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ABSTRACT   
 
Many design variables are often required for the optimization design of 

the whole hull, thus numerous new sample hulls need to be calculated. 
The dimensionality reduction of design space is essential for the 
optimization of whole ship design, which can save the consumption of 
calculation resources. In this paper, a nonlinear dimensionality reduction 
method called Auto Encoder (AE) based on the neural network is used 
to optimize the total resistance of the DTMB hull under Fr=0.18 in calm 
water. Firstly, based on the radius basis function modification method in 
in-house hull form optimization software—OPTShip-SJTU, a series of 

hull forms can be obtained under the high-dimensional design space. 
Then the neural network model is established and trained based on these 
hull forms. And the low dimensionality space information can be gotten 
after training. The new hull forms are gotten by the trained neural 
network. And then the viscous solver naoe-FOAM-SJTU is applied to 
calculate the resistance of new hull forms. The Kriging theory is used to 
construct the surrogate model, and the single-objective genetic algorithm 
is applied to get the lowest total drag hull based on the Kriging surrogate 
model. Finally, it shows the nonlinear dimensionality reduction method 

has the capacity for dimensionality reduction in hull form optimization.   
And we also can obtain optimization results under reduced-
dimensionality design space compared with initial high design space. 
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INTRODUCTION 

 
Simulation-based design optimization (SBDO) becomes the main 
technique for the design optimization process(Lin, 2018; Liu, 2018a; 
Nazemian, 2021) in recent years. And the gradient-free methods are also 

widely used in many fields(Liu, 2020; Park, 2015). Although the 
gradient-free methods have a wide range, it faces huge time-consuming 
and curse-of-dimensionality when the design variables increase. Design 
space dimensionality reduction is an effective measure to solve this 

problem (D’Agostino, 2017; Reddy, 2020). SBDO consists of three main 
elements as shown in Fig. 1: (1) hull form deformation tools; (2) the 
hydrodynamic performance evaluation; (3) high-efficiency optimization 
algorithms.  The dimensionality reduction is applied in pre-processing of 
hull form modification. The types of dimensionality methods are divided 
into linear dimensionality (Cunningham, 2015) and non-linear 

dimensionality method(DeMers, 1993). The difference is whether the 
linear conversion is used in the dimensionality reduction process. 

  
Fig. 1The flowchart of hull form optimization based on dimensionality 
reduction 
 
In the past few years, many scholars focus on the dimensionality 
reduction application in hull form optimization. In the aspect of linear 
dimensionality reduction, Liu (2021) used a linear dimensionality 

reduction method called principal components analysis (PCA) to 
decrease the number of design variables and achieved multi-physics field 
learning based on proper orthogonal decomposition. Diez (2015) 
suppose the Karhunen–Loève expansion (KLE) method in 
dimensionality reduction and conduct an off-line dimensionality 
reduction method for single- and multi-disciplinary shape optimization 
based on the Karhunen–Loève expansion technique, which is also a 
linear dimensionality reduction method(Diez, 2016). D’Agostino (2020) 
used an off-line dimensionality reduction method based on the 

Karhunen–Loève expansion to optimize a DTMB model. Khan (2021)  
combined geometry- and physics-informed principal component 
analysis and the active subspace method in shape optimization. In an 
aspect of the non-linear dimensionality method, D’Agostino (2017) 
compared several non-linear dimensionality reduction methods. The 

dimensionality reduction methods are Kernel Principle Analysis 
(KPAC), Local Principle Analysis (LPA), and Deep Auto Encoder 
(DAE). They concluded that the Deep Autoencoder showed the best 
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performance overall.   Serani (2016) optimized the calm-water drag of 
DMTB by reducing the dimensionality of the design spaces, and the 
deformation methods are free form deformation, radial basis function, 
and global modification function. The dimensionality reduction methods 
are KLE, LPCA, KPCA, and DAE. 

In this paper, for reducing the computational burden and improving 
optimization efficiency, we use a non-linear dimensionality based on a 
neural network to conduct dimensionality reduction at the pre-processing 
of optimization. We optimize the total resistance of a baseline model 
DTMB 5415 under Fr=0.18 in calm water. The in-house OPTShip-SJTU 
is applied to conduct this optimization.  The radius basis function 
deformation method is applied to modify the hull form based on the 
initial hull form. Before hydrodynamic performance evaluation, the 
neural network called autoencoder is applied to achieve dimensionality 

reduction. Naoe-FOAM-SJTU is used to calculate the resistance of the 
new hull forms obtained from the low dimensionality. The Kriging 
model is established based on the difference hull form hydrodynamic 
performances. The single-objective genetic algorithm is applied to 
search for the lowest total drag hull form.  
 
