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A B S T R A C T   

In this paper, the partitioned MPS-FEM method is employed for two-dimensional and three-dimensional free 
surface flow interacting with deformable structures. The discretization of fluid and structure govern equations 
relies independently on the Moving Particle Semi-implicit method (MPS) and Finite Element Method (FEM). Two 
types of interpolation techniques, including the Shape Function Based Interpolation Technique (SFBI) and Kernel 
Function Based Interpolation Technique (KFBI) are proposed on the fluid-structure isomerous interface. The 
performance of MPS-FEM coupled method is validated by a series of two-dimensional Fluid-Structure Interaction 
(FSI) tests, including precision test and convergence validation. The results obtained show good agreements with 
published experimental result as well as referenced numerical results. At last, an extension of aforementioned 
coupled method to three-dimensional model is performed to investigate characteristics of three-dimensional FSI 
phenomena. It indicates that partitioned MPS-FEM method is effective and stable for the simulation of free- 
surface flow interacting with deformable structures.   

1. Introduction 

The investigations of Fluid-Structure Interaction (FSI) problems are 
of important significance which appears in many natural phenomena 
and engineering applications. On the one hand, for the deformable 
structures under violent hydrodynamic impact, there will be elastic vi-
bration even fatigue damage. On the other hand, the structural response 
could exert significant influences on the evolution of free surface. Hence, 
the improvement of computational methods for analyzing FSI problems, 
especially corresponding to violent free surface flow and deformable 
structures, is of substantial importance. 

A great deal of research has been conducted for fluid interactions 
with deformable structures using various numerical methods. A well- 
developed numerical approach is the Arbitrary Lagrangian–Eulerian 
(ALE) scheme, using Eulerian approach in fluid field and Lagrangian 
approach in structure field. Kassiotis et al. (2010) calculated violent 
hydrodynamic pressure that acted on a nonlinear structure through 
Volume-Of-Fluid (VOF) and Finite Element Method (FEM) coupled 
strategy. Liao et al. (2015) investigated the phenomenon of free surface 
flow impacting on an elastic obstacle by experiment as well as numerical 
simulation based on coupled Finite Difference Method (FDM) and FEM 

method. Idelsohn et al. (2008) carried out a series of tests on rolling tank 
sloshing with an elastic baffle through experiment and numerical 
simulation. The numerical results based on particle finite element 
method (PFEM) consist with experimental data. Nevertheless, remesh-
ing is often required for the large movement and deformation of struc-
tures in aforementioned schemes, which may introduce an undesired 
diffusivity, leading to a reduction in robustness and accuracy (Wick, 
2013). In the view the characteristics of FSI problems, Lagrangian par-
ticle methods, e.g., Smoothed Particle Hydrodynamics (SPH; Lucy, 
1977) or Moving Particle Semi-implicit method (MPS; Koshizuka and 
Oka, 1996) can naturally deal with the large deformations of free sur-
face, together with the moving boundaries. More recently, 
particle-based methods have been coupled with other methods to model 
fluid-structure interaction (FSI) problems involving large deformation, 
such as MPS-FEM (Mitsume et al., 2014; Zhang and Wan, 2019; Zheng 
et al., 2020a; Zheng et al., 2020b), SPH-FEM (Yang et al., 2012; Fourey 
et al., 2017; Hermange et al., 2019), MPS-mode superposition method 
(Sun et al., 2016; Sun et al., 2019a), SPH-Total Lagrangian Particle 
(SPH-TLP) (Sun et al., 2021; Zhan et al., 2019), ISPH-SPH (Khayyer 
et al., 2018), multi-resolution MPS-MPS (Khayyer et al., 2019), 
multi-resolution SPH (Zhang et al., 2021), SPH-smoothed finite element 
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method (ES-FEM) (Long et al., 2021), and SPH–Hamiltonian SPH 
(Khayyer et al., 2021a). In this paper, the MPS-FEM coupled model is 
applied to investigate the FSI problems, where MPS method is chosen for 
the simulation of violent free-surface flow of fluids. In addition, FEM has 
its robustness and accuracy in the solving of structural deformation. 

