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ABSTRACT 

 

This paper presents a comparative study of different surrogate models, 

i.e. the Kriging and artificial neural network (ANN), in the optimization 

design of a floating offshore wind turbine (FOWT) platform. In order to 

solve the contradiction between the hydrodynamic performance of 

FOWT platforms and their steel consumption, this paper proposes a 

lightweight optimization design method based on surrogate models 

coupled with the multi-objective genetic method. Firstly, a sample set is 

constructed by Sobol sequential sampling, and the numerical simulation 

of the sample set is carried out using the potential flow method to obtain 

the hydrodynamic response of the FOWT platform in the sampling space. 

Then, two different surrogate models, i.e. a Kriging model and a 

multilayer perceptron (MLP) model are developed, and the models are 

trained using the structural parameters of the FOWT platform as inputs, 

while the outputs include the hydrodynamic response and the quantity of 

steel utilized in the platform. The two-parameter Pareto frontier solutions, 

i.e. the hydrodynamic response and steel consumption, are obtained 

using the established surrogate models by utilizing a multi-objective 

genetic algorithm. Both of the solution exhibit reasonable trends along 

the input parameters. The results from the two different surrogate models 

are then compared and their differences are discussed. 

 

KEY WORDS: Surrogate Model; Multi-objective optimization; 

Floating Offshore Wind Turbine 
 

 

INTRODUCTION 

 

As the global demand for renewable energy grows, the development of 

offshore wind is spreading from shallow to deep-sea. High costs of 

traditional fixed offshore turbine bases in deep-sea have prompted the 

industry to seek more cost-effective solutions. Floating offshore wind 

turbines have become an industry consensus due to their advantages in 

developing deep-sea wind resources. Floating wind turbine 

commercialization faces challenges, chiefly cost. Optimizing the overall 

steel consumption can reduce construction costs and enhance project 

competitiveness, which is significant both theoretically and practically. 

The computation of the hydrodynamic response of floating wind turbine 

platforms is generally performed using either potential flow theoretical 

methods that do not take fluid viscosity into account (Li et al., 2018) or 

computational hydrodynamics methods that do take into account fluid 

viscosity (Liu et al., 2017)(Wang et al., 2022), both of which involve 

iteratively solving the expression of a set of linear equations for some 

primitive system of partial differential control equations. Therefore, even 

the potential flow methods, which are already significantly less 

computationally intensive than the computational fluid dynamics 

methods, the computational resources required for their direct use in the 

optimal design of floating wind turbine floater structures are usually 

unaffordable. Therefore, scholars generally need to use some kind of 

surrogate model for the optimization problem which is less accurate than 

solving the partial differential equation system directly but with 

substantially higher solving efficiency, and this kind of method for 

solving the optimization problem is known as surrogate model 

optimization method(Han, 2016). 

Wang et al.(2018) used the Kriging method, which is commonly used in 

constructing surrogate models, to calculate the data points required for 

the construction of the surrogate model using the nonlinear potential flow 

theory and the three-dimensional frequency-domain surface element 

method, and then combined with the non-dominated sequential genetic 

algorithm (NSGA-II) to carry out a multi-objective optimization for the 

wave making resistance, vertical and longitudinal oscillation motion 

amplitudes. The optimization results are compared with those obtained 

from a high-precision computational fluid dynamics model to verify their 

reliability. Liu et al.(2020)  proposed a reliability optimization strategy 

based on a dynamic surrogate model to ensure global approximation 

accuracy and computational efficiency in the traditional reliability-based 

design optimization of ship structures . The optimization results show 

that the method can effectively reduce the calculation cost while 

obtaining the global optimal solution of the analysis model. Zhang et 

al.(2020) constructed the mapping relationship between the total body 

mass and the first-order torsional modes through the 3rd-order response 

surface proxy model, and combined with the multi-objective particle 

swarm algorithm to optimize the dimensions of the key body-in-white 
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parts, so as to design the lightweight body-in-white total mass, and the 

data used for the construction of the proxy model in this study are from 

the finite element numerical calculation. The final optimization results 

in a mass reduction of 11.5kg. Du Wenjie et al.(2023) developed a radial 

basis function neural network model to establish a nonlinear mapping 

relationship between artificial seabed design parameters and drag forces, 

utilizing data derived from computational fluid dynamics (CFD) 

simulations for neural network training. Subsequently, by integrating a 

multi-objective genetic algorithm, they optimized the design parameters 

of the artificial seabed. The optimization results demonstrated that the 

refined design exhibited significant improvements in key performance 

metrics such as drag force reduction, structural mass minimization, and 

metacentric height enhancement compared to the initial design 

configuration. Kang et al.(2024) took a direct sea-river vessels as the 

research object, and used artificial neural network combined with 

oversampling technology to construct a surrogate model of ultimate limit 

state for ship hull compartment structure, and then combined with the 

simulated annealing algorithm to optimize the design of the hull section 

structure, and the optimized structure resulted in the weight reduction of 

the hull section by 3.199%.  