 

METHODS 

 

Radial Basis Function Deformation 
 
There are many hull form deformation techniques, including the Shifting 
method, Radial Basis Function method (RBF), Global Modification 

Function method (GMF), and Free Form Deformation (FFD).  In this 
paper, we use the RBF deformation method to modify the hull form. The 

distance between an arbitrary point 𝑿 and center point 𝑿𝒊  can be written 
as follow: 
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The interpolate function used in modifying the hull form is defined as: 
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Wheres 𝑿 denotes the displacement function, which is the movement 

displacement of control points on the hull form. 𝑵  is the number of 
control points. 𝑋𝑗 = (𝑥𝑗, 𝑦, 𝑧𝑗) denotes the center of each radial basis 

function. Basis function 𝜑  is the distance function about Euclidean 
distance. The Compact Support Radial Basis Function (CSRBF) is 
selected as the basis function (Buhmann, 2001): 
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𝑝(𝐗) is the low order polynomial of the affine transformation, which can 
be described as: 
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The movement distance of control points is known, thus 
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For calculating the unknown coefficient, an attached condition is added, 

shown as follow: 
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According to the above, we can summarize follow equations: 
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We can get the coefficients by solving these functions. By substituting 
coordinates of all mesh nodes into the interpolation function, the 
displacement of corresponding grid nodes can be obtained, and all grid 
nodes can be relocated accordingly. A box mesh deformation is selected 

as the example using radial basis function. The deformation effect is 
shown in Fig. 2 

     

Fig. 2 The diagram of RBF deformation  
 

Non-linear Dimensionality Reduction Method 
 
To achieve the design space dimensionality reduction, the neural 
network is applied.  The architecture of neural work contains three parts 
in general: input layer, hidden layers, and output layer. Each layer 
contains some neurons, a 4 layers neural network is selected as example, 
shown in Fig. 3. The mapping relationships between the input layer and 
output layer can be gotten by training the neural network parameters. 
 

 
Fig. 3 The architecture of neural network (4 layers neural network) 
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Fig. 4 Example of a neuron 

 

Fig. 4 demonstrates a mathematical formula for a neuron in a neural 

network. 𝑓  is a activation function, and the input of this function is 

weighted summation——(b + ∑ 𝑥𝑖𝑤𝑖
𝑛
𝑖=1 ), 𝑏 is bias. The bias is also a 

weight. There are 2 broad categories of activation, linear and non-linear, 

like Rectified Linear Units (ReLU), Tanh, Sigmoid activation, and so on. 
3 layers trained neural network function can be expressed by the 

following formula： 
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Where 𝑂𝑖is the output variable; 𝑥𝑛is the input variable;𝑊𝑘𝑛 , 𝑊𝑗𝑘 , 𝑊𝑖𝑗  are 

the weights of neurons in each layer; 𝑏1𝑘 , 𝑏2𝑗 , 𝑏3𝑖are the threshold value 

of each layer of neurons; 𝑖, 𝑗, 𝑘 are the number of neurons in the input 
layer, the hidden layer, and the output layer in the neural network. 
 
The autoencoder is a structurally symmetrical neural network.  It 
contents two parts, encoder, and decoder, shown in Fig. 5. The encoder 

maps the raw data to the compressed data (low dimensionality). The 
decoder maps the compressed data to the initial high dimensionality. The 
flowchart can be described as following functions: 

 ( )E= (1)l H h  (14) 

 (2)( )D=h H l  (15) 

Where 𝒉 is the high dimensionality input data, H is a relative weight 

matrix of an artificial neural network. 𝒍 is the low dimensionality data. 𝒉̃ 
is the reconstruction data. To verify the neural network model is stable 
and the low dimensionality can express the initial high dimensionality 
data information, mean square error (MSE) between the initial input data 
and reconstruction data is selected as the optimization objective. The 
neural network parameter H is evaluated by minimizing the MSE. The 

formula is shown as Eq. (4). 
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The dimensionality number of low dimensionality space is lower than 
the number of design variables. It means the number of middle layer 
neurons is lower than the number of design variables.  For hull form 
optimization, the number of sampling points varies exponentially with 
the number of design variables. After dimensionality reduction, the 
number of sampling points descends greatly and the time-consuming 
spending in calculation sampling points hydrodynamic performance 
decreases.  

When a trained neural network is established, the low dimensionality 
data information can be gotten. We can sample from the low 
dimensionality and get the new hull form utilizing the decoder neural 
network. After getting the hull forms from the lower dimensionality, we 
can get an optimal hull form from these hull forms. The flowchart is 
shown in Fig. 6. 

