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ABSTRACT 

 

The offshore wind power industry has developed significantly, with 

growing attention on floating offshore wind turbines (FOWTs) to 

harness wind energy resources in deep-sea regions. Predicting the wake 

structure of FOWTs is crucial for optimizing wind farm layouts, 

forecasting annual energy production, and enhancing overall wind farm 

efficiency. The additional motions of floating platforms introduce 

complex dynamics that substantially affect wake characteristics, 

making the wake structure more intricate and difficult to predict. This 

study uses Large Eddy Simulation (LES) coupled with the Actuator 

Line Model (ALM) to simulate the wake flow field of FOWTs under 

various wave conditions and analyzes the correlation between the wake 

structure, wave conditions, and motion responses. The results show that 

the velocity of the platform motion recovers in the accelerated wake 

region. Then, models are trained using simulation data, guided by 

physics, to predict the wake flow field of a FOWT under varying wave 

conditions. The models are validated against numerical data, 

demonstrating their ability to accurately predict the wake field. This 

study provides a potential solution for the rapid prediction of the 

FOWT wake flow field. 

 

KEY WORDS:  floating offshore wind turbine; wake prediction; 

graph neural networks; large eddy simulation.  

 

INTRODUCTION 

 

The wake effect can result in power losses in wind farms, with 

reductions of up to 40% (Fei et al., 2020). It also increases the fatigue 

loads on downstream wind turbines, thereby further impacting the 

overall power generation efficiency and operational costs. In recent 

years, floating offshore wind turbines (FOWTs) have garnered 

increasing attention due to their potential to harness the abundant wind 

energy resources in deep-sea areas (Chitteth Ramachandran et al., 

2022). Compared to fixed-bottom wind turbines (FBWTs), FOWTs are 

installed on floating platforms and are subjected to wind, current, and 

wave loads, resulting in six degrees of freedom (DOF) motion, 

including surge, sway, heave, roll, pitch, and yaw. These motions 

enhance the mixing between the wake and the atmospheric boundary 

layer turbulence, thereby influencing the wake distribution 

(Ramos‐García et al., 2022). Since the directions of wind, wave, and 

current loads are often closely aligned in real-world conditions, surge 

and pitch typically dominate the platform's motion and have garnered 

the most attention in related research (Subbulakshmi et al., 2022).  

The study of FBWTs has progressed over several decades, yielding 

numerous well-established findings (Wang et al., 2024). As a result, 

much of the research on the wake prediction of FOWTs has been 

conducted based on the foundational understanding developed for 

FBWTs. Analytical wake models, such as Jensen model (Jensen, 1983) 

and Gaussian model (Bastankhah and Porté-Agel, 2014), are commonly 

used for wake prediction. Building upon these models, some 

researchers have developed analytical wake models specifically suited 

for FOWTs. Zhang et al. (2024) developed a 3D-OFWT wake model 

suitable for FOWTs through theoretical derivations based on the 3D 

Jensen-Gauss model. Zhang et al. (2024) proposed an analytical wake 

model specifically designed for pitch motion, building upon the Gauss 

model. Analytical wake models offer exceptionally high computational 

efficiency for predicting wind turbine wakes but are relatively limited 

in accuracy. Computational Fluid Dynamics (CFD) methods, including 

Large Eddy Simulation (LES) and Reynolds-Averaged Navier-Stokes 

(RANS), can provide comprehensive and highly accurate wake field 

data but come at the cost of significantly increased computational 

resources. Huang et al. (2023) investigated the wake interference 

between two FOWTs under different layouts using LES combined with 

the Unsteady Actuator Line Model (LES-UALM). Xu et al. (2024) 

employed LES-UALM to study the wake characteristics and 

aerodynamic responses of FOWT in atmospheric boundary layer 

conditions. Although CFD methods can provide high-accuracy data, 

their substantial computational costs make them challenging to apply 

on a large scale for wake prediction. Moreover, the simulation of 

FOWTs must account for wave conditions, which significantly 

amplifies computational demands. Achieving high-accuracy data while 

maintaining computational efficiency has become a significant 

challenge in this area of research. 

