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• Nonlinear effects on sinkage, trim, wave drag and wave profiles are relatively small.
• An important exception is the wave drag of ships with bulbous bows.
• Predictions of NM theory with nonlinear corrections agree well with experiments.
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a b s t r a c t

The Neumann–Michell (NM) theory – a practical linear potential flow theory – is applied to four freely-
floating ship models (Wigley, S60, DTMB5415, KCS), assumed to advance at a constant speed in calm
water of large depth, to investigate nonlinear effects on thewave drag, the sinkage, the trim, and thewave
profile along the hull, and to approximately account for these effects via simple corrections of the linear
theory. Nonlinear effects are found to be relatively small. However, an important exception to this general
finding is that the wave drag of a bulbous ship (DTMB5415, KCS) is greatly reduced due to the nonlinear
component of the pressure in the Bernoulli relation. This important nonlinear effect is readily included
in the NM theory. The nonlinear component of the pressure in the Bernoulli relation also yields a small
increase of the sinkage, likewise readily included in the NM theory. Moreover, free-surface nonlinearities
can have appreciable, although not large, effects on the wave profile. These nonlinear effects can also
be approximately taken into account via a simple transformation of the linear wave profile. Indeed,
the flow computations for the four ship models considered here suggest that simple (post-processing)
nonlinear corrections (that require no additional flow computations) of the NM theory yield numerical
predictions of thewave drag, the sinkage, the trim and thewave profile that agreewell with experimental
measurements, and compare favorably with predictions given bymore complex computational methods.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

Nonlinear effects on the flow around a ship that advances at
a constant speed in calm water of large depth and lateral extent
are considered. The influence of nonlinearities is readily apparent
from a ship bow wave, where wavebreaking or overturning thin
sheets of water are commonly observed [1,2]. Such nonlinear ef-
fects cannot be directly modeled within the framework of linear
potential flow theory. In particular, linear potential flow theory
cannot predict the occurrence of wavebreaking, although it ar-
guably may be less ill suited than nonlinear potential flow theory
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to represent highly nonlinear effects associatedwithwavebreaking
or overturningwaves at a ship bow.Wavebreaking can in principle
be modeled within the framework of CFD methods that solve the
unsteady Reynolds-averaged Navier–Stokes equations (URANS),
although the difficulties are considerable. Moreover, CFD methods
based on the URANS are ill suited and unnecessary for routine
practical applications to ship design and hull-form optimization,
for which linear potential flow theory is adequate andmost useful.
Indeed, linear potential flow theory – specifically the Neumann–
Michell (NM) theory considered here – is practical and yields
predictions of the sinkage, the trim, the drag andwave profiles that
are in satisfactory agreement with experimental measurements as
well as numerical predictions obtained via alternative, consider-
ablymore complex, computationalmethods, as is shown in several
studies listed below.
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The NM theory is based on the usual Kelvin–Michell linearized
free-surface boundary condition. Main features of that theory,
expounded in [3,4], are summarized in [5] and are only briefly
noted here. The NM theory is a modification of the well-known
Neumann–Kelvin (NK) theory. In particular, the NM theory does
not involve a line integral around the ship waterline, unlike the NK
theory, and is based on a consistent linear flowmodel, whereas [3]
argues that the NK theory does not correspond to a consistent
linear flow model. Main features of the NM theory are consid-
ered in [6–9], and validation studies and applications are reported
in [4,5,10–14]. In particular, [14] shows that the influence of sink-
age and trim on the drag of a common monohull ship at Froude
numbers F ≤ 0.45 can easily and realistically be evaluated via
the NM theory. A notable useful feature of this theory is that
it is well suited for routine practical applications to ship design
and hull-form optimization, as is amply demonstrated in [15–23].
Indeed, the NM theory yields realistic flow predictions, sufficiently
accurate for hydrodynamic optimization, in a very practical way.
In particular, the NM theory makes it possible to evaluate the
pressure distribution at a ship hull surface in about 1s using a
common PC.

This practical linear potential flow theory is used here to an-
alyze the influence of nonlinear effects on the sinkage, the trim,
the wave drag and the wave profile along the ship hull, and to
approximately account for these nonlinear effects via simple cor-
rections of the linear theoretical predictions (without additional
flow computations). Nonlinear effects on the wave drag, the trim,
the sinkage and the wave profile are found to be relatively small.
An exception to this general finding is that the wave drag of a
ship with a large bulb is greatly reduced due to the nonlinear
component of the pressure in the Bernoulli relation. This important
nonlinear effect on the wave drag is readily taken into account
within the NM theory. In addition, the nonlinear component of
the pressure in the Bernoulli relation yields an increase of the
sinkage. This relatively small but appreciable nonlinear effect is
also readily includedwithin the NM theory.Moreover, free-surface
nonlinearities can have appreciable, although not large, effects on
the wave profile. These nonlinear effects on the wave profile can
also be approximately taken into account via a simple correction
of the linear wave profile.

Four freely-floating ship models (Wigley, S60, DTMB5415, KCS)
are considered here for purposes of illustration and validation.
Side views and bottom views of these four well-knownmodels are
depicted in Fig. 1. Numerical predictions of the sinkage, the trim,
the wave drag and wave profiles are compared with experimental
measurements reported in the literature.

Specifically, for the Wigley hull, the six sets of experimental
measurements of sinkage, trim and residuary drag performed at
IHHI (Ishikawajima-Harima Heavy Industries), SRI (Ship Research
Institute), UT (University of Tokyo) and YNU (Yokohama National
University), and the two sets of experimental measurements of
wave profiles at six Froude numbers within the range 0.25 ≤ F ≤

0.408 performed at UT and SRI, are used here. These experimental
measurements are reported in [24–26].

For the S60 ship model, the seven sets of measurements of
sinkage, trim and residuary drag performed at IHHI, UT, SRS (Ship
Research Station), UH (University of Hiroshima) and SSSRI (Shang-
hai Ship & Shipping Research Institute), and the three sets of
measurements of wave profiles at eleven Froude numbers within
the range 0.18 ≤ F ≤ 0.35 performed at UT, SRS and SNU
(Seoul National University), are used. These experimental data are
reported in [26–28].

For the DTMB5415 model, the three sets of measurements of
sinkage, trim, residuary drag and wave profiles (for F = 0.28
and F = 0.41) performed at DTMB (David Taylor Model Basin),

INSEAN (Instituto Nazionale Per Studi Ed Esperienze Di Architet-
tura Navale) and IIHR (Iowa Institute of Hydraulic Research) and
reported in [29–31] are used.

Finally, for the KCS ship model, the two sets of measurements
of sinkage, trim and residuary drag performed at MOERI (Mar-
itime Ocean Engineering Research Institute) and NMRI (National
Maritime Research Institute) and reported in [29–31], and the
experimental wave profiles (for F = 0.26) measured at MOERI and
reported in [32,33], are used.

The flow computations for the four ship models considered
here suggest that simple (post-processing) nonlinear corrections
(that require no additional flow computations) of the NM linear
theory yield numerical predictions of the wave drag, the sinkage,
the trim and the wave profile that agree well with experimental
measurements, and compare favorably with predictions given by
more complex computational methods.

