of LHS. To reduce the 

burden of the SA algorithm as well as the time cost, an initial design 

matrix with good orthogonality is created using the Florian (1992) 

method. 

 

Firstly, a Latin Hypercube matrix R  is generated, each column R  of is 

replaced with the element’s rank ( 1,2,...,n ), within the column. Let 

ijT represent the Spearman rank correlation matrix of R : 

2

1

2

6 ( )

1
( 1)

n
i j

l l

i
ij

R R

T
n n

=

−

= −
−


                                                                 (6) 

 

The basic idea is to transform ijT  into a set of uncorrelated variates. A 

Cholesky factorization scheme is used (since ijT  is positive definite) to 

determine a lower triangular matrix L . Then, let 
1S Q−= and 

TT QQ=  such that S  has the property: 
TSTS I=                                                                                     (7) 

 

The original R  is then transformed into a new matrix newR : 

T

newR RS=                                                                                   (8) 

 

Since the element of the matrix newR  are not necessarily integral, the 

elements in each column are replaced by their rank order (1,2,...,n ), 

this process can be repeated. We do so until there is no further decrease 

in the maximum pairwise correlation. Finally, to reconstruct the Latin 

hypercube design matrix, the ordered rank in the final newR , i.e. LHDR  

are then mapped back into the original input variable values. In 

addition, in order to eliminate the effects of differences in the 

magnitude and range of values of different variables, the Z-Score 

shown in Eq. 9 needs to be applied to LHDR , mapping each row of the 

matrix to standard data with a mean of 0 and a standard deviation of 1. 

* x x
x



−
=                                                                                    (9) 

 

The OLHS is implemented on the basis of the Simulated Annealing 

(SA) algorithm, which generates new design matrix by column 

transformation. Because SA algorithm is sensitive to the choice of the 

initial solution, so the matrix with good orthogonality LHDR  is used as 

the initial solution for the OLHS, and the optimization criterion   is 

defined by combining Eq. 3 and Eq. 4. 
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maxmin  (1 )

      1 / 2n N

   



= − +

= −
                                                          (10) 

where max  is the maximum pairwise correlation of the columns,   is 

the Mm criterion,   is weight coefficient, n  is the number of current 

iterations, N  is the total number of iterations. 

 

In the initial stage of the SA algorithm, more weights are given to   in 

order to optimize the matrix uniformity, and later in the iteration to 

ensure that the matrix orthogonality does not degrade, the weights are 

increased toward max , and finally 0.5 =  ensures that both criteria 

are equally important. 

 

Optimization Algorithm 
 

The optimization algorithm performs the task of finding the optimal 

design in SBD technology. Since there may be more than one objective 

function in the optimization scheme, multi-objective optimization 

algorithms will be employed. In this study, the Multi-objective Particle 

Swarm Optimization (MOPSO) algorithm is chosen as the optimization 

algorithm. Besides, the constraint problem will be involved in the ship 

optimization process, so the Multi-objective Constrained Particle 

Swarm Optimization (MOCPSO) algorithm will be investigated. 

 

For multi-objective optimization problems, for non-dominated 

solutions that will be included in the Pareto optimal set, where the 

solution is unable to improve one of the objective values without 

weakening the other, thus at the end of the optimization we get a Pareto 

front, i.e., a set of optimal solutions. The detail of the theory of the 

MOPSO can be found in the reference related (Coello, Pulido and 

Lechuga, 2004). On this basis, the inertia weight and learning factors 

involved in the optimization process are modified in this study, and the 

mutation operator is added to make the algorithm easier to avoid local 

optimal in global optimization. 

 

In order to enhance the algorithm's search capability, dynamic 

parameters are used in the algorithm to set the inertia weights   and 

learning factors 1c 、 2c  in the velocity update formula (Eq. 11), 

according to Eqs. 12-14. The intention is to make the algorithm focus 

on global search (a social component) in the early stages and on 

individual search (a cognitive component) in the later stages, i.e., to 

search in the entire design space as much as possible in the early stages 

and to search more in the vicinity of the current optimal solution in the 

later stages to improve the accuracy. 
1 1 1

1 1 2 2( ) ( )k k k k

id id id id id idv v c r p x c r g x − − −= + − + −                                 (11) 

21 1
0.9 0.4 (2 ( ) )

t t

N N


+ +
= −   −                                                (12) 

2

1 0.5 3c  =  +                                                                     (13) 

2 14c c= −                                                                                  (14) 

 

where 
k

idv  denotes the d -th component of the velocity of the i -th 

particle at the k -th iteration, idp  denotes the optimal position in 

dimension d  searched by the i -th particle, idg  denotes the optimal 

position in dimension d  searched by the population. 1c  and 2c  are 

random numbers in the range [0,1] , t  is the number of current 

iterations, N  is the total number of iterations. 