Monolithic approach (Walhorn et al., 2005; Dettmer and Perić, 
2007) and partitioned approach (Farhat and Lesoinne, 2000; Tallec and 
Mouro, 2001) are the common two-way coupling schemes in solving 
coupled problems. Generally, partitioned approach is more flexible for 
the complicated FSI problems, since separate governing equations and 
discrete ways are adopted in both fields. In this study, a weak coupling 
between FEM and MPS method is implemented, in which the fluid and 
structure fields are self-governed by different equations. In the parti-
tioned approach, Conventional Serial Staggered (CSS) algorithm and 
Conventional Parallel Staggered (CPS) algorithm are two alternative 
partitioned algorithms (Farhat and Lesoinne, 2000). Mitsume et al. 
(2014) adopted a CSS algorithm as a coupling strategy in MPS-FEM 
coupled method. The time step adopted in structure solver could be 
several times of fluid time step. Hermange et al. (2019) improved a CPS 
algorithm between SPH and FE method for the solution of FSI problems, 
in which an optimization consisting in authorizing several fluid time 
steps within each solid one simultaneously evolving is proposed. In 
present solver, a partitioned coupling of CSS algorithm between MPS 
and FEM solver is implemented. In the coupled method of MPS-FEM or 
SPH-FEM, the isomerous interface between the two fields may bring the 
challenges of data exchange. Therefore, various interpolation tech-
niques have been applied. According to Zhang and Wan (2018), Rao 
et al., 2017, Rao and Wan, 2018, and Zhang et al. (2019), the solid 
particles located within the same section are grouped as a node, it is 
almost no need for the interpolation method. Mitsume et al. (2014) as-
sumes a linear pressure distribution on the boundary side of an element 
when the pressures are converted into nodal forces. As proposed in 
Hermange et al. (2019), the external loads applied to the structure field 
is computed by averaging the fluid pressure. There are also some liter-
atures using particle method coupled with FEM to solve FSI problems 
with complicated boundary condition. Gao et al. (2021) developed 
coupled isogeometric analysis (IGA) and least-square MPS (LSMPS) 
approach for modeling FSI problems with complicated geometries, 
where the NURBS (Non-Uniform Rational B-Splines) surfaces provide 
boundary conditions for the LSMPS method. Zheng et al. (2020a; 2020b) 
proposed ghost cell boundary (GCB) model using FEM to deal with wall 
boundaries of complicated shapes, and integration points of cells took 
the place of the cells to achieve the interaction process. In present 
method, both the shape function in FEM and the kernel function of MPS 
method have a natural characteristic of interpolation. Therefore, two 
weight function interpolation techniques based on shape function and 
kernel function are proposed, called Shape Function Based Interpolation 
Technique (SFBI) and Kernel Function Based Interpolation Technique 
(KFBI). In present paper, a more comprehensive and detailed discussion 
of two data interpolation techniques will be carried out. Compared with 
the previous papers of our team (Zhang and Wan, 2019; Zhang and 
Wan, 2018; Rao et al., 2017; Rao and Wan, 2018; Zhang et al., 2019), 
structural models with more degrees of freedom are applied, which 
would bring in more challenges in the data interpolation process. What’s 
more, the interpolation techniques can be extended to 
three-dimensional applications. 

The rest of the paper is organized as follows: Section 2 introduces the 
theories of MPS and FEM briefly. Then, the coupling scheme and 
interpolation technique at the interface between fluid and structure field 
are introduced in Section 3. In the Section 4, the structural module and 
two interpolation techniques are validated firstly through the bench-
mark tests. After that, a few FSI tests are simulated utilizing the MPS- 
FEM coupled method. The comparisons between numerical results and 
experiment data (Antoci et al., 2007; Idelsohn et al., 2008; Liao et al., 
2015) are made to validate the accuracy of present method. At last, an 
extension of aforementioned coupled method to three-dimensional 

model is performed to investigate characteristics of three-dimensional 
FSI phenomena. 