2. Pressure

Potential flow around the mean wetted hull surface ΣH of a
ship, of length L, that advances at a constant speed V in calmwater
of effectively infinite depth and lateral extent is considered. Coor-
dinates and flow variables are made nondimensional with respect
to the gravitational acceleration g , the water density ρ, and the
length L and the speed V of the ship. The Froude number is defined
as F ≡ V/

√
gL. The flow is observed from a Cartesian system of

nondimensional coordinates x ≡ (x, y, z) ≡ X/L attached to the
moving ship, and is then steady (independent of time). The x axis
is chosen along thepath of the ship andpoints toward the ship bow.
The undisturbed free surface is taken as the plane z = 0 and the z
axis points upward. The ship bowand stern are located at (0.5, 0, 0)
and (−0.5, 0, 0). The flow velocity is given by (φx−1, φy, φz)where
(φx, φy, φz) ≡ (ΦX , ΦY , ΦZ )/V denotes the velocity of the flow
created by the ship and φ ≡ Φ/(VL) is the flow potential. The unit
vector n ≡ (nx, ny, nz) is normal to the ship hull surface ΣH and
points outside the ship (into the water).

The nondimensional flow pressure p at the ship hull surfaceΣH

is determined from the Bernoulli relation

p ≡ (P − Pa)/(ρV 2) = p∗
− z/F 2 (1a)

where Pa denotes the atmospheric pressure, and p∗ is the hydro-
dynamic pressure

p∗
= φx − (φ2

x + φ2
y + φ2

z )/2. (1b)

The linear approximation φx to the pressure p∗ is denoted as p̃∗ ≡

φx hereafter.
The velocity components (φx, φy, φz) at a ship hull surface ΣH

can be expressed in terms of the velocity component φn along the
unit vector n normal toΣH and the velocity components φd and φt
along two unit vectors d and t tangent to ΣH . The unit vectors d
and t are chosen as

d ≡
[ 0, −nz, −ny

]√
(ny)2 + (nz)2

and t ≡
[(ny)2 + (nz)2, −nxny, −nxnz

]√
(ny)2 + (nz)2

here, as in [3]. The three unit vectors n, d and t are orthogonal. One
then has

φ2
x + φ2

y + φ2
z = φ2

n + φ2
t + φ2

d = (nx)2 + φ2
t + φ2

d

where the boundary condition φn = nx at ΣH was used, and

p∗
=

√
(ny)2 + (nz)2 φt + (nx)2/2 − (φ2

t + φ2
d )/2 (2a)

p̃∗ = φx =

√
(ny)2 + (nz)2 φt + (nx)2. (2b)

The tangential velocity components φt and φd are determined
hereafter via the Neumann-Michell (NM) theory, as was already
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Fig. 1. Side views (left) and bottom views (right) of the mean wetted hull surfaces ΣH
0 of the Wigley (top row), S60 (second row), DTMB5415 (third row) and KCS (bottom

row) hulls approximated via 2880 (Wigley), 2880 (S60), 3000 (DTMB5415) or 4776 (KCS) bilinear panels.

noted. Useful insight into the importance of nonlinearities can
readily be gained via a comparison of the sinkage, the trim and the
drag associated with the hydrodynamic pressure p∗ or the related
linear approximation p̃∗ = φx. This comparison is now considered.

3. Sinkage, trim and drag

The position of the mean wetted hull surface ΣH of a ship that
advances in calm water at a constant speed V is defined by the
midship sinkage Hm and the trim angle τ , which correspond to the
vertical displacement at midship x = 0 and the rotation angle,
measured hereafter in degrees, between the wetted hull surface
ΣH

0 of the ship at rest, i.e. for V = 0, and the mean wetted
hull surface ΣH of the moving ship. Positive values of Hm or τ
correspond to a downward vertical displacement at midship or a
bow-up rotation, respectively.

[5] shows that, for a broad range of common monohull ships
at Froude numbers F ≤ 0.45, the midship sinkage Hm and the
trim angle τ can be realistically estimated – without flow com-
putations – in terms of F and the beam B, the draft D, the length
L and the block coefficient Cb of the ship by means of explicit
analytical relations, obtained from an analysis of experimental
measurements for 22 models of monohull ships. Specifically, Hm

and τ can be estimated via the relations

Hm
≈ 0.9

√
BD (Cb − 0.13)F 2 (3a)

τ ≈
9
π

√
BD
L

[F 2
∗

√
1 + F 8

∗
− 36 (Cb − 0.13)F 2

] (3b)

where F∗ ≡ F/0.33, and τ is expressed in degrees as was already
noted. Alternatively, the midship sinkage Hm and the trim angle
τ can be determined numerically via the NM theory applied to
the hull surface ΣH

0 of the ship at rest – i.e. without iterative flow
computations for a series of hull positions – as is also shown in [5].

Specifically, the midship sinkage Hm and the trim angle τ are
determined in [5] and here from the nondimensional hydrody-
namic lift C z

≡ F z/(ρL2V 2) and pitch moment C zx
≡ Mzx/(ρL3V 2),

evaluated by means of the NM theory applied to the hull surface
ΣH

0 of the ship at rest, via the classical relations

Hm

L
≈ F 2 C z

+ ε2 C zx

a0(1 − ε0 ε2)
and

πτ

180
≈ F 2 C zx

+ ε0 C z

a2(1 − ε0 ε2)
(4a)

where ε0 ≡ a1/a0 and ε2 ≡ a1/a2. Moreover, a0, a1 and a2 denote
the nondimensional area of the waterplane WH

0 of the wetted hull
surface ΣH

0 and the related moments defined as

(a0, a1, a2) ≡

(
A0

L2
,
A1

L3
,
A2

L4

)
≡

∫
WH

0

(1, x, x2) dx dy. (4b)

The hydrodynamic lift C z and pitch moment C zx in (4a) are deter-
mined via integration of the hydrodynamic pressure p∗ over the
wetted ship hull surface ΣH

0 of the ship at rest, i.e.

(C z, C zx) =

∫
ΣH

0

(nz, nxz − nzx) p∗da. (4c)

These relations show that the lift C z and the pitch moment
C zx are mostly determined by the pressure distribution p∗ over

the hull bottom, and consequently are relatively insensitive to the
precise position of the ship and the details of the hull geometry.
As is noted in [5], this basic property explains why – for a broad
range of common monohull ships at moderate Froude numbers –
the pressure p∗ can be integrated over ΣH

0 instead of ΣH in (4c),
and also explains why the sinkage and the trim can be predicted in
terms of the dominant hull-shape parameters B, D, L and Cb related
to the overall hull geometry as in the analytical relations (3).

Expressions (4c) for the hydrodynamic lift C z and the pitch
moment C zx also show that integration of the negative pressure
component −|∇φ|

2/2 over the ship hull bottom, where nz
≈ −1

and nx
≈ 0, can be expected to result in an appreciable increase in

C z , but only a minor change in C zx because the contributions of the
fore (where 0 < x and 0 < nx) and aft (where x < 0 and nx < 0)
parts of the hull bottom largely cancel out, as is confirmed by the
numerical results considered further on.