The development of machine learning (ML) methods offers new 

possibilities for addressing this challenge. Many researchers have 

already applied these methods to the study of offshore wind turbines 

and demonstrated their feasibility (Masoumi, 2023). Machine learning 
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models can "learn" complex flow features from data, and they provide 

fast computational speed during the inference stage, making them 

highly suitable for tasks such as multi-parameter sensitivity analysis 

and rapid prediction. Purohit et al. (2022) compared the applicability of 

Support Vector Regression (SVR), Artificial Neural Networks (ANN), 

and Extreme Gradient Boosting (XGBoost) for predicting wind turbine 

wakes, using CFD-based datasets to train and validate their models. Li 

et al. (2023) utilized high-fidelity CFD simulation data to develop a 

Graph Neural Network (GNN) surrogate model, demonstrating that 

GNN can effectively capture complex flow features in wind turbine 

wakes. Furthermore, many researchers have integrated physical 

information or guidance into machine learning methods to better study 

physical phenomena, enhance training efficiency, and improve model 

credibility (Guo et al., 2022; Li et al., 2024; Gafoor Ctp et al., 2025).  

Combining machine learning with CFD-derived training data thus 

provides a promising approach to balancing accuracy and 

computational efficiency in wind turbine wake prediction. However, 

most existing studies focus on FBWTs, and efficiently and accurately 

predicting the wakes of FOWT remains an area requiring further 

investigation. To address this research gap, this study combines CFD 

with ML to achieve accurate and efficient predictions of FOWT wakes. 

The LES coupled with the Actuator Line Method (ALM) is employed 

to generate training data, while GNNs are utilized for wake prediction. 

Physical guidance is incorporated during the training process to 

enhance the models’ rationality and efficiency. Finally, the results of 

the models are analyzed and validated. 

 

METHODOLOGY 

 

Large Eddy Simulation 
 

The governing equations for LES, which account for the forces exerted 

by the wind turbine, Coriolis effects, and buoyancy, are as follows: 
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where, the overbar denotes the spatially resolved components; t  is 

time; u  is the wind velocity; 0 is the reference air density; 
D

ij  is the 

deviatoric part of the wind stress tenor; iF  represents the force exerted 

by the FOWT, which is calculated using ALM; g  is the gravitational 

acceleration; 
ijk  is the alternating unit tensor;   is the resolved 

potential temperature; 0  is the reference temperature, set at 300 k; 

3i  is the Kronecker delta; f  is the Coriolis parameter; and p̂  is the 

modified pressure, defined by 0
ˆ ( ) / / 3kkp p p gz  = − + + , 

where, p  is the mean pressure; and 0p  is the static pressure. 

The subgrid-scale model uses the Smagorinsky model (Smagorinsky, 

1963). Based on this model, 
D

ij  is defined as 
22( ) | |D

ij s ijc S S = −  , 

where, sc  is the Smagorinsky constant; 

( / / ) / 2ij i j j iS u x u x=   +    is the strain rate tensor after 

filtration; and | | 2 ij ijS S S=  is the norm of the strain rate tensor. 

Further details on the governing equations can be found in Churchfield  

et al (2012). 

 

 

Actuator Line Model 
 

In CFD methods, directly modeling the blades of a wind turbine 

increases grid complexity and significantly consumes computational 

resources. Therefore, in studies of wind turbine wakes, blades are 

typically not modeled directly; instead, surrogate models are used to 

improve computational efficiency. The ALM is a widely used surrogate 

model (So̸rensen and Shen, 2002). Its primary concept is to introduce a 

body force term into the governing equations to simulate the influence 

of the wind turbine on the flow field. This method simplifies the real 

turbine blades into a line composed of multiple actuator points. The 

body forces at these actuator points are calculated using blade element 

theory, with the corresponding formula as follows: 
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where, relU  is the relative wind speed; L and D represent the lift and 

drag forces, respectively;   is the air density; c is the chord length; dr 

is the width of the blade element; LC  and DC  are the lift and drag 

coefficients, respectively; and Le
r

 and De
r

 are the unit vectors of lift 

and drag, respectively.  