2. Numerical method 

In this study, partitioned MPS-FEM method is adopted to investigate 
the FSI problems. The MPS method is used to calculate the fluid field, 
while the FEM is adopted to solve the structure field. Till now, quite a bit 
of literatures have focused on improving the stability and accuracy of 
the projection-based particle method, and some achievements have been 
obtained, for example, Taylor-series consistent gradient models 
(Khayyer and Gotoh, 2011; Tamai and Koshizuka, 2014; A. Khayyer 
et al., 2017a) are used to deal with the unphysical pressure oscillation. 
Moreover, particle shifting scheme (Lind et al., 2012; Duan et al., 2019; 
Khayyer et al., 2017b), DS scheme (Tsuruta et al., 2013) and collision 
model (Lee et al., 2011) are proposed to enhance the stability and ac-
curacy. The MPS model used in this paper follows the existing methods 
of our team (Zhang and Wan, 2012; Zhang et al., 2014; Tang et al., 
2016a; Tang et al., 2016b), which has been proved to be stable and 
suitable for solving FSI problems through the published literatures. 

2.1. MPS formulation for fluid dynamics 

The governing equations for viscous incompressible fluid including 
the continuity equations and the Navier-Stokes equations are expressed 
in Lagrangian form as following 

∇⋅ V = 0 (1)  

DV
Dt

= −
1
ρ∇P + ν∇2V + g (2)  

where V, ρ, P, ν and g denote the velocity vector, the fluid density, the 
pressure, the kinematic viscosity and the gravitational acceleration, 
respectively. In particle method, governing equations should be 
expressed by the particle interaction models based on the kernel func-
tion. The kernel function in present paper can be formulated as: 

W(r) =

⎧
⎨

⎩

re

0.85r + 0.15re
− 1 0 ≤ r < re

0 re ≤ r
(3)  

where r=|rj- ri| is the distance between particle i and j, and re denotes the 
influence radius of the target particle. Generally, the radius for particle 
number density and the gradient model is re_grad = 2.1dp and it is re_lap =

4.01dp for the Laplacian model, where dp is the initial particle space. In 
MPS, particle interaction models including the gradient, divergence, and 
Laplacian models are defined as Eq. 4~6. 

〈∇ϕ〉i =
D
n0

∑

j∕=i

ϕj + ϕi

|rj − ri|
2

(
rj − ri

)
⋅W(|rj − ri|) (4)  

〈∇⋅Φ〉i =
D
n0

∑

j∕=i

(
Φj − Φi

)
⋅
(
rj − ri

)

|rj − ri|
2 W(|rj − ri|) (5)  

〈
∇2ϕ

〉

i =
2D
n0λ

∑

j∕=i

(
ϕj − ϕi)⋅W(|rj − ri|) (6)  

λ =

∑

j∕=i
W
( ⃒
⃒rj − ri

⃒
⃒
) ⃒
⃒rj − ri

⃒
⃒2

∑

j∕=i
W
( ⃒
⃒rj − ri

⃒
⃒
) (7)  

where ϕ is an arbitrary scalar function, Ф is an arbitrary vector, D is the 
number of space dimensions, r is the position vector, λ is a parameter 
and expressed as Eq. (7), and n0 is the initial density of the particle 
number defined as 
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〈n〉i =
∑

j∕=i

W
( ⃒
⃒rj − ri

⃒
⃒
)

(8) 

In the present paper, the incompressible condition of MPS method is 
represented by two parts, the particle number density and the diver-
gence of velocity (Lee et al., 2011; Tanaka and Masunaga, 2010). 
Pressure is implicitly calculated by solving PPE, and the velocity and 
position of particles are updated according to the obtained pressure. The 
PPE in present MPS solver is defined as 

〈
∇2Pk+1〉

i = (1 − γ)
ρ

Δt
∇⋅V∗

i − γ
ρ

Δt2
< nk>i − n0

n0 (9)  

where γ is the weight of the particle number density term between 0 and 
1. The range of 0.01≤γ≤0.05 is better according to numerical experi-
ments conducted by Lee et al. (2011). In this paper, γ = 0.01 is adopted 
for all numerical experiments. 

Pressure of the fluid subdomain is closely affected by the accuracy of 
free surface detection. In the present paper, we employ a free surface 
detection strategy, shown as in Fig. 1, referred the method by Khayyer 
et al. (2009) and defined as 

< F>i =
D
n0

∑

j∕=i

(
ri − rj

)

|ri − rj|
W
( ⃒
⃒ri − rj

⃒
⃒
)

(10)  

where F represents the asymmetry of arrangements of neighbor parti-
cles. Particles satisfying<| F |>i > α| F |0 will be considered as a free 
surface particle, where α is a parameter which has a value of 0.9 in this 
paper, |F|0 is the initial value of |F| for surface particles. 

