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a b s t r a c t

In this paper, the MPS–FEM coupled method is applied for the three-dimensional (3D) dam-break
flow with elastic gate, where the Moving Particle Semi-implicit (MPS) method and the Finite Element
Method (FEM) are respectively used to solve fluid flows and structure deformation. A partitioned
coupling strategy of traditional Conventional Serial Staggered (CSS) strategy is employed for MPS
method and FEM method coupling. An interfacial data interpolation module called three-dimensional
Kernel Function Based Interpolation Technique (3D-KFBI) is developed for the three-dimensional
fluid–structure interface. Based on the MPS–FEM coupled method, a self-developed MPSFSI solver
is developed. Then, the stability, accuracy, convergence and energy conservation properties of the
developed data interpolation algorithm is validated by two cases. Afterwards, the proposed coupled
method is applied for the case of dam-break flow interacting with the elastic gate. A good agreement
between present numerical result and published experiment data Antoci et al. (2007) demonstrates
the accuracy and efficiency of the present coupled method. At last, MPSFSI solver is applied for the
problem of the narrow dam-break flow with the elastic gate to investigate the three-dimensional effect.

© 2022 ElsevierMasson SAS. All rights reserved.
1. Introduction

Fluid–structure Interaction (FSI) phenomena are frequently
bserved in hydrodynamics and ocean engineering. For instance,
ydrodynamic slamming on marine vessels, tsunami impact on
ffshore structures, sloshing in liquid containers and so on. Such
henomena, usually accompanied by tremendous hydrodynamic
oads acting on the structure, may cause considerable structural
eformation and even have severe challenges to the structural
afety. Therefore, taken the structure response during hydrody-
amic analysis into consideration is of substantial importance for
he precise evaluations and reliable designs of offshore and ocean
tructures.
The main characteristics of FSI phenomena in the field of

cean engineering can be summarized as violent free surface
lows, strong nonlinear hydrodynamic loads and considerable
igid motions of structures with relatively small responses. There-
ore, some special attentions should be paid such as free surface
racking, moving boundary conditions, interfacial treatment and
o on. Most of numerical investigations for FSI problems have
een performed based on a grid system. The Lagrangian-based
article Finite Element Method (PFEM) [1] has been developed for
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the modeling of FSI problems [2–4]. As a mesh-based method, the
PFEM is effective in dealing with free surface tracking, while being
quite time-consuming because of the meshes rebuilding. Liao
and Hu [5,6] applied Finite Differential Method (FDM) and Finite
Element Method (FEM) coupled method to investigate the inter-
action between surface flow and thin elastic plate, and obtained
good results. Paik and Carrica [7] used Chimera (overlapping
grid) method for numerical simulation of sloshing flows with
deformable baffles. However, the Chimera method requires inter-
polations between overlapped grids resulting in an accumulated
error. Qu et al. [8] analyzed the water entry process of a two-
dimensional elastic cylindrical shell by the means of volume of
fluid (VOF) and FEM coupled method. The differences of the
impact characteristics due to water impact of a rigid body and
an elastic body is investigated.

Despite the effectiveness, these grid-based methods may be
difficult to adjust and update the grid when coordinating the
fluid–solid interface. Therefore, some mesh-free particle methods
have aroused a wide attention. Different from the mesh-based
method, these mesh-free methods are inherently Lagrangian
methods, by which a continuum system is discretized into mov-
ing particles. In addition, the meshfree particle methods avert
the treatment of mesh rebuilding or the capture of free sur-
face. Thus, meshfree particle methods can deal with the large
deformation and strong nonlinear phenomenon of free surfaces

https://doi.org/10.1016/j.euromechflu.2022.02.014
http://www.elsevier.com/locate/ejmflu
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Fig. 1. Sketch of free-surface detection.

Fig. 2. Schematic of boundary particles.

relative easier, as well as the moving boundaries. Over past
decades, particle-based methods have been intensely studied,
such as the Smoothed Particle Hydrodynamics (SPH) [9], the
Moving Particle Semi-implicit (MPS) Method [10], and many
others. Up until now, numerous good works employing particle-
based methods are carried out to study violent FSI problems,
for instance, the dam-break wave [11–13], the water entry [14–
16], the liquid sloshing [17–20], the wave–ship interaction [21–
25], multiphase flow problem [26–28] and so on. All of the
above studies presented highly performance in capturing the
violent free surface flows and accurately predicting the impacting
force. Simultaneously, some studies of particle methods have
focused on the structural dynamic response in FSI problems.
Fully-Lagrangian coupling methods have been proposed to ana-
lyze FSI problems [29]. Antoci et al. [30] performed simulations of
dam-break flow interacting with an elastic gate by SPH method.
Liu et al. [31] applied SPH method in hydro-elastic problems,
where the fluid particles were used to model the free surface
flows governed by Navier–Stokes equations and the solid parti-
cles were used to model the elastic solid objects. Hwang et al. [32,
33] developed the MPS-based FSI analysis method for simulations
of sloshing flow with a deformable baffle. Yang and Zhang [34]
developed modified MPS method with large eddy simulation
(LES) model to study FSI problems. Khayyer et al. [35] presented
enhanced ISPH–SPH coupled method for simulating incompress-
ible FSI benchmarks. Falahaty et al. [36] developed enhanced
MPS-based method in FSI modeling, where the stress point in-
tegration was incorporated in calculation of structural dynamics.
Khayyer et al. [37] proposed a multi-resolution MPS method for
incompressible fluid–elastic structure interactions. Lyu et al. [38]
applied Total Lagrangian SPH (TLSPH) method in 2D FSI problems,
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and the tensile instability problem is suppressed through Tensile
Instability Control (TIC) and Particle Shifting Technique (PST).
For the 3D simulations of FSI problems, Khayyer et al. [39]
presented the first 3D entirely Lagrangian meshfree projection-
based hydroelastic FSI solver and validated the solver through
sets of rigorous test cases. Sun et al. [40] presented TLSPH method
to investigate the 3D effects in the FSI dam-breaking and sloshing
cases. Yilmaz et al. [41] developed rigid multibody system and
WCSPH method coupling model, the present model is validated
through benchmark cases of 3D dam-break flow impacting on
the deformable elastic boundaries. Many researchers also have
taken advantage of the Lagrangian particle methods along with
other robust structure computational method to develop coupled
FSI solvers. Sun et al. [42,43] performed coupled MPS-modal
superposition method for 2D and 3D fluid–structure interaction
problems with free surface. Because of the accuracy of FEM in
solving structural dynamics, many researches kept the focus on
studying FSI problems based on particle method coupled with
FEM. Lee et al. [44], Mitsume et al. [45,46], Zheng et al. [47,48]
and Zhang et al. [49] successfully simulated fluid–elastic struc-
ture interactions through the coupled MPS–FEM method. Fourey
et al. [50,51], Yang et al. [52], Hermange et al. [53] and Zhang
et al. [54] applied SPH–FEM coupled method in FSI problems.
Mitsume et al. [45] adopted MPS–FEM coupling method, in which
the boundary particles overlapped with the finite element grid,
and information was exchanged at the fluid–structure inter-
face based on linear interpolation technology. Fourey et al. [51]
adopted the pressure integral average method for the process of
fluid–structure interface interpolation in SPF–FEMmethod. Zheng
et al. [47] used explicit MPS method and FEM coupling method
to simulate FSI problems. In the coupling algorithm, the elements
for structural discretization in FEM can straightforwardly serve as
boundary ghost cells for interaction force calculation in MPS. In
the process of fluid–structure interface interpolation, the integral
version of MPS method can be used to calculate the force at
integration points of cells are distributed to the structure nodes
to update the structural boundary.