The nondimensional wave drag Cw
≡ Dw/(ρL2V 2) is similarly

determined via integration of the hydrodynamic pressure p∗ over
the mean wetted hull surface ΣH , i.e.

Cw
=

∫
ΣH

nxp∗da. (5)

This expression shows that the wave drag is mostly determined by
the pressure distribution over the fore and aft of the ship hull. This
well-known basic property explains why (unlike the sinkage and
the trim) the wave drag is sensitive to the position of the ship and
the details of the hull geometry.

Indeed, [14] shows that the wave drag predicted by the relation
(5) where the mean wetted hull surface ΣH is taken as the wetted
hull ΣH

0 of the ship at rest is significantly smaller than the wave
drag given by (5) with ΣH taken as the wetted hulls ΣH

1 or ΣH
a

that correspond to the midship sinkage Hm and the trim angle
τ predicted by the relations (4) or (3) associated with numerical
computations or experimental measurements. Thus, sinkage and
trim have a significant influence on the wave drag, and indeed on
the viscous drag as well as is shown in [14]. The analysis of sinkage
and trim effects on the drag given in [14] also shows that the wave
drags predicted by (5) where ΣH is taken as the wetted hulls ΣH

1
or ΣH

a do not differ appreciably. Hereafter, the mean wetted hull
surface ΣH in expression (5) for the wave drag is taken as the hull
surface ΣH

a that corresponds to the sinkage Hm and the trim angle
τ predicted by the explicit analytical relations (3).

Expression (5) for the wave drag Cw shows that integration of
the negative pressure component −|∇φ|

2/2 over the fore and aft
of the ship hull surface can be expected to only result in a minor
change in Cw because the contributions of the fore (where 0 < nx)
and aft (where nx < 0) of the hull surface largely cancel out, as
is confirmed by the numerical results for the Wigley and S60 ship
models considered further on. However, for a ship that has a large
bulb, integration of the negative pressure component −|∇φ|

2/2
over the front of the bulb (where nx

≈ 1) can be expected to result
in a significant reduction of the drag, as is illustrated further on for
the DTMB5415 and KCS models.

The midship sinkage Hm/L, the trim angle τ and the wave
drag Cw are compared to the corresponding linear approximations
H̃m/L, τ̃ , C̃w in Fig. 2 for the freely-floatingWigley, S60, DTMB5415
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Fig. 2. Midship sinkage Hm/L (left column), trim angle τ (center column) and wave drag Cw (right column) for the freely-floating Wigley (top row), S60 (second row),
DTMB5415 (third row) andKCS (bottom row) shipmodels. H̃m/L, τ̃ , C̃w andHm/L, τ ,Cw correspond to the linear pressure p̃∗ = φx or the nonlinear pressure p∗

= φx−|∇φ|
2/2.

Hm
a /L and τa correspond to the analytical relations (3). Experimentalmeasurements of the residuary drag C r are depicted as green crosses. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Difference C̃w
−Cw between the linearwave drag C̃w and the nonlinearwave

drag Cw for the DTMB5415 and KCS ship models.

and KCS ship models. These nonlinear and linear approximations
to the sinkage, the trim angle and thewave drag are determined via
the relations (3)–(5), where the dynamic pressure p∗ or the related
linear approximation p̃∗ = φx given by (2) are used. Fig. 2 also
depicts the sinkage Hm

a /L and the trim angle τa predicted by the
explicit analytical relations (3), and experimental measurements
of the sinkage Hm/L, the trim angle τ and the residuary drag C r .

Differences between the nonlinear and linear predictions of
the trim angle and the wave drag – except for the wave drags
of the DTMB5415 and KCS models, considered further on – are
small. Differences are somewhat larger, although not very large,
for the sinkage. The small differences between nonlinear and linear
predictions of the trim angle, thewave drag and (to a lesser extent)
the midship sinkage, depicted in Fig. 2 mean that the contribution
of the nonlinear component |∇φ|

2/2 in expression (2a) for the
dynamic pressure p∗ is relatively small, except at the bulbs of the
DTMB5415 and KCS models as is shown further on. Fig. 2 also
shows that the sinkage Hm

a /L and the trim angle τa predicted by
the explicit analytical relations (3) are in relatively good agreement
with the numerical predictions.
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Fig. 4. Pressure distributions over the forebodies 0.35 ≤ x ≤ 0.5 of the Wigley (top row), S60 (second row), DTMB5415 (third row) and KCS (bottom row) ship models. The
left, center and right columns show the linearized pressure p̃∗ = φx , the nonlinear pressure p∗ and the difference p̃∗ − p∗ .

However, differences between the linear and nonlinear predic-
tions C̃w and Cw of thewave drag are quite large for the DTMB5415
and KCS models, which have large bulbs as is shown in Fig. 1.
Specifically, the linear drag C̃w is much larger than the experi-
mental measurements, whereas the nonlinear wave drag Cw and
the measurements are relatively close. These large differences are
easily explained, as is illustrated in Figs. 3 and 4 now considered.

Fig. 3 shows that the difference C̃w
− Cw between the linear

and nonlinear predictions C̃w and Cw is nearly independent of the
Froude number F . The large differences between the linear and
nonlinear predictions for the DTMB5415 and KCS models, and the
fact that these differences do not varymuchwith speed, stem from
the large bulbs of these two ship models. Indeed, the nonlinear
and linear pressures are not very different over the wetted hull
surfaces of the DTMB5415 and KCS models, except at the bulbs of
the DTMB5415 and KCS models as is shown in Fig. 4.

Specifically, Fig. 4 depicts the linear pressure p̃∗, the nonlinear
pressure p∗ and the difference p̃∗ − p∗ over the fore 0.35 ≤

x ≤ 0.5 of the Wigley, S60, DTMB5415 and KCS models. The
figure shows that differences between the linear and nonlinear
pressures are relatively small everywhere except at the front of
the bulbs of the DTMB5415 and KCS models, where nx

≈ 1 and
stagnation points exist. Thus, Fig. 4 provides a particularly simple
illustration of the effectiveness of bulbs for reducing thewave drag.
The difference C̃w

− Cw between the linear and nonlinear wave
drags is nearly independent of the Froude number, as is shown
in Fig. 3, because no significant interferences occur between the
large force associated with a high pressure over the forward faces
of the large bulbs and the much smaller force associated with the
pressure at the sterns for the DTMB5415 and KCS models.

The nonlinear theoretical predictions and the experimental
measurements of sinkage and trim depicted in Fig. 2 are in very
good agreement for the four ship models within the entire range
of Froude numbers 0.1 ≤ F ≤ 0.45 considered here. Fig. 2
also shows that the nonlinear wave drag Cw agrees well with the
residuary drag C r for the four ship models within the range of
Froude numbers 0.25 ≤ F ≤ 0.45.