In MPS method, the boundary condition of free surface is naturally 
satisfied. For the solid boundary, the treatment of multilayer particles is 
shown as in Fig. 2. It can ensure a smooth and accurate pressure field 
around the solid surface and prevent fluid particles from penetrating 
into the impermeable boundary. The solid boundary is represented by 
one layer of wall particles. The pressures of these particles and fluid 
particles are solved by PPE. The function of two layers of ghost particles 
is to fulfill the particle number density so that the particle interaction 
can be properly calculated near the solid boundary. The pressures of 

these ghost particles are obtained by interpolation. 

2.2. FEM formulation for structure dynamics 

In the total Lagrangian (TL) formulation (Belytschko et al., 2014), 
the conservation and momentum equation can be expressed as 

ρJ = ρ0 (11)  

dv
dt

=
1
ρ0
∇0⋅PT + g (12)  

where P is the first Piola-Kirchhoff stress tensor, subscript 0 means the 
initial configuration, also called the undeformed configuration, we 
usually use vector X for the undeformed initial coordinates. While no 
subscript means the current configuration, and vector x is used for the 
deformed current configuration. J is used as the determinant of the 
deformation gradient F, which is defined by 

F =
dx
dX

=
du
dX

+ I (13)  

where u (X, t) is the displacement of material point, given by the dif-
ference between the current position and the original position. The 
Green-Lagrangian strain tensor E is defined by 

E =
1
2
(
FTF − I

)
=

1
2
(C − I) (14)  

where C is the right Cauchy deformation tensor. For linear elastic ma-
terials or Kirchhoff materials, P can be obtained by: 

P = FS (15)  

where S is the second Piola-Kirchhoff stress tensor, and the constitutive 
relation between S and strain tensor E can be expressed as: 

S = C : E (16)  

in which C is a constant 4th-rank elasticity tensor. For an isotropic 
elastic solid, the constitutive relation reduces to 

S = K(trE)I + 2G
(

E −
1
3
(trE)I

)

= λ(trE)I + 2μE (17)  

where K =λ + 2μ/3 is the bulk modulus and G = μ is the shear modulus. λ 
and μ are Lame’s constants, calculated from the Young’s modulus, E, and 
the Poisson’s ratio, υ. Thus, this fourth-order tensor can be shown as 

Cijkl = λδijδkl + μ
(
δikδjl + δilδjk

)
(18)  

where δij is the Kronecker deltas or unit matrix: δij=1 if i = j, δij=0 if i ∕= j. 
The discrete equations for a finite element model are obtained from the 
principle of virtual work, the momentum equation in TL formulation can 
be expressed as 

Ma = fext
i − f int

i (19)  

where M is the mass matrix, a is the acceleration of the node, fext is the 
common result of the external force and interaction force on the node, 
and fint is the internal force of the node, which can be defined by: 

f int
i = Kmatu + Kgeou (20)  

where Kmat and Kgeo represent the material tangent stiffness matrix and 
the geometric stiffness matrix, respectively. Kmat and Kgeo can calculate 
based on the elasticity tensor and stress tensor. If the damp force cannot 
be ignored, the resultant discrete governing equation can be written as 

M d2u
dt2 + Ku + C du

dt
= Fext (21) 

Fig. 1. The detection of free surface particles.  

Fig. 2. Schematic of boundary particles.  
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where C is the damping matrix. In this study, the Newmark-β method is 
used to solve the above equation. According to Newmark (1959), the 
structural node displacement at t = t+∆t can be solved with the help of 
Taylor’s expansions of velocity and displacement: 

ẏt+Δt = ẏt + (1 − γ)ÿtΔt + γÿt+ΔtΔt, 0 < γ < 1 (22)  

yt+Δt = yt + ẏtΔt +
1 − 2β

2
ÿtΔt2 + βÿt+ΔtΔt2, 0 < β < 1 (23)  

where β and γ are paramount parameters in the Newmark-β method and 
are set as β=0.25, γ=0.5 for all simulations. Then the displacement at t 
= t+∆t is proposed by Hsiao et al. (1999) 