However, above mentioned literatures are almost concentrat-
ing on 2D FSI problems. The main challenges of 3D simulations
of FSI problems are complicate interface treatment between fluid
and structure field, large computing and so on. In recent years,
some studies have obtained noticeable achievements on simula-
tions of 3D FSI problems. Zhang and Wan [55] developed a 3D
MPS–FEM coupled method for simulating 3D liquid sloshing in
an elastic tank, an 2D interfacial data interpolation algorithm was
proposed to couple particle model and element model. Hermange
et al. [56] proposed the 3D SPH–FEM coupled method for the
application to complex tire hydroplaning simulations on rough
ground. A Conventional Parallel Staggered (CPS) procedure was
applied for coupling two methods. Lee and Hong [57] applied
a 3D SPH–FEM coupled method for the accurate estimation of
the dam-break flow impacting on an elastic column, the opti-
mizations of the Equation of State (EOS) and some simulation
parameters such as the time step and initial particle spacing
were considered. Zheng et al. [48] developed a 3D explicit MPS–
FEM coupling algorithm. The solid boundary was modeled by
ghost cell boundary (GCB) model, which has proved to be an
effective method to deal with wall boundaries of complicated
shapes. In this work, a 3D MPS–FEM coupled method is developed
to investigate FSI problems, where the MPS method is applied
for solving the fluid domain and the FEM is used to solve the
structure responses. In our previous study [49], two weight func-
tion interpolation techniques based on shape function and kernel
function, called Shape Function Based Interpolation Technique
(SFBI) and Kernel Function Based Interpolation Technique (KFBI)
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Fig. 3. Schematic diagram of partitioned coupling strategy between fluid and
structure field.

were introduced to achieve the data exchange on the 2D iso-
merous fluid–structure interface. In this paper, KFBI for the 3D
isomerous interface is developed to simulate the 3D FSI problems.

In this paper, a 3D MPS–FEM coupled method is developed for
the 3D free surface flow with deformable structures. To couple
MPS method and FEM method, a partitioned coupling strategy
of traditional Conventional Serial Staggered (CSS) strategy is em-
ployed. To realize the interpolation process on the space–time
isomerous fluid–structure interface, the different time steps are
adopted in both field and an interpolation technique of 3D-
KFBI is developed for the data exchange. Based on the MPS–FEM
coupled method, a self-developed MPSFSI solver is developed. The
present paper is organized as follows: Section 2 introduces the
heories of the MPS and the FEM methods. The coupling scheme
nd interpolation technique at the interface between fluid and
tructure field are introduced in Section 3. Then, the accuracy
f interpolation module is validated through two benchmarks.
he performance of 3D MPS–FEM coupled solver is validated
n Section 4 through a FSI benchmark of dam-break flow with
n elastic gate. The comparisons between the present numerical
esult and experimental data [30] are conducted. Finally, to study
he 3D effects, the simulation of narrow dam-break flow with an
lastic gate is carried out.

. Numerical method

In this study, the partitioned MPS–FEM method is adopted to
nvestigate the FSI problems. The MPS method is used to calculate
 a
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the fluid field, while the FEM is adopted to solve the structure
field. The theories for the MPS have been presented with details
in our previous papers [55,58–64].

2.1. MPS formulation for fluid dynamics

2.1.1. Governing equations
In the MPS method, the governing equations for the fluid

particles mainly include the continuity equations and momen-
tum equation. The Navier–Stokes equations are expressed in La-
grangian form as following,

∇ · V = 0 (1)
DV
Dt

= −
1
ρ

∇P + ν∇
2V + g (2)

where ρ and ν denote the fluid density and kinematic viscosity,
V , P and g present the velocity vector, the pressure and the grav-
itational acceleration. In the MPS method, the physical quantities
of particles are expressed based on the Lagrangian formulation,
and therefore the calculation of convection term is not required.