Fig. 1 illustrates the velocity and force vectors acting on a blade 

element. In the figure, α represents the angle of attack, defined as the 

angle between the relative wind velocity and the chord line. The lift and 

drag coefficients are determined based on the angle of attack. The 

relative wind speed is the vector sum of the inflow wind speed, the 

rotational velocity of the blade, and the platform motion velocity. The 

formula is expressed as follows: 

rel z MU U r U U= − + +   (4) 

where, U  and ZU  are tangential and axial components of the inflow 

wind speed;   is the rotor speed; MU  is the platform motion velocity. 

 
Fig. 1 velocity and force vectors of the blade element 

 

To avoid numerical singularities, the body force needs to be smoothly 

distributed over the computational grid. The Gauss kernel function is 

typically used for this smoothing process. The smoothed body force is 

expressed as follows: 
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where, N is the number of the blade elements; xi, yi, zi is the position of 

the blade element; di represents the distance between the mesh position 

and the blade element;   is the projection width. The selection of the 

projection width can significantly influence the simulation results of 

wind turbine aerodynamic performance. It is generally set to a value of  

2 x =  (Xu et al., 2023), where x  is the mesh size. 

 

Graph Neural Networks 

 

Graph Neural Networks (GNNs) have undergone significant 

development over the past decade (Scarselli et al., 2009) and have been 

applied in various domains, including physics simulations, traffic 

prediction, and graph generation (Zhou et al., 2020). In GNNs, a graph 

represents the relationships between nodes and edges, as illustrated in 

Fig. 2, where circles represent nodes and lines represent edges. GNNs 

excel at handling unstructured data. The input is a graph G=(V,E), 

where 
n fV  ¡  represents n nodes, each containing f features, and 

2 en
E


 ¡  represents ne edges, with each edge defined by the two 

vertices it connects. In GNNs, each node learns information from its 

own features and those of its neighbors (local information aggregation), 

enabling node-level prediction tasks. Through this training process, the 

forward propagation returns a graph with the same connectivity and 

updated node features. These updated node features are then used to 

perform the target prediction. 

 

 
Fig. 2 “Graph” schematic diagram 

 

Based on different mechanisms for updating node information, various 

GNN methods have been developed, including Graph Convolutional 

Networks (GCN), Graph Attention Networks (GAT), and GraphSAGE 

(Zhou et al., 2020). This study adopts the GAT framework because it 

introduces a self-attention mechanism that assigns different weights to 

each neighbor of a node, thereby highlighting the most critical neighbor 

information during aggregation. Compared to traditional methods, 

GAT is better suited to complex graph structures and enhances the 

model's expressive power and prediction accuracy. The GAT update 

rule can be formulated as follows: 
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where N(v) is the neighborhood of node v, H is the number of attention 

heads, σ is the activation function, αuv is the attention coefficient, W(h) is 

the weight matrix of h layer, and   represents concatenation.  

 

DATA PREPARATION AND MODEL TRAINING 

 

Data Generation  

 

In this study, the LES-ALM method is employed to simulate FOWT in 

the atmospheric boundary layer environment, generating high-fidelity 

wake data under wave conditions for subsequent GNN training. The 

solver used is SOWFA-FAST (Churchfield et al., 2012; Xu et al., 

2023), which is an open-source software developed by National 

Renewable Energy Laboratory (NREL).  

The simulation process consists of two steps. The first step is a 

precursor simulation to generate the atmospheric boundary layer flow 

field. The second step involves wind turbine simulation, where the flow 

field generated in the first step is used as input, and an FOWT model is 

introduced into the flow field to simulate wake dynamics and fully 

coupled behavior. Note that the high-resolution wake field is obtained 

using the LES-ALM method, while the fully coupled behavior is 

computed using FAST. The bidirectional coupling between FAST and 

ALM is achieved through SOWFA. Specifically, the LES-ALM 

framework solves the flow field and transfers the inflow wind velocity 

to FAST, which performs fully coupled dynamic simulations of the 

wind turbine. At the next time step, the wind turbine's body forces and 

position are transferred back to the LES framework for continuous 

simulation.  

The wind turbine used is the NREL 5MW turbine, with a rated wind 

speed of 11.4 m/s, a rated rotational speed of 12.1 rpm, a rotor diameter 

of 126 m, and a hub height of 90 m. Further details can be found in 

Jonkman et al (2009). The floating platform is a semi-submersible OC4 

platform designed for a water depth of 200 m, with a top height of 10 m. 