 

In addition, to enrich the exploratory capability of the algorithm, the 

mutation operator is incorporated into the algorithm, and the mutation 

operator will try to explore with all the particles at the beginning of the 

search to fully search the design space, while decreasing the number of 

particles that affected by the mutation operator in the later stage to 

prevent weakening the optimal solutions already searched. The 

mutation rate is linearly reduced from 0.9 to 0.05 by Eq. 15, and all 

particles in the population are assigned a random number mp . If mp  is 

less than the mutation rate, the mutation is performed at a random 

position of the particle according to Eq. 16. 

 

0.9 (0.85 / )Pmutation N t= −                                                     (15) 
1( 1,1)k k k

id m id idx random p v x −= −    +                                           (16) 

where Pmutation  denotes the mutation rate,   is the parameter that 

accelerates the moving speed of particle, we take 3 =  

 

In this study, the constrained optimization problem will be solved by 

using the penalty function method, and the algorithm will become the 

Multi-Objective Constrained Particle Swarm Optimization (MOCPSO) 

algorithm. The objective function will consist of an original objective 

function, a penalty function and a penalty factor. 

 

The constrained optimization problem is defined as: 

min ( )

. . ( ) 0,  1, ,i

f x

s t g x i m




 =
                                                            (17) 

 

The penalty function method transforms the objective function into: 

2

1

min ( ) ( ) [max{0, ( )}]
m

i

i

F x f x g x
=

= + −                                      (18) 

where ( )f x  denotes the original objective function,   is the penalty 

factor, ( )ig x  denotes the constraints. 

 

Hydrodynamic Performance Evaluation 

 

Hydrodynamic performance evaluation plays an important part in the 

SBD technique. After obtaining sample points through OLHS, the 

commercial CFD program, STAR-CCM+ is used to evaluate the 

resistance and maneuverability of the submarine.  

 

The governing equations is Reynolds-averaged Navier-Stokes(RANS) 

equations, and K Epsilon−  model  and   kSST −   model were  

selected  as  the  turbulence  model for surface and underwater 

simulation respectively. DFBI (Dynamic Fluid Body Interaction) was 

used for the motions of the SUBOFF with rudders. We can get pressure 

distribution of the hull, resistance of the hull, wave height along the 

hull and wave elevation of the free surface, etc. 

 

In order to prove the accuracy of the CFD computations, we compared 

the CFD results of submerged resistance evaluation with the 

experimental results (Huang and Liu, 1998), as shown in Table 2. 

 

Table 2 Comparison of CFD and experimental resistance results 

 

Model speed 
1/mV m s−  

CFD 

/N 

Experiment 

/N 

Error 

/% 

3.051 102.30 102.3 0 

5.144 280.56 283.8 1.14 

6.096 382.46 389.2 1.73 

7.161 523.86 526.6 0.52 

8.231 675.94 675.6 0.05 

9.152 820.11 821.1 0.12 
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As can be seen from the Table 2, the error of CFD simulation results 

compared with the experiment are less than 2%, which is enough to 

prove the accuracy of CFD computations. 

 

Surrogate Model Construction 

 

After the design of experiment and hydrodynamic performance 

evaluation are completed, the surrogate model can be constructed, 

which can save the computational cost. The surrogate model can 

replace the hydrodynamic evaluations required for each iteration of the 

optimization algorithm by finding a strong nonlinear relationship 

between the design variables (input) and the objective function (output). 

 

The Kriging model is an unbiased estimation model that minimizes the 

estimation variance, which has high prediction accuracy for highly 

nonlinear problems and guarantees that the predicted values pass 

through the sample points. In this study, the Kriging model will be 

chosen as the surrogate model, the main idea of Kriging model can be 

seen in the article of Liu, Wang, and Wan (2018). 