2.1.2. Kernel function
In the MPS method, governing equations should be expressed

by the particle interaction models based on the kernel function.
The kernel function in present paper can be formulated as,

W (r) =

{ re
0.85r + 0.15re

− 1 0 ≤ r < re
0 re ≤ r

(3)

here r is the distance between two particles, re denotes the
nfluence radius of the target particle. The adopted kernel func-
ion can avoid the non-physical pressure oscillation, and improve
he computational stability. The value of re is distinct in different
article interaction models.

.1.3. Particle interaction models
Models of particle interaction include gradient model, diver-

ence model and Laplacian model. These models can be written
s,

∇φ⟩i =
D
n0

∑
j̸=i

φj + φi⏐⏐r j − r i
⏐⏐2 (r j − r i) · W (

⏐⏐r j − r i
⏐⏐) (4)

⟨∇ · Φ⟩i =
D
n0

∑
j̸=i

(
Φ j − Φ i

)
· (r j − r i)⏐⏐r j − r i

⏐⏐2 W (
⏐⏐r j − r i

⏐⏐) (5)

⟨
∇

2φ
⟩
i =

2D
n0λ

∑
j̸=i

(
φj − φi

)
· W (

⏐⏐r j − r i
⏐⏐) (6)

=

∑
j̸=i W

(⏐⏐r j − r i
⏐⏐) ⏐⏐r j − r i

⏐⏐2∑
j̸=i W

(⏐⏐r j − r i
⏐⏐) (7)

where φ is a scalar function,Φ presents a vector, D is the number
of space dimensions, r is the position vector, λ is a parameter and
expressed as Eq. (7), and n0 is the initial density of the particle
number. Koshizuka [11] proposed the value of re in each particle
interaction model through a series of numerical tests, as shown
in Table 1, where l0 is the initial spacing of particles.

.1.4. Pressure Poisson Equation
The pressure is calculated by solving the Pressure Poisson

quation (PPE). A mixed source termmethod, proposed by Tanaka
nd Masunaga [65] and Lee et al. [66], is applied in the present
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Fig. 4. The schematic diagram of the 2D and 3D fluid–structure interface.
t
n
0
L
a
d⟨
2

b
e
p
f
t

(

w
c
0
i
t
n

⟨

Fig. 5. The schematic diagram of the force interpolation.

Fig. 6. The schematic diagram of the displacement interpolation.
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Table 1
The values of re in different particle interaction models.
Particle interaction model re
Gradient model re_gra = 2.1 ∗ l0
Divergence model re_div = 2.1 ∗ l0
Laplacian model re_lap = 4.01 ∗ l0

solver, which combines the velocity divergence-free condition
and constant particle number density condition.⟨
∇

2pk+1⟩
i = (1 − γ )

ρ

∆t
∇ · V ∗

i − γ
ρ

∆t2

⟨
nk

⟩
i − n0

n0 (8)

where Pk+1, ∆t and V ∗

i are the pressure of the step k + 1,
ime step and temporal velocity. γ is the weight of the particle
umber density term between 0 to 1. The range of 0.01 ≤ γ ≤

.05 is better according to numerical experiments conducted by
ee et al. [66]. In this paper, γ = 0.01 is adopted throughout
ll simulations. nk is the temporal particle number density and
efined as,

nk⟩
i =

∑
j̸=i

W (
⏐⏐r j − r i

⏐⏐) (9)

.1.5. Free surface detection
Surface particles need to be detected to impose Dirichlet

oundary conditions on the pressure Poisson equation, and is
ssential in accurately imposing boundary effects. In general, the
article number density can be regarded as a means of detecting
ree surface particles. When the particle number density satisfies
he expression,

⟨n⟩i/n0) < β (10)

here β is a parameter with a value of 0.8 in this paper, the parti-
le will be determined as a free surface particle. When (⟨n⟩i/n0) >

.97, the particle is regarded as an internal particle. Otherwise,
f 0.8 < (⟨n⟩i/n0) < 0.97, an improved surface particle de-
ection method [67] based on the asymmetry arrangement of
eighboring particles, as shown in Fig. 1, is applied,

F ⟩i =
D
n0

∑ (r j − r i)⏐⏐r j − r i
⏐⏐W (

⏐⏐r j − r i
⏐⏐) (11)
j̸=i
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Fig. 7. The flowchart of the MPS–FEM coupled method.
Fig. 8. Schematic sketch of hydrostatic water column on a deformable plate.

here F represents the asymmetric arrangements of neighbor

articles. Particles satisfying ⟨|F |⟩ > α |F |
0 will be regarded as
i
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free surface particles, where α is a parameter with a value of 0.9
in this paper, |F |

0 is the initial value of |F | for surface particles.

2.1.6. Boundary condition
In the MPS method, the boundary condition of free surface

is accomplished when the zero pressure is imposed to the free
surface particles. For the solid boundary, the arrangement of
multilayer particles, as shown in Fig. 2, comprises one layer of
wall particles and two layers of ghost particles. The arrangement
of ghost particles is to fulfill the particle number density so that
the particle interaction can be properly calculated near the solid
boundary. The calculation of wall particles’ pressures is the same
as fluid particles, solving by PPE. While the pressures of ghost
particles are obtained by interpolation. The advantage of present
arrangement is that it can ensure a smooth and accurate pressure
field around the solid surface and prevent fluid particles from
penetrating into the impermeable boundary.

2.2. FEM formulation for structure dynamics

In this paper, the 3D FEM method with hexahedral solid el-
ement is applied for the structural analysis. According to the
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Fig. 9. The time history of hydrostatic force subjected to the plate.