Additional details are available in Robertson et al (2014).  

The computational domain is designed as a rectangular region, as 

shown in Fig. 3, with dimensions of 3 km × 1 km × 1 km. The lateral 

boundaries are cyclic, the top boundary is slip, and the bottom 

boundary uses the Moeng model. The inflow direction aligns with the 

positive x-axis. The grid resolution for the precursor simulation is 10 m 

× 10 m × 10 m, with a simulation time of 19,000 s and a time step of 

0.2 s. The first 18,000 s are used to establish the quasi-equilibrium 

atmospheric boundary layer flow field, and the final 1,000 s are used to 

generate inflow conditions for the wind turbine simulation. During the 

wind turbine simulation, mesh refinement is applied around the wind 

turbine and in the wake region to achieve accurate flow field results. 

The refined area is a rectangular region with two levels of refinement to 

avoid abrupt changes in grid size that could affect numerical simulation, 

as shown in Fig. 4. The heights of the two refinement zones are 2D and 

3D, respectively, where D is the rotor diameter. The grid size in the 

second refinement zone is 2.5 m × 2.5 m × 2.5 m, resulting in a total of 

12 million grid cells. The wind turbine simulation is conducted for a 

duration of 1,000 seconds with a time step of 0.02 s. For additional 

simulation details, including grid convergence analysis and solver 

validation, refer to Xu et al (2023). 

 

 
 

Fig. 3 Computational domain 
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Fig. 4 Mesh refinement domain 

 

 

The simulation uses an inflow wind speed of the rated value, 11.4 m/s. 

After the precursor simulation, the wind speed at hub height remained 

at 11.4 m/s, exhibiting an exponential distribution with height. The 

surface roughness is set to 0.001 m, and the atmospheric boundary 

layer is assumed to be neutral. The wave conditions are set as regular 

waves, referencing sea states corresponding to scale 6–8 as designed by 

Robertson et al (2014). The case settings are detailed in Table 1, where 

T and H represent the wave period and wave height, respectively. Case 

1 corresponds to FBWT and is included for comparative analysis. 

 

 

Table 1. Case settings 

 

No. T H 

1 0 0 

2 11.3 5.49 

3 13.6 9.14 

4 17 15.24 

 

 

 

Correlation Analysis 
 

This study conducts a correlation analysis of the simulation results to 

explore the relationships between key parameters and provide physical 

guidance for subsequent training. First, the differences in the wake 

structures of FOWTs under various wave conditions are analyzed based 

on numerical simulation results. The simulated wakes exhibit a 

progression from development to stabilization; therefore, the final 600 s 

of the stabilized wake are selected for analysis in this study. Fig. 5 

illustrates the differences in time-average velocity deficits at the hub-

height horizontal plane between the FBWT and the FOWT cases. The 

differences are calculated by subtracting the velocity deficits of the 

three FOWT cases from the corresponding velocity deficit of Case 1. 

From the figure, it can be observed that as the wave period and wave 

height increase, the velocity deficit at the same downstream location for 

the FOWT gradually decreases, indicating a faster wake recovery. This 

phenomenon is likely due to the increased platform motion response 

caused by higher wave periods and wave heights, which enhances the 

mixing between the wake and the atmospheric boundary layer, thereby 

accelerating wake recovery. 

 

Fig. 6 shows the time-series variations of surge and pitch motion 

responses. The amplitudes of the motion responses in the other four 

degrees of freedom are relatively small and have a negligible impact on 

the overall dynamics; therefore, this study focuses primarily on the 

motion responses of these two degrees of freedom. As shown in the 

figure, the motion responses increase with rising wave periods and 

wave heights, which aligns with the observed trend of faster wake 

recovery under these conditions.  

 

 
(a) Case1-2 

 
(b) Case1-3 

 
(c) Case1-4 

Fig. 5 Velocity deficit difference map 

 

 

 
(a) surge motion 

 
(b) pitch motion 

Fig. 6 Motion response 

 

Next, frequency domain analysis is employed to examine the 

relationship between platform motion response and wake behavior. By 

performing a Fourier transform on the time history curves of the 

motion responses, the relationship between power spectral density 

(PSD) and frequency can be obtained. Fig. 7 shows the PSD of surge 

and pitch motions, with dashed lines from left to right representing the 

wave frequencies of 1/11.3, 1/13.6, and 1/17. The figure reveals that 

the peaks in motion response energy correspond to their respective 

wave frequencies, indicating that the motion responses are primarily 
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influenced by wave action.  