4. Wave profile

4.1. Linear and nonlinear wave profiles

The Bernoulli relation (1a) defines the elevation ζ ≡ E/L or
η ≡ gE/V 2 of the free surface, where p = 0, as

η ≡ ζ/F 2
= p∗

z=ζ ≈ p∗

z=0 + ζ (∂p∗/∂z)z=0 + · · · (6a)

where the subscripts z=ζ and z=0 mean evaluation at the actual free
surface z = ζ or at the undisturbed free surface z = 0. Inaccuracies
associated with the numerical evaluation of the derivative ∂p∗/∂z,
which involves second derivatives of the velocity potential φ, are
avoided if the (realistic) assumption that p∗ varies exponentially in
the vicinity of the free surface is made. The relation

p∗
≈ p∗

z=0 e
kez (6b)

is then used here. The effective wavelength λe ≡ 2π/ke associated
with the wavenumber ke in (6b) is considered further on. The
relations (6) yield

η ≈ p∗

z=0 + ζke p∗

z=0 + · · · = p∗

z=0 e
keζ .

This relation and the identity ζ ≡ F 2η yield

η e−ση
≈ p∗

z=0 (7a)

where

σ ≡ F 2ke =
2πF 2

λe
=

λmax

λe
. (7b)

Here, λmax ≡ 2πF 2 is the wavelength of the longest waves
created by a ship along its track. The relations (7) determine the
free-surface elevation η ≡ gE/V 2 in terms of the hydrodynamic
pressure p∗

z=0 and the effective wavelength λe. In particular, the
wave profile along a ship hull, i.e. the free-surface elevation at
the hull surface ΣH , can be determined from Eq. (7a) where the
pressure p∗

z=0 is evaluated via (2a)
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Fig. 5. Functions p̂∗ = η̂ e−η̂ and p̂∗ = η̂/(1 + η̂) for −0.2 ≤ η̂ ≤ 1.

The relation (7a) and the linear approximation p̃∗ ≈ φx readily
yield the linear approximation to the free-surface wave elevation

η̃ ≈ φx (8a)

where φx is evaluated at the undisturbed free surface z = 0. The
relation (7a) and the approximation eση

≈ 1 + ση yields the
nonlinear correction

η ≈ p∗/(1 − σp∗) (8b)

where p∗ is evaluated at z = 0. Computations based on the NM
theory show that the linear approximation (8a) and the nonlin-
ear approximation (8b) do not differ significantly, and both ap-
proximations are in satisfactory agreement with the experimental
measurements, for the four shipmodels considered here. However,
these two approximations aremarkedly different from the approx-
imation η ≈ p∗, which definitely is not a good approximation.

More generally, the relation (7a) and the nonlinear approxima-
tion (8b) can be expressed as

η̂ e−η̂
= p̂∗ (9a)

η̂/(1 + η̂) = p̂∗ (9b)

where η̂ ≡ ση and p̂∗ ≡ σp∗. (9c)

The functions η̂ e−η̂ and η̂/(1 + η̂), depicted in Fig. 5 for −0.2 ≤

η̂ ≤ 1, do not differ very much within the range −0.2 ≤ η̂ ≤ 0.4.
Indeed, thewave profiles obtained via the alternative relations (9a)
and (9b) are found to be nearly identical for σ = 1. Specifically,
NM computations show that the approximation η1 defined by the
relation η1 e−η1 = p∗, which corresponds to σ = 1 in (7a), is nearly
indistinguishable from the approximation (8b), which is identical
to (9b), for the four ship models considered here.

4.2. Effective wavelength

The relations (7) determine the wave profile, i.e. the elevation
η ≡ gE/V 2 of the free surface along a ship hull, in terms of the
hydrodynamic pressure p∗

z=0 and the effective wavelength λe of
the waves at the ship waterline. Realistic choices for the effective
wavelength λe are successively considered in this section for the
waves aft of the bow wave and for the bow wave, which is shorter
and higher than the waves aft of the bow wave.

The waves along the waterline of a ship, aft of the bow wave,
approximately consist of plane waves with wavelength λmax. Thus,
the effectivewavelength λe and the related parameter σ in (7a) are
approximately given by λe ≈ λmax and σ ≈ 1 along the waterline
aft of the bow wave. The nonlinear approximation η1 defined by

the relation η1 e−η1 = p∗, which corresponds to σ = 1 in (7a) as
was already noted, and the linear approximation η̃ = φx to the
wave profiles for theWigley, S60, DTMB5415 and KCS ship models
are depicted in Fig. 6, where experimental measurements are also
shown. Differences between the linear and nonlinearwave profiles
η̃ and η1 are not very large. This result suggests that free-surface
nonlinearities have a limited, although appreciable, influence on
the wave profile. Moreover, the nonlinear approximation η1 is
not noticeably better than the linear approximation η̃, and both
approximations are in relatively good overall agreement with the
experimental measurements.

However, a notable difference between the linear and nonlinear
wave profiles depicted in Fig. 6 is that the linear approximation
η̃ = φx predicts a higher bowwave, in better agreement withmea-
surements, than the nonlinear approximation η1 in all cases except
the S60 model at low Froude numbers F ≤ 0.26, for which the
two approximations predict nearly identical bow-wave heights.
This seemingly surprising result stems from the assumption σ ≈

1, i.e. λe ≈ λmax, that is used in the nonlinear approximation
η1. In reality, the bow wave created by a ship is shorter (as well
as higher and steeper) than the waves aft of the bow wave, as
was already noted. At the bow wave, the parameter σ defined
by (7b) can then be expected to be significantly larger than the
value σ = 1 assumed in the approximation η1 and in Fig. 6. A
judicious choice for the effective wavelength λe of the bow wave
in (7b) is then essential to obtain realistic predictions of ship bow
waves, as well as for correctly filtering unrealistic short waves as
is shown [4,7]. The choice of an effective bow-wave wavelength λe

is now considered, based on the theoretical considerations given
in [1,4] and an analysis of experimental measurements of wave
profiles for the Wigley, S60 and DTMB5415 models.

Three reasonable alternative estimates of the effective wave-
length λe of a ship bow wave are

λ0 ≈ 2(0.5 − x0), λ0b ≈ 4(xb − x0) (10a)

λb ≈ 4(0.5 − xb) ≡ 2λ0 − λ0b. (10b)

Here, xb ≡ Xb/L and x0 ≡ X0/L denote the x-coordinates of the
crest of the bowwave and the intersection of the bow-wave profile
with the undisturbed free surface z = 0, as is shown in Fig. 7. The
relations (10) and (7b) yield the estimates

σ0 ≈
πF 2

0.5 − x0
, σ b

0 ≈
πF 2/2
xb − x0

(11a)

σb ≈
πF 2/2
0.5 − xb

≡
σ0

2 − σ0/σ
b
0

(11b)

of the parameter σ in (7a). The effective-wavelength parameters
σ0, σ b

0 and σb are depicted in Fig. 8 for the Wigley, S60 and
DTMB5415 ship models. This figure shows that the alternative
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Fig. 6. Linear approximation η̃ = φx and nonlinear approximation η1 defined by the relation η1 e−η1 = p∗ , which corresponds to σ = 1 in (7a), to the wave profiles for the
Wigley, S60, DTMB5415 and KCS ship models. Experimental measurements are also shown.

estimates (11) of the parameter σ associated with the effective
wavelength λe of a ship bow wave are mostly and significantly
greater than 1, with the exception of σ b

0 for the S60 model at F ≤

0.26. Fig. 8 also shows that one has σ b
0 < σ0 < σb, in accordance

with the fact that the front of a ship bow wave is shorter than the
back of the wave. In particular, (11a) yields

1 ≤ σ0 if
0.5 − x0

F 2 ≡
(L/2 − X0)g

V 2 ≤ π. (12)
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Fig. 7. Locations xb ≡ Xb/L and x0 ≡ X0/L of the crest of a ship bow wave and of
the intersection of the bow-wave profile with the undisturbed free surface z = 0.