Fig. 10. The time histories of deflection at the plate’s center point.

theory of FEM, after the structure is discretized, the dynamic
balance equation of nodes can be written as follows:

Mÿ + Cẏ + Ky = F (12)

= β1M + β2K (13)

here M, C and K represent the mass, damping and stiffness
atrices of the structure analysis. F is the force vector of the
tructure and varies with computational time. For simplicity of
mplementation, the Rayleigh damping is used, damping matrix
is assumed to be a linear combination of M and K, where

1 and β2 are the Rayleigh damping coefficients. According to
ewmark [68], the structural node displacement at t = t + ∆t
an be solved with the help of Taylor’s expansions of velocity and
isplacement:

˙t+∆t = ẏt + (1 − γ )ÿt∆t + γ ÿt+∆t∆t, 0 < γ < 1 (14)

yt+∆t = yt + ẏt∆t +
1 − 2β

2
ÿt∆t2 + β ÿt+∆t∆t2, 0 < β < 1 (15)

where β and γ are parameters in the Newmark-β method and set
as β = 0.25, γ = 0.5 for all simulations. The nodal displacements
at t = t + ∆t can be solved by the following formula [69]:

Kyt+∆t = F t+∆t (16)

K = K + a M + a C (17)
0 1 s
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F t+∆t = F t + M(a0yt + a2ẏt + a3ÿt ) + C(a1yt + a4ẏt + a5ÿt ) (18)

0 =
1

β∆t2
, a1 =

γ

β∆t
, a2 =

1
β∆t

, a3 =
1
2β

− 1,

a4 =
γ

β
− 1, a5 =

∆t
2

(
γ

β
− 2

)
, a6 = ∆t (1 − γ ) , a7 = γ∆t

(19)

where K and F are referred to as effective stiffness matrix and
ffective force vector, respectively. In 3D solid element, the ef-
ective stiffness matrix is a large-scale symmetric sparse matrix.
n present paper, we propose a compressed sparse row (CSR)
ormat based BiCGSTAB algorithm for solving above system of
inear algebraic equations.

.3. Determination of time step

The time-step ∆tf for MPS method will fulfill the Courant–
riedrichs–Lewy (CFL) condition, given by the following formula,

tf ≤
Cl0
umax

(20)

here C is the Courant number between 0 to 1, umax is the
maximum instantaneous velocity of particles. In the FEM solver,
the time-step ∆ts is determined based on the central difference
method, defined by,

∆ts ≤
Lmin

Cs
(21)

here Lmin represents the minimum size of grid, Cs denotes the
elocity of elastic wave and can be defined as,

s =

√
Es(1 − µs)

ρs(1 + µs)(1 − 2µs)
(22)

here Es, µs and ρs denote the Young’s modulus, Poisson’s ratio,
nd density of structure, respectively. To ensure numerical stabil-
ty, the time-step ∆t, employed in FSI solver needs to satisfy the
ollowing formula,

t ≤ min
{
∆tf , ∆ts

}
(23)

or the conducted test cases of this study, since relatively flexible
tructures were considered, the time-step for MPS method was
maller than that of the FEM method. However, according to
q. (21), for stiff structures with large velocity of elastic wave,
he time step of structure domain would become smaller than
hat of the fluid domain. Proper set up of the calculation time
tep for fluid and structure would be important to maintain
omputational stability and at the same time conduct efficient
alculations.

. MPS-FEM coupled scheme

A partitioned 3D MPS–FEM coupled method is applied in this
ork to simulate FSI problems. The coupling algorithm and im-
lementation strategy of the whole process will be introduced
n this section, as well as the validation of the interface data
ransformation.

.1. Coupling algorithm between the MPS and FEM method

In the coupling algorithm, the MPS method is used for solving
luid flow, while the FEM is applied for the structural dynamics.
he proposed MPS–FEM coupled method combines both advan-
ages of MPS and FEM, consisting of the convenience of MPS in

imulating free-surface fluid dynamics and the accuracy of FEM in



G. Zhang, R. Zha and D. Wan European Journal of Mechanics / B Fluids 94 (2022) 171–189

s
S
F
y

t
a
p
b
c
I
u

Fig. 11. A hydrostatic water column on a deformable plate, typical snapshots of the pressure/stress distribution on particle model.
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olving structural dynamics. The traditional Conventional Serial
taggered (CSS) strategy is employed for coupling the MPS and
EM method, as shown in Fig. 3. The time step sizes for fluid anal-
sis and structure analysis are set as ∆tf and ∆ts. It is notable that

the fluid domain and structure field are discretized by different
time steps to satisfy the stability of both computation domains.
When the time step of structure domain ∆ts is larger than ∆tf ,
∆ts = k ∗ ∆tf is applied, where k is an integer. The coupling
strategy is shown in Fig. 3(a). In each cycle of FSI simulation,
the fluid domain is performed based on the MPS method from
the time step tn+1 to tn+k. Mean pressures pn+k of particles on
he fluid–structure interface are calculated. Then, external force
cting on the structure node is calculated based on the average
ressure pn+k at the time step tn+k. The position and velocity of
oundary particles are updated and considered as new boundary
onditions for the calculation of fluid domain at next time step.
t should be noted that the position of boundary particles will be
pdated within the time steps tn+1 and tn+k−1 based on velocity

of particles calculated at tn to avoid the instability of fluid field
produced by the large displacements of boundary particles within
∆ts. In contrast, if ∆ts is smaller, ∆tf = k ∗ ∆ts is applied. The
coupling strategy is shown in Fig. 3(b). It can indicate that present
strategy is utility for its advantages of flexibility and convenient
realization.