 

 
(a) surge 

 
(b) pitch 

Fig. 7 Power spectrum density of motion response 

 

Fig. 8 presents the PSD of the thrust force, where the dashed lines 

similarly indicate the wave frequencies. The figure shows that the 

frequency at which the thrust energy peaks align with the frequency of 

the motion response energy peaks, demonstrating a consistent 

relationship between motion response and thrust. Variations in thrust 

induce changes in the velocity distribution in the near-wake region, 

causing axial wake velocity oscillations at the same frequency 

(Fontanella et al., 2022). These oscillations further influence the 

velocity distribution in the far-wake region. 

 

 
Fig. 8 Power spectrum density of thrust 

 

Model definition and training 

 

In this study, Multi-Layer Perceptrons (MLPs) are added to both the 

input and output ends of the GAT framework to enhance the overall 

representation and prediction capabilities of the model, as illustrated in 

Fig. 9. Specifically, the input MLP transforms raw input features by 

projecting them into a higher-dimensional embedding space through 

nonlinear mappings. This process increases the complexity and 

expressiveness of node features, thus making the input features more 

suitable for capturing spatial dependencies in the subsequent GAT 

layers. During training, the parameters of the input MLP are optimized 

jointly with the GAT via gradient descent to minimize the prediction 

error. The output MLP then integrates and further transforms the high-

dimensional node features produced by the GAT, projecting it back to 

the original dimension and thereby improving the model's predictive 

performance. 

 

 
Fig. 9 network architecture 

 

The training data is derived from CFD simulations, with the time-

averaged data from the final 600 seconds used for training. The results 

are processed into grid-based velocity distribution data on the 

horizontal plane and vertical plane at the hub height. The input node 

features for training include the coordinates and velocity deficit 

information of the FBWT flow field. Additionally, key parameters 

influencing the FOWT wake, including wave period, wave height, and 

the amplitudes of surge and pitch motion responses, are incorporated as 

global information into the node features.  

The adjacency matrix is generated based on the grid data to establish 

the adjacency relationships. To fully capture the flow field 

characteristics, each grid point is connected to its surrounding eight 

grid points. The output node features represent the velocities at the 

corresponding coordinates of the FOWT case under the given wave 

conditions. The GNNs consist of 5 layers with a hidden layer 

dimension of 64 and 2 attention heads. The MLP layers have a 

dimension of 32. The Adam optimizer is used, with the Mean Squared 

Error (MSE) as the loss function. The initial learning rate is set to 

0.0001, and a dynamic learning rate adjustment is applied during 

training. Specifically, if the loss does not decrease for 20 consecutive 

steps, the learning rate is reduced to 10% of its current value. The 

training is performed on an NVIDIA GeForce RTX 4060 Ti, and the 

model is implemented using the open-source library PyTorch 

Geometric (Fey and Lenssen, 2019). The training results will be 

presented in the next section. 

 

 

RESULTS AND DISCUSSION 

 

Horizontal Plane Wake 
 

The wake structure at the hub height level is the focal point of this 

research field. In this study, flow field maps on the horizontal plane 

obtained from Case 1, 2, and 4 simulations are used to train a model 

that can predict the FOWT wake field based on the FBWT flow field, 

wave parameters, and motion responses. Fig. 10 shows the curve of the 

loss function decreasing with each epoch. As observed in the figure, the 

training effectively reached an optimal state, and after a certain number 

of epochs, the model performance stabilized. 

168



 

 

 
Fig. 10 Training MSE curve 

 

 
(a) CFD 

 
(b) predicted 

 
(c) error map 

Fig. 11 CFD and predicted wake flow comparison for Case 2: 

horizontal plane 

 

 
(a) CFD 

 
(b) predicted 

 
(c) error map 

Fig. 12 CFD and predicted wake flow comparison for Case 3: 

horizontal plane 

 

Fig. 11 presents a comparison between the CFD simulation results and 

the predicted results for Case 2. As shown in the figure, the model 

achieves good performance in predicting the FOWT wake in the 

training set, successfully capturing the flow features in the field. 