 
Fig. 5 The diagram of an autoencoder 

 

 
Fig. 6 Flowchart of dimensionality reduction for hull form optimization 
 

 

Surrogate Model and Optimization Algorithm 

 
Based on the hull forms and corresponding hydrodynamic performance 
data, the surrogate model can be used to fitting the reflection between 
the hull forms and hydrodynamic performances. the surrogate model is 

applied to establish the relationship between the hydrodynamic 
performance and the hull form deformation parameters. The surrogate 

models have the Kriging model (Liu, 2018b), Response surface 

methodology (RSM) (Kim, 2011), Support Vector Regression 

(SVR) (Smola, 2004), and neural network (Liu, 2020).  In this 

paper, we use the Kriging model as the surrogate model. The Kriging 
model is presented firstly in 1951 by Krige (Krige, 1951). The Kriging 
model is a interpolate model, which is the linear weighted sum of 
sampling function values: 
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The 𝑤(𝑖)  is the weights. For calculating the weights, the stochastic 
process approach is used: 

 0( ) ( )Y Z= +x x  (17) 

The 𝛽 is an unknown constant, denote the mathematical expectation of 

𝑌(𝒙) . The 𝑍(𝒙)  satisfy normally distributed (0, σ^2), and non-zero 
covariance. By introducing a probabilistic approach, we can get any 

unknown function value. After establishing the Kriging surrogate model, 
we can use the optimization algorithm to search the lowest resistance 
hull form. The single-objective genetic algorithm is used in this paper.  
The algorithm is divided into 5 parts: 
(1) Generating the initial population and encoder the value of each 
individual called genic encoder; 
(2) Calculating the fitting value of each individual. The smaller the 
fitting value, the better individual; 
(3) Selected the good performance individual as the next generation; 

(4) The genic of each individual cross to create new individual; 
(5) Changing the new individual genetic code randomly; 
The flowchart of genetic algorithm is shown in Fig. 7. The iterations are 
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250 and the initial population is 60, the crossover fraction of genes 
swapped between individuals is set as 0.8, and the mutation rate is 0.2. 

 

 
Fig. 7 The flowchart of genetic algorithm  

 

 

APPLICATION 
 

Design Space Construction and Hull Form Deformation 
 
In this paper, a baseline model DTMB 5415 is selected as the 
optimization objective hull. The shape and main particulars of the hull 

are shown in Fig. 8 and Table 1. 
 

 
Fig. 8 DTMB model 

 
Table 1. the main particulars of DTMB 

parameter value 

Length between perpendiculars/ m 5.719  
Length of waterline/ m 5.726  

Displacement volume of a hull/ m3 0.554  

Draft/ m 0.248  
The maximum beam of waterline/ m 0.768  

 

The optimization objective is total resistance. The optimization problem 

can be described as follows. For the low dimensionality space, the 𝒙 ∈
𝑅𝑙. For the high dimensionality space, the 𝒙 ∈ 𝑅ℎ.The optimization is 
conducted in low dimensionality.  
 

minimize ( )tR x   

subject to _( )pp pp initialL L=x   

 0( ) 0.01B B x   

 0| ( ) | 0.05V V x   

 0| ( ) | 0.05S S x   

 0.005 0.005−  x   

   

28 mesh points are selected as the deformation design variables. the 
distribution of deformation points on the hull surface is shown in Fig. 9. 
The experimental design method called Optimized Latin Hypercube 

Sampling method (OLHS) is applied to obtain the sampling points. The 

ranges of 28 design variables are listed in Table 2. The distribution of 
design variables about X1 and X20 is shown in Fig. 10. 

 
Fig. 9 The selected deformation points distribution 
 
Table 2 the range of design variables 

Design variables Deformation direction Value range 

X1 y 
−0.005 ≤ 𝑋1

≤ 0.005 

X2 y 
−0.005 ≤ 𝑋2

≤ 0.005 
… … … 

X28 y 
−0.005 ≤ 𝑋28

≤ 0.005 

-0.00050 -0.00025 0.00000 0.00025 0.00050
-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

 points

X2
0 
(m
)

X1 (m)

 
Fig. 10 The distribution of design variables about X1 and X20 
 
After getting the sampling points, the RBF deformation based on the 
deformation module of OPTShip-SJTU is used to create different hull 
forms, see Fig. 11, the deformation effect of DTMB 5415 utilizing RBF 
Deformation method. 5600 hulls form are generated by the RBF 
deformation method to generate the hull form data set.  Based on the hull 
form data set, the neural network achieves using several variables to 
express the hull form data set information, which is the dimensionality 

reduction. 

 
Fig. 11 The deformation diagram 

 
Fig. 12 The mesh points of DTMB 

3498



 

Dimensionality Reduction Model Establishment 
 
The number of hull mesh is 5050, shown in Fig. 12. The example of a 
sampling hull mesh point coordinates is shown in Table 3. The mesh 
point coordinates are selected as the input and the output is also the mesh 
point coordinates, which means learning itself by this neural network.  
The autoencoder architecture is shown in Fig. 13. 