Similar to the 2D fluid–structure interface, the 3D
fluid–structure interface is shown in Fig. 4(b). An interface in-
terpolation algorithm with certain precision is employed in the
proposed coupling method to satisfy the interface condition of
displacement and traction equilibrium and denoted as,

uF
= uS (24)

pFnF
= −pSnS (25)

where nS and nF are normal vectors to structure and fluid in-
terface particles. The superscript F and S represent the physical
quantities in the fluid solver and structure solver, respectively.
Then, the 3D Kernel Function Based Interpolation Technique (3D-
KFBI) is proposed for the data interpolation, including the force
transformation and the deformation transformation.
177
The schematic diagram of the 3D-KFBI technique for the force
transformation from the fluid domain to the structural field is
demonstrated in Fig. 5. For structure node m, the boundary par-
ticle of the fluid domain will be denoted as a neighbor particle of
structure node while the distance between the boundary particle
and structure node is smaller than the interpolation effective
radius rei of interpolation. In this paper, according to previous
research [49], the value of effective radius rei is set as 0.5 ∗

re_gra, which is slightly larger than l0. The weighted value of
the fluid force of the neighbor particle W(|ri − rm|) is calcu-
lated based on Eq. (3). Then, the equivalent nodal hydrodynamic
pressure psm corresponding to the node m is estimated by the
weighted value of pressure components regarding to the neighbor
boundary particles and defined as,

pSm =

∑
i pi · n

F
i · W (|r i − rm|)∑

i W (|r i − rm|)
(26)

he schematic diagram for the deformation transformation of
he fluid–structure interface is demonstrated in Fig. 6. The dis-
lacement of the boundary particle k is calculated by neighbor
odal displacement when the distance between the structure
ode and boundary particle k is smaller than the interpolation
ffective radius rei. Then boundary particles’ displacement wF

k can
e obtained by the interpolation based on the kernel functions
(| ri − rk|), and the nodal velocity ui,

F
k =

∑
i δi · W (|r i − rk|)∑

i W (|r i − rk|)
(27)

In Fig. 7, the overall flowchart of MPSFSI solver is presented.
The fluid solver is executed to obtain the pressure field and
transfer the hydrodynamic pressure to structure nodes. With
this external force, structural nodal displacement and velocity
are obtained through the structural solver. With the known dis-
placements of structural nodes and velocities, the positions of
boundary particles can be therefore updated. Due to the different
time steps in each solver, the detailed process within each FSI
cycle is shown in Fig. 3.
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Fig. 12. The time histories of, (a) elastic strain energy of structure, (b) gravitational potential energy of structure, (c) kinetic energy of structure, (d) gravitational
potential energy of fluid, (e) kinetic energy of fluid, (f) total energy of FSI system and (g) normalized total energy of the FSI system.
3.2. Validation of interpolation modules

In this section, two benchmarks of 3D hydrostatic water col-
umn on a deformable plate and 3D forced deformable plate with
the initial velocity are carried out, to validate the coupling algo-
rithm accuracy of the interfacial data transformation including
force and deformation. The stability, accuracy, convergence and
energy conservation properties of present coupled method can be
proved through the above-mentioned tests.
178
3.2.1. 3D hydrostatic water column on a deformable plate
The first benchmark test is the 3D hydrostatic water column

on a deformable plate. Fig. 8 shows a schematic sketch of this
benchmark test. The hydrostatic pressure load of a water column
of 0.4 m length, 0.4 m width and 0.6 m height is suddenly
subjected on an aluminum plate, which eventually reaches an
equilibrium state with a constant deformation. The thick (he),
density (ρs), Young’s modulus (Es) and Poisson’s ratio (µs) of plate

3
are 0.04 m, 2700 kg/m , 67.5 GPa and 0.34, respectively, and the
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Fig. 13. Schematic illustration of the computational domain for the vibration modes of (2,2).
Fig. 14. Coincidence study between the deformed grids and particles.
Fig. 15. The time history of the vibration of measuring point.

amping effect is considered during the simulation. The particle
pacing is set as 0.008 m, and the time step is regarded as 0.00002
. The grid convergence studies are conducted in this test, the
late is dispersed into three kinds of grids, maximum grid sizes
re set as 0.04 m, 0.02 m and 0.01 m, respectively.
By means of the interfacial data interpolation module, the

orce on the particle model can be transferred to the nodes of
he element model. The time history of hydrostatic force sub-
ected to the plate under different grid discretization is exhibited
n Fig. 9. The numerical hydrostatic force will eventually reach
stable status, and the calculated results under different grid
179
discretization are close to the theoretical value. The comparison
between the theoretical value and calculated force are shown
in Table 2, where F ′ and F0 represent the convergent numerical
force and theoretical value, respectively. It can be noticed that
the calculated results approximate to the theoretical value. The
force interpolation module can offer the high accuracy, and have
a better grid convergence. According to Ugural [70], the analytic
solution of the deflection can be estimated through the load on
the plate:

wmax = w

( a
2

)
= α

|g|(ρFH + ρShe)a4

D
(28)

where H corresponds to the height of the water column, and a
and D denote the length and the flexural rigidity of plate. α is
a parameter depending on boundary support condition together
with the ratio of length and width of the plate, the value of α

is 0.00406 in this test. Therefore, the magnitude of static deflec-
tion at the plate’s center point would be d0 = −1.773E−6 m.
Fig. 10 shows the time history of the deflection on the center
point of the aluminum plate under different grid discretization.
The deflection of plate’s mid-point will eventually reach a stable
status. The accuracy analysis of deflection between the theoretical
value and numerical result are shown in Table 3, where d′ and
d0 represent the convergent numerical deflection and theoretical
value, respectively. The calculated deflections approximate to the
theoretical value. It can be proved that the current method can
provide accurate estimates of deflection of plate’s mid-point.

Fig. 11 presents the pressure and stress fields of the hydro-
static water column on an elastic plate at t = 0.05, 0.1 and 0.2 s
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Fig. 16. The stress distribution of deformable structure.
E

T
p
a
t
e
o
0
c
s
p
t
s
c
f
c

Fig. 17. The frequency of the vibration of measuring point.