 

HULL FORM OPTIMIZATION CASE 

 

Objective Function 

 

The initial ship used in this paper is SUBOFF model of the Defense 

Advanced Research Projects Agency (DARPA) SUBOFF project, the 

model includes an axisymmetric body, fairwater, symmetric stern 

appendages, whose two views are given in Fig. 3, and the main 

dimension of the model are listed in Table 3. 

 

Table 3. Main dimensions of SUBOFF model 

 

Overall Length 

OAL /m 4.356 
Forebody Length 

foreL /m 1.016 

Parallel Middle 

Body Length  

palL /m 
2.229 

Afterbody Length 

aftL /m 1.111 

Maximum Body 

Diameter 0Rx /m 0.508 
Stern appendages 

locations 0Rx /m 4.007 

Wetted Area 

0Rx /m2 5.989 
Volume  

0Rx /m3 0.699 

 

 

 
 

Fig. 3 Two views of SUBOFF 

 

In this paper, we discuss the surface and underwater resistance of the 

SUBOFF model as well as the tactical turning diameter underwater, 

thus the objective functions and the constrains of the optimization 

problem are shown in Eq. 19. 

 

1

2

3

'

'

( ) min{ _ }, 1.050 /

min ( ) min{ _ }, 6.096 /

( ) min{ }, 3.05 / , 10

   1% 1%

int

1% 1%

t m

t m

T m

f x R suf V m s

f x R sub V m s

f x D V m s

constra s
LCB LCB

LCB



= =


= =
 = = = 

  − 
−  

 


−−  


                               (19) 

 

where _tR suf  and _tR sub  denote the surface and underwater 

resistance respectively, TD  represents the tactical turning diameter,   

is the rudder angle, '  and   denote the displacement of initial and 

optimal model respectively, 
'LCB  and LCB  denote the longitudinal 

center of buoyancy of initial and optimal model respectively. 

 

Design Variables and Hull Form Deformation 

 

From the theory of hull form deformation above, we need to identify 

eight design variables and four fixed variables. To ensure the 

smoothness of the SAC and the model, the 1Rx  and 1Ex  are set to 

zero. The twelve variables are listed in Table 4. 

 

Table 4. Optimization design variables 

 

 Run part Entrance Part 

Beginning 

0Rx /m 

End 

1Rx /m 

Beginning 

0Ex /m 

End 

1Ex /m 

 3.245 4.138 1.016 0.218 

Position 
0Rx /m 1Rx /m 0Ex /m 1Ex /m 

Range [ 5%,5%]−
OAL  0 [ 5%,5%]−

OAL  0 

Tangent 

angle 
0R /° 1R /° 0E /° 1E /° 

Range [ 30,30]−  [ 10,10]−  [ 30,30]−  [ 10,10]−  

Note: The origin of the coordinate system is located at the end of the 

bow.  

 

Design of Experiment 

 

Based on the theory of OLHS above, 50 sample points with 6 design 

variables (design variables have been normalized to avoid the influence 

of different dimensions) were generated for 50 new hull form which are 

uniformly distributed in the design space at first. And then the 

orthogonality and uniformity of design matrix were optimized by using 

the simulated annealing (SA) algorithm. The optimized values of the 

four criterions set for design matrix are shown in Table 5, and the 

optimization process of the four criterions values is shown in Fig. 4.  

 

As can be seen from the Table 5, the maximum pairwise correlation of 

the columns max  has been lower than 0.03 after the initialization of 

matrix with good orthogonality and reduced by 0.003 after optimization, 

so it has met the requirement of near-orthogonality ( max 0.03  ); the 

minimal distance between test points mind  has increased by 83.7%, so 

the uniformity criterion has been reduced by 36.6%. Finally, the 

optimization criterion   has been reduced by 34.3%. 