Moreover, Fig. 8 shows that σ0, σ b
0 and σb increase with F .

Indeed, the analysis of ship bow waves considered in [1,34,35]
shows that a ship bowwave can be approximately scaled according
to the rule

(1 + Fd)
Xg
V 2 where Fd ≡

V
√
gD

= F

√
L
D

(13)

denotes the Froude number based on the draft D of the ship. In
particular, the scaling law (13) means that the basic features

1 + Fd
F 2 [0.5 − x0, 2(xb − x0), 2(0.5 − xb), zb]

= [C0, Cb
0 , Cb, C z

b ] (14)

of a ship bow wave, where zb ≡ Zb/L denotes the height of the
bow wave as is shown in Fig. 7, can be expected to be nearly
independent of the Froude number F , i.e. to be equal to constants.
These constant values are denoted as C0, Cb

0 , Cb and C z
b in (14).

The scaling law (14) is validated in Fig. 9 for the Wigley, S60 and
DTMB5415 ship models.

The relations (11) and (14) yield

[σ0, σ
b
0 , σb]

1 + Fd
≈

[
π

C0
,

π

Cb
0
,

π

Cb

]
. (15)

These relations and the average values of C0, Cb
0 and Cb for the

Wigley, S60 and DTMB5415 models noted in Fig. 9 yield

[σ b
0 , σ0, σb]/(1 + Fd) ≈

[0.42, 0.58, 0.92] for the S60 model (16a)

[0.58, 0.73, 0.98] for the DTMB5415 model (16b)

[0.71, 0.85, 1.05] for the Wigley model. (16c)

The effective wavelength parameter σ0 does not differ very much
from the average (σ b

0 + σ0 + σ b)/3, equal to 0.64, 0.76, 0.87 for
the S60, DTMB5415 and Wigley models. The values of σ b

0 , σ0 and
σb listed in (16) also show that σ b

0 < σ0 < σb as was already noted.
Moreover, (16) shows that the alternative effective wavelength
parameters σ b

0 , σ0 and σb are consistently smallest for the S60
model and highest for theWigleymodel. This resultmeans that the
effective wavelength is longest for the S60 model and shortest for
theWigley hull, and suggests that nonlinearities might be weakest
for the S60 model and strongest for the Wigley hull.

The bow-wave scaling law (13) is further illustrated in Fig. 10.
Specifically, this figure depicts experimental measurements and
NM linear predictions η̃ of bow-wave profiles in accordance with

the scaling relations

(1 + Fd)Eg/V 2 and (17a)

ξ ≡ (1 + Fd)(X − L/2)g/V 2 (17b)

for −6 ≤ ξ ≤ 0. Both the experimental measurements and
the NM linear predictions for the Wigley, S60 and DTMB5415
ship models, at six, eleven or two Froude numbers, approximately
coalesce in Fig. 10, in agreement with the relations (17). Indeed,
these scaling relations are shown in [1,34,35] to be approximately
valid for ship bow waves, except at the stem of a ship where
the rise of water follows a different scaling law [36]. Fig. 10 also
shows that the NM linear bow-wave profiles are in relatively good
overall agreement with the experimental measurements, as was
already observed in Fig. 6. In particular, the figure shows that the
bow-wave height predicted by the NM linear theory is slightly
higher than the experimental bow-wave height for the S60 model
but slightly lower for the Wigley and S60 models. Fig. 10 also
shows that the experimental measurements and the theoretical
predictions, separated into three groups that correspond to Froude
numbers F within the ranges F < 0.25, 0.25 < F < 0.3 and
0.3 < F , are largely found above or below the polynomial fits of
all the experimentalmeasurements and the theoretical predictions
in a fairly consistent manner for the Wigley and S60 models (for
which wave profiles are shown for six or eleven Froude numbers).
This finding suggests that the scaling law (17) is not perfect and
could perhaps be refined. E.g. the draft D used to define the Froude
number Fd might be replaced by an effective draft De that depends
on the Froude number F .

The influence of nonlinearities is illustrated in Fig. 11 via com-
parisons of the linear bow-wave profile η̃ = φx, the pressure p∗

z=0,
and the nonlinear profile η1 associated with the simplest choice
σ = 1 in (7a) and already considered in Fig. 6. Fig. 11 shows that
the pressure p∗

z=0 is consistently smaller than the linear profile
η̃ = φx in accordance with (1b). Differences between η̃ and p∗

z=0
are appreciable, although not very large. The nonlinear bow-wave
profile η1 also lies below the linear profile η̃, but is closer to the
linear profile η̃ than the pressure p∗

z=0. The bottom row of Fig. 11
shows that, except for the S60 model, the linear bow-wave profile
η̃ is closer to the experimental profile than the nonlinear profile η1,
as was already noted in Fig. 6.

Fig. 12 depicts measurements of wave profiles for the Wigley,
S60 and DTMB5415 models for the range −30 ≤ ξ ≤ 0 instead of
the narrower range −6 ≤ ξ ≤ 0 already considered in Fig. 10.
Fig. 12 shows that the scaling law (17) does not hold for the
entire wave profile (although the wave profiles for theWigley hull
approximately coalesce for the relatively wide range −15 ≤ ξ ≤

0), i.e. is a ‘bow-wave scaling law’ that only applies to bowwaves.

4.3. Practical nonlinear correction of linear wave profile

Aswas already noted, Fig. 6 shows that the bowwave predicted
by the nonlinear approximation η1, which corresponds to σ = 1 in
(7a), is lower and in poorer agreement with measurements than
the bow wave predicted by the linear approximation η̃ = φx.
Moreover, the foregoing analysis of ship bow waves suggests that
nonlinear bow waves that better agree with measurements may
be expected if a realistic effective-wavelength parameter σ ≡

λmax/λe is used in (7a).
The effective-wavelength parameter σ in (7a) can be estimated

from experimental measurements ηexp of wave profiles and NM
predictions of the pressure p∗

z=0 via the relation (7a). Specifically,
this relation yields

σ
exp
NM =

1
ηexp ln

ηexp

p∗

z=0
. (18)
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Fig. 8. Effective-wavelength parameters σ0 , σ b
0 and σb defined by (11) for the Wigley, S60 and DTMB5415 models. These parameters are determined from the nonlinear

approximation η1 predicted by the NM theory and depicted in Fig. 6.