The afore-mentioned research has already applied surrogate models to a 

variety of optimization problems. However, there are still few instances 

of their application in the support platforms of floating wind turbines. 

Nevertheless, as floating wind turbines venture into deeper and more 

remote seas, the size of their floating platforms markedly increases in 

tandem with the length of the blades. Consequently, the conflict between 

their hydrodynamic response and manufacturing cost becomes 

increasingly acute. 

In the present work, our goal is to proposes a lightweight optimization 

design method based on surrogate models coupled with the multi-

objective genetic method. This paper first derives the formula for 

calculating the steel consumption of a floating wind turbine foundation. 

Then, it selects relevant design variables and uses Sobol sequence 

sampling to design examples. The hydrodynamic response of the floating 

platform is calculated using potential flow theory. Subsequently, using 

the obtained numerical results, a Multi-Layer Perceptron (MLP) artificial 

neural network and a kriging model is employed to establish a neural 

network mapping relationship between the design variables and the 

overall steel consumption and hydrodynamic response of the floating 

platform, thereby obtaining a steel consumption prediction neural 

network surrogate model. Finally, in combination with NSGA-II, a 

multi-objective genetic algorithm, the steel consumption of the floating 

wind turbine platform is optimized, and the Pareto optimal front is 

obtained. 

 

 

METHODS 
 

Hydrodynamic Response and Steel Consumption Calculation of 

Floating Wind Turbine Platforms 

 

This paper presents an optimization design for a floating wind turbine 

platform, which consists of three cylindrical vertical columns, with 

circular heave plates attached to the bottom of the columns. The 

structures are interconnected by circular hollow struts, as shown in the 

figure below. To account for the interference between the mooring lines 

and the power cables, the outer side of the heave plate is subjected to 

edge trimming. 

 

The optimized structural parameters are the radius of the vertical 

columns, the radius of the heave plates, and the width of the lower 

connecting beams. The optimization objectives are the steel consumption 

of the platform structure and the heave angle of the hydrodynamic 

response. 

 
Figure 1. A three-column floating wind turbine platform model 

 

To achieve lightweight design of floating wind turbine platforms, this 

paper introduces a method to quickly estimate steel quantity and 

structural parameters using equivalent plate thickness. The plate 

thickness for each platform section is determined from the original 

platform’s main model parameters. A new sample platform shell model 

is built with 3D modeling software to calculate the steel consumption, 

center of gravity, and moment of inertia under empty conditions. 

Additionally, the ballast water height in each compartment can be 

adjusted as per design needs, allowing for the calculation of the 

platform's overall center of gravity and displacement.  

 

 
 

Figure 2. Calculation Process for Steel Usage of the New Sample 

Platform 

 

 

Kriging Model and Multi-layer perceptron (MLP) 

 

The MLP structure includes an input, output, and multiple hidden layers, 

adaptable to different problems. Networks with several hidden layers are 

deep networks. The input layer's size matches the number of design 

variables, and the output layer's size matches the number of target 

variables. This MLP model, as shown in Fig.3, is primarily designed for 

prediction tasks. 

 
Figure 3. MLP Architecture Schematic Diagram 
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The MLP consists of fully connected layers, activation layers, and 

regularization layers. 

 

Optimization Algorithm 

 

Non-dominated Sorting Genetic Algorithm (NSGA-II) was proposed 

and improved(Deb et al., 2002).It is an optimization algorithm that 

simulates biological evolution. This algorithm utilizes a non-domination 

sorting method, which increases the likelihood of superior individuals 

being passed on to the next generation and reduces the complexity during 

the optimization iteration process. As a powerful and widely applied 

global optimization method, NSGA-II is one of the most influential 

optimization methods today. 

 

DATASET PREPARATION 

 

Sampling method 

 

This paper is based on Sobol sequences for sampling, which are 

sequences with the smallest prime number 2 as the base, characterized 

by uniform distribution and rapid convergence. A random number 

𝑋𝑖(0 < 𝑋𝑖 < 1) can be expressed as 

𝑋𝑖 = 𝑖1𝑉1 ⊕ 𝑖2𝑉2 ⊕⋅⋅⋅ 𝑖 = (⋅⋅⋅ 𝑖3𝑖2𝑖1)2 

Where 𝑉𝑖 represents the direction numbers: 