Fig. 18. The time history of kinetic energy and normalized total energy of the
plate.
180
Table 2
The comparisons of hydrostatic loading (N) subjected to the plate.

Theoretical
value

Coarse
grid

Medium
grid

Fine grid

Force (N) 941.76 974.47 966.78 957.94
Error [ε = (F ′

− F0)/F0] – 3.405% 2.665% 1.801%

under the middle grid size. It can be seen that the pressure/stress
field is smooth and qualitatively accurate.

The energy conservation property in the whole system of the
present coupled method is investigated, referring to the research
of Khayyer [35]. In this benchmark test, there is no energy ex-
change with the surroundings. In a word, the energy of whole
system should be conserved, and energy is exclusively exchanged
between the fluid and the deformable plate. The energy of the
FSI system Et includes the energy of fluid EF

t and energy of
structure ES

t . The total energy of the fluid is composed of fluid’s
kinetic energy EF

k and fluid’s gravitational potential energy EF
p . The

structure’s total energy comprises kinetic energy ES
k , elastic strain

energy ES
e , and gravitational potential energy ES

p . The formulation
of each energy component can be expressed as,

Et = EF
t + ES

t (29)

EF
t = EF

k + EF
p , E

S
t . = ES

k + ES
p + ES

e (30)

EF
k =

∑
i∈ΩF

1
2
mF

i |u
F
i |

2, EF
p =

∑
i∈ΩF

mF
i g · r i (31)

S
k =

∑
i∈ΩS

1
2
mS

i |u
S
i |

2, ES
p =

∑
i∈ΩS

mS
i g · r i, ES

e =

∑
i∈ΩS

1
2
σ S
i εS

i Vi (32)

he time variations of energy components in the FSI system are
resents in Fig. 12. According to Fig. 12(a–e), the kinetic, potential
nd elastic strain energies of the structure field present oscilla-
ion in the initial stage (t < 0.025 s), together with the kinetic
nergy of the fluid field, nevertheless the energy components
f the structure field reach almost constant values before t =

.2 s. From Fig. 12(d), the gravitational potential energy of fluid
ontributes most to the total energy of the flow field and FSI
ystem. There is a slight drop of about 0.02% of the gravitational
otential energy, which leads to the drop of about 0.0148% of the
otal energy of FSI system and normalized total energy of the FSI
ystem (Et/Et0 − 1). The decrease in fluid kinetic energy is not
aused by the energy exchange between the structure and the
luid. In general, the coupled method has the properties of energy
onservation.
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Fig. 19. Schematic view of dam-break flow with the deformable gate.
Fig. 20. The dam-break flow interacting with a deformable gate, typical snapshots of (a) the experiment result, (b) the pressure distribution of fluid particle, and
(c) the stress distribution of element model.
3.2.2. A 3D forced deformable plate with the initial velocity
The accuracy of the deformation transformation on the inter-

face between the fluid and structure domains is studied in this
181
test. The problem of a forced deformable plate with the initial ve-
locity under the boundary condition of all sides simply supported
(SS) is reproduced, the influence of gravity of the plate is not
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Table 3
The accuracy analysis of deflection of the plate’s mid-point.

Theoretical value Coarse grid Medium grid Fine grid

Deflection (N) −1.773E−6 −1.864E−6 −1.828E−6 −1.809E−6
Error [ε = (d′

− d0)/ d0] – 5.132% 3.102% 2.03%
s
i
o
s
i
c
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w

D
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Fig. 21. Horizontal (a) and vertical (b) deformation of free end of the elastic
ate.

aken into account. The thick (h), density (ρs), Young’s modulus
Es) and Poisson’s ratio (µs) of plate are 0.01 m, 1000 kg/m3, 100
Pa and 0.3, respectively, and the damping effect is considered
uring the simulation. The initial particle spacing and maximum
rid size are set as 0.0025 m and 0.01 m, and the time step is
egarded as 0.0005 s. The plate is forced to deform with an initial
elocity distribution of vy(x, z), as follows,

y = Amn sin
mπx
a

cos
nπz
b

(33)

here Amn is an amplitude coefficient determined from the initial
onditions of the problem, a and b signifies length/width of the
quare, and m and n are integers denoting governing vibration
odes in x and y directions. In this paper, Amn = 1, a = b = 0.4,

= 2 and n = 2 will be adopted. The illustration of the
omputational domain is shown in the Fig. 13.
Through the interfacial data interpolation module, the veloc-

ty on the nodes of the element model can be transferred to
he particle model. Therefore, the particle model will produce
he deformation. For the square plate, the two mode shapes
ave the same frequency and exist simultaneously, their relative
182
Fig. 22. Schematic view of the narrow dam-break flow with deformable gate,
case 1: asymmetrical layout; case 2: symmetrical layout.

amplitudes depending upon the initial conditions. Because the
structural deformation is relatively small, the displacement is
magnified in the figure for better observation, with an amplifi-
cation factor of 25, as demonstrated in Fig. 14. It can be found
that the shapes of the two models (the particle model and grid
model) are coincident with each other. Fig. 15 compared the
tructural displacement and particle deformation, the consistency
s proved quantitatively. Fig. 16 presents the stress distribution
f the element model, it can be noticed that the stress field is
mooth, implying the stability of present structure solver. Fig. 17
lluminates the frequency of the vibration of measuring point. It
an be found the vibration frequency of plate is 488.96 rad/s. For
he analytically vibration frequency, as follows,

=

[(mπ

a

)2
+

(nπ
b

)2
]√

D
ρsh

(34)

=
Esh3

12(1 − µ2)
(35)

here D presents the bending stiffness of the plate. According to
he present result, the frequencies obtained by present method
pproximates to the analytically value 472.23 rad/s, with the
ercent deviation ε of 3.54%, where ε = |wA−wN |/wA, indicating

the accuracy of present method. Fig. 18 exhibits quantitative
comparisons the time histories of the structural kinetic energy
and the normalized total energy with the theoretical solution. It
can be seen that the solver satisfies the characteristic of energy
conservation. Despite there is a slight numerical fluctuation in the
normalized total energy, which should be a statistical error.
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Fig. 23. Typical snapshots of Case 1, (a) the pressure distribution of fluid particle and the stress distribution of element model (b) the velocity of the fluid flow.
Through above two tests, it can be noted that the high-
recision interpolation of the force and deformation on the inter-
ace can be achieved by proposed data transformation algorithm.