 
Table 3 The example of a sampling hull mesh point coordinates  

Number x coordinate y coordinate z coordinate 

1 -0.323991 -5.29415e-06 -0.0433653 
2 0.3895 -7.46956e-06 -0.0512381 

…… …… …… …… 

5049 -0.494027 0.00300887 -0.00447348 
5050 -0.494111 0.00151207 -0.004544 

 

 
Fig. 13 The established neural network for dimensionality reduction 
 

The neural network is established based on the open-source artificial 
intelligence platform TensorFlow.  The number of middle layer neurons 
is 6, less than the initial 28 design variables. The total layer number is 7. 
The total number of neurons is 1006. The activation function is Relu. 
Adam is selected as the optimizer, the MSE is the optimization objective 
for training. 4480 hull forms are used to train the neural network model. 
1120 hull forms are used to verify the neural network model. After 500 
iterations, the MSE reaches about 0.03 and satisfies the requirement, 

shown in Fig. 14. 

 
Fig. 14 The MSE trend during training 
 
For evaluating the reconstruction error between the initial hull form and 
reconstruct hull form obtained from decoder neural network, sampling 
point 1 and sampling 2 are selected as the comparison to check the 
reconstruction error, see Fig. 15. The max error is 0.00038 and satisfies 

the requirement.  

 
Fig. 15 The reconstruction error of sampling 1 and sampling 2 

 

Low Dimensionality Sampling and Optimization 
 
Based on the trained neural network, we can get low dimensionality 
information. According to the trained neural network, we can get the 
boundary of low dimensionality, see Table 4. 
 
 Table 4 The boundary of low dimensionality space 

Low dimensionality design variables range 

𝑋1
′ −244.2 ≤ 𝑋1

′ ≤ 161.1 

𝑋2
′  −0.005 ≤ 𝑋2

′ ≤ 0.005 

𝑋3
′  −0.005 ≤ 𝑋3

′ ≤ 0.005 

𝑋4
′  −0.005 ≤ 𝑋4

′ ≤ 0.005 
𝑋5

′  −0.005 ≤ 𝑋5
′ ≤ 0.005 

𝑋6
′  −0.005 ≤ 𝑋6

′ ≤ 0.005 

 
After getting the boundary of low dimensionality space, the OLHS 

method is also applied to sample from the low dimensionality space. Fig. 

16 shows the distribution of  𝑋1
′ and 𝑋6

′ .  
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Fig. 16 The distribution of  𝑋1

′ and 𝑋6
′  

 
When the low dimensionality space samplings are gotten, the decoder is 
used to obtain the reconstructed hull form, the reconstruction effect can 
refer to Fig. 17. Benefit from the auto-encoder, only 60 cases need to be 

calculated by naoe-FOAM-SJTU to get the resistance of hull. If the 
dimensionality reduction is not used, 280 hull forms need to be 
calculated for optimization.  

 
Fig. 17 The hull form sample 58 reconstructed from low dimensionality 

space 
 
Based on the 60 hull form resistances, the Kriging model is established 
based on the Kriging theory. The single-objective genetic algorithm is 
used to obtain the optimal hull form. And the final optimization result 
can be summarized in Table 5.  According to the optimization results, 
we can realize non-linear dimensionality reduction can also get the 
optimal hull form, and it can improve the optimization efficiency greatly 

at the same time. 
Fig. 18 demonstrates the hull form line comparison between the initial 
hull form and optimal hull form. 
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Table 5 The optimization results 

 Rt/*10-3 Optimization effect 

Initial hull form 3.97 

19.31% Optimal hull form (obtained 
from low dimensionality) 

3.17 

 
 

 
Fig. 18 The hull line comparison between the initial hull form and 

optimal hull forms 
 

CONCLUSIONS 
 
In this paper, the neural network called autoencoder is applied to conduct 
dimensionality reduction at pre-processing of hull form optimization. the 
baseline model DTMB is selected as the optimization hull. The 
resistance is the optimization objective at the Fr=0.18 under calm water 
condition. Results indicate the non-leaner dimensionality reduction 
method can be used for hull form optimization and improving the 

optimization efficiency. The optimal hull form still can be gotten under 
the low dimensionality space. Non-linear dimensionality method can 
achieve a lower dimensionality information extraction compared with 
linear dimensionality reduction. But the non-linear dimensionality 
method cannot describe the rule in low dimensionality. Some 
conclusions can be summarized as following points: 
(1) the OPTShip-SJTU has the capacity for design space dimensionality 
reduction in hull form optimization. 

(2) the application of a neural network can achieve a better 
dimensionality reduction effect. 
(3) the resistance drops by 19.31%, and the hull form optimization 
efficiency has increased by about 79.6%. 
(4) compared with other methods, the non-linear dimensionality method 
can obtain a better efficiency improvement and keep a good optimization 
result.  
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