𝑉𝑖 =
𝑚𝑖

2𝑖
 𝑖 = 1,2,⋅⋅⋅, 𝑛  

𝑉𝑖 = 𝑎1𝑉𝑖−1 ⊕ 𝑎2𝑉𝑖−2 ⊕⋅⋅⋅⊕ 𝑎𝑛−1𝑉𝑖−𝑛+1 ⊕ 𝑉𝑖−𝑛

⊕ [𝑉𝑖−𝑛/2𝑛]                      (𝑖 > 𝑛) 

 

𝑎1, 𝑎2,⋅⋅⋅, 𝑎𝑛−1 = {0,1} are related to 𝑚1, 𝑚2,⋅⋅⋅, 𝑚𝑛 as follows: 

𝑚𝑘 = 2𝑎1𝑚𝑘−1 ⊕ 22𝑎2𝑚𝑘−2 ⊕⋅⋅⋅⊕ 2𝑛𝑎𝑛𝑚𝑘−𝑛

⊕ 𝑚𝑘−𝑛                   (1 ≤ 𝑘 ≤ 𝑛) 

 

Sampling Result 

 

Within the sample space where the column radius [5.5m，9m] , the 

heave plate radius [10m，16m], and the lower connecting beam width 

[4m，8m] , 42 sample points are selected as shown in the figure. 

 
Figure 4. Based on Sobol Sequence Sampling Results 

 

 

CONSTRUCTION OF SURROGATE MODEL 

 

Dataset Classification 

 

The complete dataset consists of 42 sample points, and the model will be 

trained by utilizing the first 36 points while the last 6 points is reserved 

for testing purposes.  

 

 

Construction of Kriging Model 

 

The process of establishing an Kriging model using can be represented 

as a stochastic process: 

𝑦(𝑥𝑖) = 𝜇 + 𝜀(𝑥𝑖) 

In the equation, 𝜇 represents the mean of the stochastic process, and 

𝜀(𝑥𝑖) is a random variable used to approximate local deviations, which 

is normally distributed as 𝑁(0, 𝜎2), with a non-zero covariance value. 

The correlation of the deviation can be expressed as: 

𝐶𝑜𝑟[𝜀(𝑥𝑖), 𝜀(𝑥𝑗)] = 𝜎2𝑅([𝐶𝑜𝑟𝑟[𝜀(𝑥𝑖), 𝜀(𝑥𝑗)]) 

[𝐶𝑜𝑟𝑟[𝜀(𝑥𝑖), 𝜀(𝑥𝑗)] = exp[ − 𝑑(𝑥𝑖 , 𝑥𝑗)] 

𝑑(𝑥𝑖 , 𝑥𝑗) = ∑ 𝜃ℎ |𝑥ℎ
(𝑖)

− 𝑥ℎ
(𝑗)

|
𝑃ℎ

𝑘

ℎ=1

(𝜃ℎ ≥ 0, 𝑃ℎ ∈ [1,2]) 

A series of observations can be used to construct an n-dimensional vector 

I, and the likelihood estimation function can be expressed as: 

1

(2𝜋)𝑛/2(𝜎2)𝑛/2|𝑅|1/2
exp[−

(𝑦 − Ι𝜇)′𝑅−1(𝑦 − Ι𝜇)

2𝜎2
] 

After specifying the parameters 𝑃ℎ and 𝜃ℎ, the values of 𝜇 and 𝜎2 can be 

obtained by solving the maximum likelihood function: 

 

𝜇̂ =
Ι′𝑅−1𝑦

Ι′𝑅−1Ι
 

𝜎̂2 =
(𝑦 − Ι𝜇̂)𝑇𝑅−1(𝑦 − Ι𝜇̂)

𝑛
 

 

For any numerical fitting prediction point x*, let r denote its n-

dimensional correlation vector with all sample point error terms: 

𝑟𝑖(x∗) = 𝐶𝑜𝑟𝑟[𝜀(x∗(𝑖)), ε(x∗(𝑗))] where 𝜀(x∗(𝑖)) 𝑎𝑛𝑑 ε(x∗(𝑗))  are the 

error terms for the 𝑖 − 𝑡ℎ and 𝑗 − 𝑡ℎ sample points, respectively. The 

response value and variance of the prediction point can be obtained as 

follows: 

 

𝑦(x∗) = 𝜇̂ + 𝑟′𝑅−1(𝑦 − Ι𝜇̂) 

s2(x∗) = 𝜎2[1 − 𝑟′𝑅−1𝑟 +
(1 − Ι′𝑅−1𝑟)2

Ι′𝑅−1Ι
] 

 

 

Construction of ANN 

 

This paper will focus on the impact of different inflow conditions on the 

wake of wind turbines, and therefore sets up the following four cases in 

Table 2 for discussion and study. The MLP network model used in this 

paper is a custom architecture designed based on a fully connected 

network, which is widely used for a wide variety of tasks. In this paper, 

the design variables are the width of the lower connecting beam, the 

radius of the heave plate, and the radius of the column, while the 

platform's steel consumption and the maximum pitch angle are the 

objective variables.  