Fig. 9. Values of (1+ Fd)(L/2−X0) g/V 2 , 2(1+ Fd)(Xb −X0) g/V 2 , 2(1+ Fd)(L/2−Xb) g/V 2 and 5(1+ Fd)Zb g/V 2 for theWigley, S60 and DTMB5415 ship models. The dashed
horizontal lines represent averages of the values for the Froude numbers considered in the figure.

Fig. 10. Experimental measurements (top row) and NM-theory linear predictions η̃ (bottom row) of the bow-wave profiles (1 + Fd)Eg/V 2 for the Wigley (left column), S60
(center column) and DTMB5415 (right column) ship models and −6 ≤ (1+ Fd)(X − L/2)g/V 2

≤ 0. The dashed blue lines in the top row and the solid red lines in the bottom
row correspond to average values of the experimental measurements or the linear NM predictions η1 . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

The effective-wavelength parameter σ exp
NM determined via (18) from

experimental measurements and NM theoretical predictions for
the Wigley, S60 and DTMB5415 models is depicted in Fig. 13 for
−3 ≤ ξ ≤ 0. The figure also shows the three alternative effective-
wavelength parameters σ b

0 , σ0, σb given by (16), and polynomial
fits of σ

exp
NM . Moreover, the locations ξb of the bow wave crests –

given by ξb ≈ −0.9, −2, −1 for the Wigley, S60, DTMB5415

models – are marked as vertical lines in Fig. 13. The figure shows
that (despite considerable scatter, notably for ξ < −2) the values
of σ

exp
NM determined from experimental measurements and NM

predictions increase as ξ → 0, i.e. are larger in the vicinity of
the ship stem ξ = 0, as is expected. Indeed, the front of a ship
bow wave is much steeper than the back of the wave, and is
approximately parabolic [1]. Fig. 13 also shows that the values of
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Fig. 11. NM linear profile η̃, pressure p∗

z=0 , nonlinear profile η1 and experimental measurements of the scaled bow-wave profiles (1+ Fd)Eg/V 2 of the Wigley (left column),
S60 (center column) and DTMB5415 (right column) models for −6 ≤ (1 + Fd)(X − L/2)g/V 2

≤ 0. The dashed blue lines in the top row and the dashed black lines in the
center row correspond to average values of p∗

z=0 (top) or η1 (bottom). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 12. Experimental wave profiles (1+ Fd)Eg/V 2 of the Wigley (left), S60 (center) and DTMB5415 (right) models for −30 ≤ (1 + Fd)(X − L/2)g/V 2
≤ 0. This figure shows

that the bow-wave scaling law illustrated in Figs. 10 and 11 does not hold for the entire wave profile.

σ
exp
NM in the vicinity of the location ξb of the crest of the bowwave are

consistent with the values of the alternative parameters σ b
0 , σ0, σb

given by (16).
Fig. 14 depicts the ratio σ

exp
NM /σ0 of the effective-wavelength

parameters σ
exp
NM and σ0 already considered in Fig. 13. The vertical

lines ξb ≈ −0.9, −2, −1 in Fig. 14 correspond to the locations of
the bow wave crests for the Wigley, S60, DTMB5415 models, as
in Fig. 13. Fig. 14 shows that, although considerable scatter can
be observed among the data, the ratio σ

exp
NM /σ0 may reasonably be

assumed to be approximately independent of the hull shape and
the Froude number F , and can be roughly approximated as

σ/σ0 = 0.5 + 0.78/(0.12 − ξ ) (19a)

where ξ ≤ 0 is given by (17b). Moreover, σ0 is defined by (11a) as

σ0 = πF 2/(0.5 − x0) (19b)

where x0 ≡ X0/L is now taken as the x-coordinate of the first
intersection of the pressure p∗

z=0 with the undisturbed free surface
z = 0.

The relation (7a), where the effective-wavelength parameter σ

is determined via (19), provides a simple method for constructing
a nonlinear wave profile η from the pressure p∗

z=0 predicted by
the linear NM theory. The nonlinear correction of the NM linear
wave profile defined by the relations (7a) and (19) is an elemen-
tary (post-processing) procedure that requires no additional flow



C. Ma et al. / European Journal of Mechanics / B Fluids 67 (2018) 1–14 11

Fig. 13. Values of the effective-wavelength parameterσ exp
NM determined via (18) for theWigley (left), S60 (center) andDTMB5415 (right)models; the red solid lines correspond

to average values for −2 ≤ (1 + Fd)(X − L/2)g/V 2 . The three dashed horizontal lines correspond to the three alternative effective-wavelength parameters σ b
0 , σ0 and σb

given by (16) and depicted in Fig. 9. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Values of the parameter σ
exp
NM /σ0 determined from (18) and the intersection x0 of the bow-wave profile with the mean free surface z = 0. The related fit (19) is

depicted as solid red lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Nonlinear bow-wave profiles determined from (7a), where the effective-wavelength parameter σ is given by (19), linear profiles η̃ = φx and experimental
measurements for the Wigley (left column), S60 (center column) and DTMB5415 (right column) models.

computations. Although the scatter among the values of the ratio
σ

exp
NM /σ0 depicted in Fig. 14 shows that the nonlinear correction

defined by (7a) and (19) cannot be expected to be accurate, com-
parison of the NM linear wave profile η̃ and the related nonlinear
profile η determined via (7a) and (19) provides an estimate of the
influence of nonlinearities on the wave profile. This estimate is
sufficient in many practical cases because differences between

the linear and nonlinear wave profiles are not very large, and are
largely inconsequential for typical practical applications.

The nonlinear bow-wave profile η determined from linear NM
flow computations via (7a) and (19), and the corresponding linear
profile η̃ and experimental measurements, are depicted in Fig. 15
for the Wigley, S60 and DTMB5415 ship models at six, eleven
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Fig. 16. Experimental measurements, linear wave profiles η̃ = φx and nonlinear profiles determined from (7a), where the effective-wavelength parameter σ is given by
(19), for the Wigley, S60, DTMB5415 and KCS models.

or two Froude numbers. This figure shows that differences be-
tween the linear and nonlinear bow-wave profiles η̃ and η are
appreciable, although not very large. The nonlinear bow wave is

slightly higher and noticeably sharper than the linear bow wave,
and qualitatively in better agreement with the experimental bow
wave, for the Wigley and DTMB5415 models. However, the linear
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bow wave is somewhat closer to the experimental bow wave than
thenonlinear bowwave for the S60model, forwhichnonlinearities
appear to be weaker than for the Wigley and DTMB5415 models.

The linear and nonlinear wave profiles are depicted, together
with experimental measurements, in Fig. 16 within the range
−0.5 ≤ x ≤ 0.5 for the Wigley, S60, DTMB5415 and KCS ship
models. Fig. 16 shows that the nonlinear wave profiles determined
via the simple post-processing correction used here are in some-
what better agreement with the experimental measurements on
the whole, although differences between the linear and nonlinear
wave profiles are not very large. Indeed, both wave profiles are in
satisfactory overall agreement with the experimental profiles.