. Numerical examples

The proposed MPSFSI solver is verified and validated through
classical FSI benchmark test. The test of the dam-break flow
183
with an elastic gate is reproduced and compared with the ex-

periment result [25]. After that, to study the three-dimensional

effect, a test of the narrow dam-break flow with an elastic gate

with two different layouts is performed. Through the compari-

son, the structure responses related to the structural safety are

investigated.
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Table 4
The computational parameters of the case.
Parameters of MPS solver Value Parameters of FEM solver Value

Fluid density (kg/m3) 1000 Structure density (kg/m3) 1100
Kinematic viscosity (m2/s) 1 × 10−6 Young’s modulus (MPa) 10
Particle size (m) 0.00125 Poisson’s ratio 0.3
Total particle numbers 1,200,582 Structure dimensions (m ∗ m ∗ m) 0.004 ∗ 0.079 ∗ 0.1
Fluid particle numbers 732,240 Mesh generation 3 ∗ 41 ∗ 16
Time size in fluid domain (s) 1 × 10−4 Time size in structure domain (s) 1 × 10−4
Fig. 24. Horizontal deformation of free end of the elastic gate of Case 1.

.1. Dam-break flow with an elastic gate

In our previous works, the interaction between
wo-dimensional dam-break flow and the deformable gate has
een numerically simulated [44,56]. Obtained result indicated
hat the main features of the experimental measurements [25]
re generally well reproduced in the simulation. In present paper,
he reliability of the MPSFSI solver is tested numerically by sim-
lating the same benchmark problem in the three-dimensional
ay. The configuration of the system is shown in Fig. 19. A col-
mn of water at the left end of the tank is initially in hydrostatic
quilibrium state, confined by a gate. The lower part of the gate
s a deformable plate. Once the free end of the elastic plate is
eleased, the water pushes away the elastic gate and starts to
low. The dimensions of the test case and the computational
arameters are listed in Table 4. Ten-core parallelism is used in
PU computing.
Fig. 20 shows the typical snapshots of numerical results for

he free-surface profile and the deformation of the structure
ompared with the experiment. Once releasing the water column,
he gate is forced to deform under the hydrodynamic force of
reaking dam, then obvious horizontal displacement can be ob-
erved. As the depth of the water flow decreases, the pressure
oading on the gate decreases, therefore, the deformable gate
radually returns back to the initial position. The dimension in
-direction of the elastic gate is same as the water column, so
hat the leakage of water flow between the gate and the wall
hich is present in the experiments cannot be observed in the
imulation. It can be noticed that the dynamic coupling between
luid flow and deformable structure is successfully simulated.
ig. 20 (c1–c4) shows the deformation and stress distribution of
he structure. The evolution of the stress distribution is in agree-
ent with the deformation of the structure. It can be observed

hat the hydrodynamic pressure and structure stress are notable

obustness and smoothness by the presented method. However,

184
in spite of the expansion to three-dimensional in this benchmark,
obvious three-dimensional effect cannot be observed attributed
to consistency in z-direction.

Fig. 21 shows the evolution of the deformation of the elastic
gate’s free end at different positions (A, B, C, D and E) along the
z-direction, compared with the experiment result. The positions
of five probes are shown in the Fig. 19. According to the figure,
the time-history of deformation obtained by the present method
is in good agreement with the experiment data. According to
the enlarged figure, a slightly three-dimensional effect can be
found. Especially, in the evolution of horizontal deformation,
the deflection of middle point (C) is slightly larger than on the
sides. Nonetheless, the three-dimensional effect is not obvious
in this case. In general, the results show that the present three-
dimensional MPS–FEM coupled solver have shown acceptable
accuracy and stability in solving FSI problems.

4.2. Narrow dam-break flow with an elastic gate

In the above case, the breadth of dam-break flow is identical
with the elastic gate. For the study of three-dimensional effect,
the dam-break flow is narrowed to half of the elastic gate in this
section. The configuration of the model is exhibited in Fig. 22,
two types of different layout are adopted, including asymmetrical
arrangement (Case 1) and symmetrical arrangement (Case 2). The
physical parameters of fluid and structure domain are the same
as the benchmark. The initial particle spacing is 0.00125 m with
a total number of about 0.89 million particles, including 0.36
million fluid particles. The simulation physical time is 0.4 s in
this case, and the calculation time steps is 0.0001 s. Ten-core
parallelism is used in CPU computing.

Fig. 23 shows the typical snapshots of Case 1, the asymmetrical
layout. The deformation of the structure, as well as the velocity
of the fluid flow can be observed. The lower left of the gate is
firstly forced to deform under the hydrodynamic force, a gap
between bottom of the gate and right wall is then created. As the
deformation of the tip of the gate increases, the water column
gradually flows to filling the gap, then the lower right of the
gate begins to deform. The dam flows forward and to the right
at the same time, the water climbs along the right-side wall.
As the depth of the water column decreases, the gate gradually
returns back to the initial position. According to the figure, the
evolutions of the fluid and structure domain along z-direction
behavior quite different in the asymmetrical layout. It can be
noticed that strong three-dimensional feature can be observed in
this model of narrow dam-break flow with an elastic gate.