Additionally, the overall error is relatively small, with a MSE of 6e-5. 

 

This study uses Case 3, which is outside the training set, for validation. 

Fig. 12 presents a comparison between the CFD simulation results and 

the predicted results for Case 3. As shown in the figure, the model is 

able to predict the FOWT wake structure with reasonable accuracy. 

However, the overall error is slightly higher compared to the training 

set, with a MSE of 1.5e-3. The region with larger errors is mainly 

concentrated in the near-wake zone. This may be due to the more 

complex wake structure in the near-wake region, which is heavily 

influenced by the wind turbine's interference, making it difficult for the 

model to learn such intricate physical phenomena. 

 

 

Vertical Plane Wake 
 

Studying the wake structure on the vertical plane at hub height helps to 

understand the variation characteristics of the FOWT wake at different 

heights. In this study, the flow field maps on the vertical plane obtained 

from simulations of Case 1, 2, and 4 are used to train a model that can 

predict the FOWT wake field based on the FBWT flow field, wave 

parameters, and motion responses. Fig. 13 shows the curve of the loss 

function decreasing with the number of epochs. From the figure, it can 

be seen that the model achieves a good fitting effect, and after 

sufficient iterations, its performance stabilizes. 

 

 
Fig. 13 Training MSE curve 

 

 

Fig. 14 shows the comparison between the CFD simulation results and 

the predicted results for Case 2. From the figure, it can be seen that the 

model is also able to predict the FOWT wake effectively on the training 

set, capturing the vertical flow characteristics with a MSE of 9e-6. 

 

This study uses Case 3 for validation. Fig. 15 shows the comparison 

between the CFD simulation results and the predicted results for Case 3. 

From the figure, it can be seen that, overall, the model is able to predict 

the FOWT wake structure with a MSE of 3.5e-3. However, the error is 

still relatively large in the near-wake region. Additionally, the error is 

also significant in the upper part of the wake, near the atmospheric 

boundary layer. This could be due to the complex mixing process 

between the wake and the atmospheric boundary layer under turbulent 

conditions, leading to certain errors when the model predicts this 

complex phenomenon. 
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(a) CFD 

 
(b) predicted 

 
(c) error map 

Fig. 14 CFD and predicted wake flow comparison for Case 2: vertical  

plane 

 

 
(a) CFD 

 
(b) predicted 

 
(c) error map 

Fig. 15 CFD and predicted wake flow comparison for Case 3: vertical  

plane 

 

 

CONCLUSIONS 

 

This study aims to rapidly predict the wake flow field of a FOWT by 

extracting key spatial features of the flow field from FBWT flow field 

data using GAT, and combining wave parameters and motion response 

parameters. The LES-ALM method is employed to simulate the FBWT 

and FOWT under multiple wave conditions, followed by a physical 

analysis of the data. The results show that wave conditions, along with 

surge and pitch motion responses, affect the wake structure of the 

FOWT. Guided by physical insights, CFD simulation data is used as 

training data to develop a model that predicts the FOWT wake field 

based on the FBWT flow field, wave parameters, and surge and pitch 

motion responses. Validation is performed using conditions outside the 

training set, and the results indicate that the model can accurately 

predict the FOWT wake structure. However, some discrepancies are 

observed in the near-wake and wake boundary regions, which may be 

due to the significant influence of the wind turbine in the near-wake 

zone and the turbulent mixing between the wake boundary and the 

atmospheric boundary layer. These regions have complex flow 

structures that are challenging to capture.  

By combining the accuracy of CFD with the efficiency of machine 

learning, this study significantly reduces computational effort, offering 

rapid and effective predictions of FOWT wakes across various 

conditions. With an expanded training dataset, this method can be used 

as a surrogate model for the rapid prediction of FOWT flow fields. In 

the future, other machine learning methods such as CNN and RNN can 

be explored to evaluate the robustness of different approaches. 

Additionally, irregular wave conditions can be added to the training 

process to better adapt to real-world environments. 
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