5. Conclusions

Integration of the dynamic pressure p∗
≡ φx − |∇φ|

2/2, where
the flow velocity ∇φ ≡ (φx, φy, φz) is determined via the NM
(Neumann-Michell) linear potential flow theory, over the mean
wetted hull surfaces of the (freely-floating) Wigley, S60, DTMB
5415 and KCS ship models at Froude numbers F < 0.45 yields
predictions of the sinkage, the trim angle and the wave drag that
are in satisfactory agreement with experimental measurements.
Indeed, the nonlinear theoretical predictions and the experimental
measurements of sinkage and trim depicted in Fig. 2 are in very
good agreement for the four ship models within the entire range
of Froude numbers 0.1 ≤ F ≤ 0.45 considered here. Fig. 2
also shows that the nonlinear wave drag Cw agrees well with the
residuary drag C r for the four ship models within the range of
Froude numbers 0.25 ≤ F ≤ 0.45.

The nonlinear pressure component |∇φ|
2/2 has a very small

influence on the trim angle and an appreciable but relatively small
effect on the sinkage for the four ship models considered here,
and moreover also has a small influence on the wave drag for
the Wigley and S60 hulls. These results suggest that nonlinear
effects are relatively small. However, an important exception to
this general finding is the wave drag of bulbous ships. Indeed, the
nonlinear component |∇φ|

2/2 has a very large effect on the wave
drag of the DTMB5415 and KCS models, which have large bulbs,
and this pressure component must be included to obtain realistic
theoretical predictions of the wave drag.

The large differences between the linear and nonlinear predic-
tions of the wave drag for the DTMB5415 and KCS models, and the
fact that these differences do not varymuchwith speed, stem from
the bulbs of these two ship models, as is demonstrated in Fig. 4.
Specifically, this figure shows that differences between the linear
and nonlinear pressures are relatively small everywhere except at
the front of the bulb, where nx

≈ 1 and a stagnation point exists.
The differences between the linear and nonlinear wave drags for
the DTMB5415 and KCS models are nearly independent of the
Froude number, as is shown in Fig. 3, because no significant inter-
ferences occur between the high pressures over the forward faces
of the bulbs and the much smaller pressures at the sterns of the
DTMB5415 and KCS models. Indeed, Fig. 4 provides a particularly
simple illustration of the effectiveness of bulbs for reducing the
wave drag.

The linear wave profile predicted by the NM theory can readily
bemodified – without additional flow computations – via a simple
correction that approximately accounts for free-surface nonlinear-
ities. The bow wave associated with the nonlinear wave profile
that is constructed from linear NM flow computations via this
simple correction – based on the Bernoulli relation, the assumption
that the flow associated with the waves along a ship hull surface
decays exponentially with depth, and an estimate (obtained via
basic theoretical considerations and an analysis of experimental
measurements) of the effective wavelengths of these waves – is
somewhat closer to experimental measurements than the linear

bow wave. However, differences between the linear wave profile
given by the NM theory and the corresponding nonlinear profile
are relatively small overall, and indeed both the linear and the non-
linear profiles are in satisfactory agreement with the experimental
profiles. This finding suggests that the influence of free-surface
nonlinearities on wave profiles is relatively small.

Indeed, the results of the analysis of nonlinear effects reported
in the study do not support the view, largely expressed in the liter-
ature, that nonlinearities associated with the boundary condition
at the free surface are an essential feature of the flow around a ship
hull in calm water, and that a major limitation of linear potential
flow theory is its inability to account for these nonlinearities. On
the contrary, the analysis reported here provides evidence that
free-surface nonlinearities are of limited importance, and indeed
are largely inconsequential for most practical purposes, except for
the influence of the nonlinear pressure component |∇φ|

2/2 on the
wave drag of a bulbous ship. This important nonlinear effect can
readily be included within the NM linear theory. Moreover, the
linearwave profiles predicted by theNMtheory are easilymodified
to approximately account for free-surface nonlinearities, and the
resulting nonlinearwave profiles compare favorablywith thewave
profiles predicted by alternative numerical methods.

The linear NM theory can also effectively account for the (large)
influence of sinkage and trim on the drag of a freely-floatingmono-
hull ship, as is shown in [5,14]. A sequel to these previous studies
of sinkage and trim effects on the drag and the present study
of nonlinear effects will further extend the NM linear potential
flow theory to account for viscous effects, notably for full-scale
ships with rough hulls, on the wave drag. Indeed, a practical and
realistic theory – that is robust, highly efficient, and accounts for
all dominant flow physics – is required for routine applications to
design and hydrodynamic optimization.

References

[1] F. Noblesse, G. Delhommeau, M. Guilbaud, D. Hendrix, C. Yang, Simple analyt-
ical relations for ship bow waves, J. Fluid Mech. 600 (2008) 105–132.

[2] G. Delhommeau,M. Guilbaud, L. David, C. Yang, F. Noblesse, Boundary between
unsteady and overturning bow wave regimes, J. Fluid Mech. 620 (2009) 167–
175.

[3] F. Noblesse, F. Huang, C. Yang, The Neumann-Michell theory of ship waves, J.
Engrg. Math. 79 (1) (2013) 51–71.

[4] F. Huang, C. Yang, F. Noblesse, Numerical implementation and validation of the
Neumann-Michell theory of shipwaves, Eur. J. Mech. B Fluids 42 (2013) 47–68.

[5] C. Ma, C. Zhang, X. Chen, Y. Jiang, F. Noblesse, Practical estimation of sinkage
and trim for common genericmonohull ships, Ocean Eng. 126 (2016) 203–216.

[6] F. Noblesse, G. Delhommeau, F. Huang, C. Yang, Practical mathematical repre-
sentation of the flow due to a distribution of sources on a steadily-advancing
ship hull, J. Eng. Math. 71 (2011) 367–392.

[7] F. Noblesse, F. Huang, C. Yang, Evaluation of ship waves at the free surface and
removal of short waves, Eur. J. Mech. B Fluids 38 (2013) 22–37.

[8] C. Zhang, J. He, Y. Zhu, W. Li, F. Noblesse, F. Huang, C. Yang, Stationary phase
and numerical evaluation of farfield and nearfield ship waves, Eur. J. Mech.
B/Fluids 52 (2015) 28–37.

[9] H. Wu, C. Zhang, C. Ma, F. Huang, C. Yang, F. Noblesse, Errors due to a practical
Green function for steady shipwaves, Eur. J. Mech. B Fluids 55 (2016) 162–169.

[10] C. Yang, F. Huang, F. Noblesse, Practical evaluation of the drag of a ship for
design and optimization, J. Hydrodyn. Ser. B 25 (5) (2013) 645–654.