 

 

 

 

1094



 

Table 5 The initial and optimized criterions 

 

Criterion Initial Optimized 

max  0.028 0.025 

mind  0.892 1.639 

p  0.574 0.364 

  0.574 0.377 
 

  
(a)  Optimization of max                  (b) Optimization of mind  

 
(c)  Optimization of p                  (d) Optimization of   

Fig. 4 The optimization process of the criterions 

 

Optimization Results and Analysis  
 

After evaluating the hydrodynamic performance of the new hull forms 

for resistance and maneuverability, the Kriging surrogate model can be 

constructed. The results for the 50 new hull forms are shown in Figs. 

5~7, the green straight line represents the baseline design result, and all 

the sample values show in the fig.5-7 are only used to build the Kriging 

surrogate model..  

 

 
Fig.5 Surface resistance of 50 new hull forms 

 

 
Fig.6 Underwater resistance of 50 new hull forms 

 

 
Fig. 7 Tactical turning diameter of 50 new hull forms 

 

After construction of Kriging surrogate model, the MOCPSO algorithm 

can be used to optimize the resistance and manoeuvrability of SUBOFF 

model. The parameters of the MOCPSO are shown in Table 6, the 

pareto front is shown in Fig.8.  

 

Table 6 The parameters of MOCPSO 

 

Learning factor 1c  2.0 Learning factor  2c  2.0 

Max Inertia weight 

max  0.9 
Min Inertia weight 

min  0.4 

Number of iterations 

maxk  500 Particles number M  100 

Number of grid 

subdivisions 
10 Pareto set threshold 100 

 

 
Fig. 8 Pareto front 
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Three typical optimal hulls are selected from the Pareto front for 

different principles, and their design variables are shown in Table 7, the 

comparisons of resistance and tactical turning diameter between initial 

and optimal hull forms are shown in Table 8. The wave elevations and 

underwater pressure distribution of initial and optimal hull form are 

shown in Fig. 9~10. In addition, the optimization results are all 

come from changes to the baseline suboff model. 
 

Table 7 Design variables of the optimal hull 

 

Design 

variables 
Range Opt 1 Opt 2 Opt 3 

0RX  [-0.2178, 0.2178] 0.120  0.176  -0.083  

0EX  [-0.2178, 0.2178] 0.216  -0.087  -0.022  

1R  [-10, 10] -7.3 -0.57 -0.55 

0R  [-30, 30] 9.9 15.5 -15.28 

0E  [-30, 30] -17.1 2.61 0.71 

1E  [-10, 10] -8.1 0.12 3.21 

 

Table 8 Comparison of resistance and tactical turning diameter 

 

  Initial Opt 1 Opt 2 Opt 3 

_tR suf  
Value /N 18.38 15.89 17.36 19.5 

_tR suf  / -13.50% -5.50% +6.09% 

_tR sub  
Value /N 382.46 383.34 378.33 384.2 

_tR sub  / -0.20% -1.10% +0.50% 

TD  
Value /m 9.748 10.13 10.13 9.64 

TD  / +3.92% +3.92% -1.11% 

 

 

 

 
Fig. 9 Comparison of wave elevations 

 

 

 

 
 

Fig. 10 Comparison of underwater pressure distribution 

 

As can be seen from the results, the Opt 1 hull has the best surface 

resistance performance, the Opt 2 hull has a largest decrease of the 

underwater resistance, but these two optimal hulls have poor 

performance in maneuverability. On the contrary, the Opt 3 hull have 

the smallest tactical turning diameter but does not perform well in 

resistance. The hydrodynamic performance of the above three optimal 

hull is consistent with what we know about the inconsistent 

optimization trend of resistance and maneuverability. Therefore, a 

comprehensive objective function design for different requirements is 

needed in the submarine design. 

 

CONCLUSIONS 

 

The SUBOFF submarine model is adopted as the initial hull form 

whose objective function are the surface resistance, underwater 

resistance and tactical turning diameter. The shifting method are 

utilized to generate new hull form based on design variables, the 

sample points with good orthogonality and uniformity are obtained by 

using Optimal Latin Hypercube Sampling method. After evaluating the 

hydrodynamic performance of samples, the Kriging model is 

constructed. Finally, the Multi-objective Constrained Particle Swarm 

Optimization algorithm is used to get the Pareto front, three typical 

optimal hull forms are selected, and show that different requirement for 

resistance and maneuverability will influence optimal trend to a great 

extent, which provides a reference for future submarine design work. 
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