Firstly, normalize the input data through the following equation to 

enhance the training efficiency of the neural network: 

 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =  
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

 

The main components in the network are: the fully connected nonlinear 

layer, dropout layer, and output layer. The activation function for the 

MLP networks is set to be “tanh”. The specific neural network 

parameters are shown in the following table.  
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Table 1. MLP Artificial Neural Network Parameters Table 

Layer 
Input 

Shape 

Output 

Shape 

Trainable 

Parameters 

Activation 

Function 

FC1 3 32 99 tanh 

Dropout     

FC2 32 32 1056 tanh 

Dropout     

FC3 32 32 1056 tanh 

FC4 32 1 32 tanh 

 

 

All the training is performed by using the machine-learning package 

Pytorch. The “Adam” algorithm is adopted as the optimizer with a 

learning rate of 0.0001 to train the ANNs, and the mean-square error 

(MSE) is selected as the loss function to be minimized in the training 

processes. Explained as follows. 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑁

𝑖=1

 

Train the two MLP networks separately to obtain the loss curves, which 

are shown in the figures below. 

 
Figure 5. Steel Consumption Loss Curve 

 

 
Figure 6. Maximum Pitch Angle Loss Curve 

 

After training, the loss function curves for both steel consumption and 

maximum pitch angle have converged. 

 

 

OPTIMIZATION 

 

During the iteration of the optimization algorithm, in order to generate 

more effective samples and evolve the offspring sample group in the 

desired direction, it is necessary to constrain the objective function. The 

constraints are shown in the table below: 

 

Table 2. Optimization Constraints 

Constraints  

 

Constraint Parameters 

 

Lower Connecting Beam Width [4m, 8m] 

Column Radius [10m, 16m] 

Steel Consumption [5500000t, 9000000t] 

 

The proposed optimization strategy is offline, all the training data are 

generated upfront using Sobol sampling and numerical simulations 

(potential flow theory). The Kriging and ANN models are 

trained once on this precomputed dataset. No real-time updates or 

iterative data collection occur during optimization. The NSGA-II 

algorithm operates entirely on the pre-trained surrogate models, 

requiring no additional simulations or experimental data during Pareto 

frontier exploration. 

In the genetic algorithm, after 2000 iterations, 10,000 design sample 

points were obtained. The Pareto front solutions are plotted in the figure 

below. The horizontal coordinate represents the steel consumption of the 

floating wind turbine, and the vertical coordinate represents the pitch 

angle. The red dots in the figure represent the Pareto front solutions 

obtained by the optimization method proposed in this paper, the blue dots 

represent the original sample points, and the cross marks represent the 

training sample points, which correspond to the dataset shown in Figure 

7. It can be seen that the trend of the solutions obtained based on the 

artificial neural network is reasonable. 

 
 

Figure 7. NSGA-Ⅱ Optimization Result 

 

Direct optimization using high-fidelity simulations is computationally 

prohibitive. For example, a single hydrodynamic simulation might take 

4–6 hours, and optimizing with 1,000 iterations would require 4,000–

6,000 CPU hours. Surrogate models (Kriging/ANN) reduce 

computational cost by 90–95% after initial training. 

 

 

CONCLUSIONS 

 

This paper takes the base platform structure of floating wind turbines as 

the research subject and proposes an optimization strategy based on 

artificial neural network surrogate models, applying it to the lightweight 

design of floating wind turbine base platforms. The paper first derives 

the formula for calculating the steel consumption of floating wind turbine 

foundations, then selects relevant design variables, uses Sobol sequence 

sampling for design examples, and calculates the hydrodynamic 

response of the floating platform using potential flow theory. 

Subsequently, using the obtained numerical results, two surrogate model 
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i.e. a kriging model and a multi-layer perceptron artificial neural network 

is to establish a neural network mapping relationship between the design 

variables and the overall steel consumption and hydrodynamic response 

of the floating platform, thus obtaining a steel consumption prediction 

neural network surrogate model. Finally, combining multi-objective 

genetic algorithms, an optimization study on the steel consumption of the 

floating wind turbine platform is conducted, yielding Pareto optimal 

front solutions. The trends of these solutions are reasonable, verifying 

the feasibility of the proposed optimization method. The proposed 

surrogate-based strategy effectively balances computational efficiency 

and accuracy, enabling rapid identification of cost-performance trade-

offs. This approach advances FOWT design by reducing material costs 

while maintaining hydrodynamic integrity, directly supporting the 

offshore wind industry’s transition to deep-water deployments. Future 

work will integrate high-fidelity CFD corrections and multi-physics 

constraints to enhance robustness. 
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