[11] F. Huang, X. Li, F. Noblesse, C. Yang, W. Duan, Illustrative applications of the
Neumann-Michell theory of shipwaves, in: 28th IlWorkshop onWaterWaves
& Floating Bodies, L’Isle sur la Sorgue, France, 2013.

[12] C. Zhang, F. Noblesse, D. Wan, F. Huang, C. Yang, Partial validation and
verification of the Neumann-Michell theory of ship waves, in: 11th Il Conf.
Hydrodynamics, Singapore, 2014.

[13] C. Zhang, J. He, C. Ma, F. Noblesse, D. Wan, F. Huang, C. Yang, Validation of the
Neumann-Michell theory for two catamarans, in: 25th Il Ocean & Polar Eng.
Conf., ISOPE, Kona, Hawaii USA, 2015.

[14] C. Ma, C. Zhang, F. Huang, C. Yang, X. Gu,W. Li, F. Noblesse, Practical evaluation
of sinkage and trim effects on the drag of a common generic freely floating
monohull ship, Appl. Ocean Res. 65 (2017) 1–11.

[15] F. Huang, L. Wang, C. Yang, A new improved artificial bee colony algorithm for
ship hull form optimization, Eng. Optim. 48 (4) (2016) 672–686.

http://refhub.elsevier.com/S0997-7546(17)30293-5/sb1
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb1
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb1
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb2
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb2
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb2
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb2
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb2
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb3
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb3
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb3
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb4
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb4
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb4
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb5
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb5
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb5
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb6
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb6
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb6
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb6
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb6
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb7
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb7
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb7
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb8
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb8
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb8
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb8
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb8
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb9
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb9
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb9
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb10
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb10
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb10
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb14
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb14
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb14
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb14
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb14
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb15
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb15
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb15


14 C. Ma et al. / European Journal of Mechanics / B Fluids 67 (2018) 1–14

[16] C. Yang, F. Huang, H. Kim, Hydrodynamic optimization of a TriSWACH, J.
Hydrodyn. Ser. B 26 (6) (2014) 856–864.

[17] F. Huang, L. Wang, C. Yang, R. Royce, Hull form optimization of a TriSWACH for
reduced drag, in: 13th Int. Conf. Fast Sea Transp., Washington DC, USA, 2015.

[18] L. Wang, F. Huang, C. Yang, R. Datla, Hydrodynamic optimization of a wedge
hull, in: 13th Int. Conf. Fast Sea Transp., Washington DC, USA, 2015.

[19] C. Yang, F. Huang, L.Wang, ANURBS-basedmodification technique for bulbous
bow generation and hydrodynamic optimization, in: 31st Symp. Nav. Hydro-
dyn., Monterey, California, USA (2016) 11–16.

[20] F. Huang, H. Kim, C. Yang, A new method for ship bulbous bow generation
and modification, in: Twenty-Fourth Int. Ocean Polar Eng. Conf., International
Society of Offshore and Polar Engineers, Busan, Korea, 2014.

[21] F. Huang, L. Wang, C. Yang, Hull form optimization for reduced drag and im-
proved seakeeping using a surrogate-based method, in: The Twenty-Fifth Int.
Ocean Polar Eng. Conf., International Society of Offshore and Polar Engineers,
Kona, Hawaii, USA, 2015.

[22] F. Huang, C. Yang, Hull form optimization of a cargo ship for reduced drag, J.
Hydrodyn. Ser. B 28 (2) (2016) 173–183.

[23] C. Yang, F. Huang, An overview of simulation based hydrodynamic design
of ship hull forms, in: The Second Conference of Global Chinese Scholars on
Hydrodynamics, Wuxi, China, 2016.

[24] H. Kajitani, H. Miyata, M. Ikehata, H. Tanaka, H. Adachi, The Summary of the
Cooperative Experiment on theWigley Parabolic Model in Japan, Tokyo Univ.,
Japan, 1983.

[25] Resistance Committee, Experimental data for the Wigley hull reported in
cooperative experiments on the Wigley parabolic model in Japan, 17th ITTC
Resistance Committee, Tech. Rep. 1983.

[26] H. Fuxin, A practical computational method for steady flow about a ship. Ph.D.
thesis, George Mason University, 2013.

[27] Resistance Committee Experimental data for the series 60 model are reported
in cooperative experiments on the series 60 (Cb = 0.6) model, 18th ITTC
Resistance Committee, Tech. Rep. 1986.

[28] H. Takashi, T. Hino,M. Hinatsu, Y. Tsukada, J. Fujisawa, ITTC Cooperative Exper-
iments on a Series 60Model at the ShipResearch Institute-FlowMeasurements
and Resistance Test, 1987.

[29] L. Larsson, F. Stern, M. Visonneau, A Workshop on Numerical Ship Hydrody-
namics, Chalmers University of Technology, 2010.

[30] J. Longo, F. Stern, Resistance, sinkage and trim, wave profile, and nominal
wake tests and uncertainty assessment for DTMB model 5512, in: Proc 25th
American Towing Tank Conference, Iowa, 1998.

[31] A. Olivieri, F. Pistani, A. Avanzini, F. Stern, R. Penna, Towing tank experiments
of resistance, sinkage and trim, boundary layer, wake, and free surface flow
around a naval combatant INSEAN 2340 model, DTIC Document, Tech. Rep.
2001.

[32] W.J. Kim, D.H. Kim, S. Van, Experimental investigation of local flow around
kriso 3600teu container ship model in towing tank, J. Soc. Naval Archit. Korea
37 (2000) 1–10 (in Korea).

[33] W.J. Kim, S.H. Van, D.H. Kim, Measurement of flows around modern commer-
cial ship models, Exp. Fluids 31 (5) (2001) 567–578.

[34] F. Noblesse, D. Hendrix, L. Faul, et al., Simple analytical expressions for the
height, location, and steepness of a ship bow wave, J. Ship Res. 50 (4) (2006)
360–370.

[35] F. Noblesse, G. Delhommeau, C. Yang, H.Y. Kim, P. Queutey, Analytical bow
waves for fine ship bows with rake and flare, J. Ship Res. 55 (2011) 1–18.

[36] F. Noblesse, G. Delhommeau, M. Guilbaud, C. Yang, The rise of water at a ship
stem, J. Ship Res. 52 (2008) 89–101.

http://refhub.elsevier.com/S0997-7546(17)30293-5/sb16
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb16
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb16
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb20
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb20
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb20
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb20
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb20
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb21
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb21
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb21
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb21
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb21
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb21
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb21
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb22
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb22
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb22
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb24
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb24
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb24
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb24
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb24
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb29
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb29
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb29
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb32
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb32
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb32
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb32
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb32
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb33
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb33
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb33
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb34
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb34
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb34
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb34
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb34
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb35
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb35
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb35
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb36
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb36
http://refhub.elsevier.com/S0997-7546(17)30293-5/sb36

	Nonlinear corrections of linear potential-flow theory of ship waves
	Introduction
	Pressure
	Sinkage, trim and drag
	Wave profile
	Linear and nonlinear wave profiles
	Effective wavelength
	Practical nonlinear correction of linear wave profile

	Conclusions
	References