Fig. 24 shows the evolution of the horizontal deformation of
the elastic gate’s free end at different positions (A, B, C, D and
E) along the z-direction, the positions of five probes are same
as previous section (Fig. 19). In the first part, the deformation
increases rapidly, the deformation of probe located in the side of
water column is much larger than the wall side. In the second
part, the deflections of all points gradually fall back towards
the initial position, and close to each other. From the figure,
an obvious three-dimensional feature of the evolution of the
structural deflection can be found, which is in agreement with

the conclusion we got according to Fig. 23.
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Fig. 25. Typical snapshots of Case 2, (a) the pressure distribution of fluid particle and the stress distribution of element model (b) the velocity of the fluid flow.
Fig. 25 presents the typical snapshots of Case 2, the sym-
etrical layout. Different from the asymmetrical layout (Case
), the water flows from the lower middle of the gate in the
eginning, the lower middle of the gate presents the deformation.
he stress distribution on the structure model is radiating from
he middle of the gate. Then, as the water column gradually flows
o filling the gap between the wall and the deformable gate, the
tress distribution on the element model is uniform along the
-direction. According to Fig. 25 (b), the water flow spills out
185
from the middle first, a distinct water head in the middle. Then,
as the water flows to both sides, and creates water climbing
phenomenon. Meanwhile, there are three obvious water heads,
moreover, the speed of water heads on both sides is faster than
that of the middle water head. In the end, the water heads of
both two sides gradually squeeze towards the middle and collide
to form a splash, therefore, there are only two sides water heads
existing. The streamline of dam-break flow at time points of
0.24 and 0.36 s in Fig. 26 can be more apparently demonstrated



G. Zhang, R. Zha and D. Wan European Journal of Mechanics / B Fluids 94 (2022) 171–189

c

Fig. 26. The streamline of dam-break flow at time points of 0.24 and 0.36 s.
Fig. 27. Horizontal deformation of free end of the elastic gate of Case 2.

Fig. 28. The deformation and stress distribution along the z-direction of two
ases.
186
the phenomenon. According to the figure, the water head and
the fluid velocity are nonuniform and symmetrical along the z-
direction, however, the stress on the element model presents
approximately uniform distribution. It can be noticed that strong
three-dimensional feature in fluid domain can be observed in this
model, nonetheless, not in structure domain.

Fig. 27 shows the evolution of the deformation of the elastic
gate’s free end at different points (A, B, C, D and E) along the
z-direction, the positions of five probes are same as previous
section (Fig. 19). According to the figure, in the first part, the
deformations of all points increase gradually, and the deformation
of middle point C is slightly larger than the others and the
deformations of point A and E are slightly smaller. In the second
part, all points’ deformations decrease gradually, with no obvious
three-dimensional effect.

The structure response in above two cases, asymmetrical and
symmetrical layout, are compared in Fig. 28, where the maximum
displacement and maximum stress of five equal interval cross
sections are displayed. According to the figure, strong three-
dimensional phenomenon can be observed in Case 1, which is
not obvious in Case 2. The deformation of each section in Case 1
tends to increase along the z-direction, and on the side of water
column, the increase is dramatic. However, the deformation in
Case 2 is smooth, there is no clear increase within the range
of the water column. The stress distributions of both two case
are consistent with their deformation trend. In the view of the
structural response, the average displacement of Case 2 is larger,
while the local displacement of Case 1 is relatively distinct as
well as the stress distribution, which is more challenging to the
structural strength and stability.

In the view of the energy transformation, the two layouts
have the same energy at the initial status. Fig. 29 presents time
histories of structural energy components in the FSI system under
two layouts. From Fig. 29(d), it can be found that the structural
total energy obtained through the FSI system in both configura-
tions is ultimately close. In the asymmetrical arrangement, the
energy of the deformable gate increases rapidly in the initial
stage, followed by a period of fluctuation. In the symmetrical
arrangement, the energy of the deformable gate tends to increase
first and then decrease. In the symmetrical arrangement, the
instantaneous energy obtained by the structure is larger than the
asymmetrical one.
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Fig. 29. Time histories of structural energy components under two layouts, (a) kinetic energy of structure, (b) gravitational potential energy of structure, (c) elastic
train energy of structure, (d) normalized total energy of structure.
. Conclusions

The MPS–FEM coupled method is developed for 3D FSI prob-
ems. In the proposed method, the fluid field is solved by Moving
article Semi-implicit (MPS) method, while the solid part is mod-
led with FEM. A partitioned coupling strategy of traditional
onventional Serial Staggered (CSS) strategy is employed for MPS
ethod and FEM method coupling. On the fluid–structure inter-

ace, an interpolation technique, called 3D-KFBI, is adopted for
orce and deformation interpolation. The accuracy of interpola-
ion modules is validated by two numerical tests, including a
ydrostatic water column on a deformable plate and a forced
late with an initial velocity. The conservation of the force and
eformation in the interface can be achieved. In addition, the
nergy conservation property of the present MPS–FEM coupled
olver is proved.
After that, the FSI benchmark test of dam-break flow through

n elastic gate is performed as the validation of proposed method.
he obtained numerical result is in good agreement with exper-
ment result, which can indicate that the present method has
igh-accuracy and strong robustness. Moreover, simulations of
arrow dam-break flow with an elastic gate are carried out to in-
estigate the three-dimensional feature. Strong
hree-dimensional phenomenon of fluid field can be observed
n both symmetrical and symmetrical layouts. However, three-
imensional feature of structure field can only be clearly noticed
n asymmetrical layout. In general, the outcome indicates that the
resent solver can be used to solve 3D FSI problems. Our approach
resents the potential to be widely used in FSI problems. In the
uture, the proposed method will be applied in more complicated
nd practical FSI problems.
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