K yt+Δt = Ft+Δt (24)  

K = K + a0M + a1C (25)  

Ft+Δt = Ft + M
(

a0yt + a2ẏt + a3ÿt

)

+ C
(

a1yt + a4ẏt + a5ÿt

)

(26)  

a0 =
1

βΔt2, a1 =
γ

βΔt
, a2 =

1
βΔt

, a3 =
1

2β
− 1, a4 =

γ
β
− 1,

a5 =
Δt
2

(γ
β
− 2

)
, a6 = Δt(1 − γ), a7 = γΔt

(27)  

where Kand Fdenote the effective stiffness matrix and effective force 
vector. Subsequently, the accelerations and velocities related to the next 
time step are updated as follows: 

ÿt+Δt = a0(yt+Δt − yt) − a2ẏt − a3ÿt (28)  

ẏt+Δt = ẏt + a6ÿt + a7ÿt+Δt (29)  

3. Coupling strategy of partitioned MPS-FEM method 

3.1. Coupling algorithm 

In present paper, a weak coupling between MPS and FEM method is 
implemented. The fluid and structure fields are determined separately 
by their governing equations. Then the Conventional Serial Staggered 
(CSS) algorithm is applied to realize the communication between MPS 
and FEM solver, as illuminated in Fig. 3. In the figure, u denotes the 
structure velocity vector and p represents the fluid pressure, the 
subscript n stands for the nth time-step. From the figure, it can be seen 
that the two domains progress alternatively, with the known structural 
nodal displacement and velocity at the interface at nth time-step, the 
fluid solver is executed to obtain the velocity field and the pressure field. 
Then, the hydrodynamic pressure is loaded on the structure. With this 
external force, new structural nodal displacement and velocity are ob-
tained through the structural solver. The new structural nodal velocities 
are then transferred to the fluid solver in the next step. In a word, the 
CSS algorithm is utility for its advantages of flexibility and convenient 
realization. 

3.2. Data interpolation on the fluid-structure interface 

On the fluid-structure interface, the interaction is executed by con-
verting the obtained pressures of the boundary particles into equivalent 
nodal forces, and new structural nodal displacements and velocities are 
transferred to the boundary particles. It can be noted that the fluid- 
structure interface boundary conditions are met automatically as fol-
lows (Antoci et al., 2007) 

uF = uS  

pFnF = − pSnS (30)  

where nS and nF are normal vectors to structure and interface boundary 
particles, as shown in Fig. 4. The superscript F and S represent the 
physical quantities in the fluid solver and structure solver, respectively. 
The normal vector of boundary particles nF is calculated through the 
neighbor particles within the effective radius, while the normal vector of 
structural element nS depends on the global coordinate system. By these 
means, the interface condition of displacement compatibility and trac-
tion equilibrium should be met, which indicates the continuity of not 
only numerical but directional. 

In present coupled method, both the shape function in FEM and the 
kernel function of MPS method have a natural characteristic of inter-
polation. Therefore, two types of interpolation techniques, including 

Fig. 3. Schematic diagram of partitioned coupling strategy between fluid and 
structure field. 

Fig. 4. Interface between the fluid and structure domain.  

Fig. 5. Schematic diagram of the force interpolation based on SFBI.  
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Fig. 6. Schematic diagram of the force interpolation based on KFBI.  

Fig. 7. The geometry of the structure.  

Fig. 8. The dynamic response of a free oscillating cantilever plate with stress 
field at t = 0.57 s. 

Fig. 9. Time histories of the deflection of cantilever plate with different gird 
sizes (L). 

Fig. 10. Schematic sketch of hydrostatic water column on an elastic plate.  

Fig. 11. Snapshot of the pressure and stress fields at t = 0.5 s.  

Fig. 12. The time histories of deflection (d) at the plate’s mid-span with par-
ticle convergence and grid convergence check, compared with the analyt-
ical solution. 

Table 1 
The root-mean-square error (RMSE) of different grid size and effective radius.  

H/dp H/L ¼ 3 H/L ¼ 4 H/L ¼ 5 

8 6.5246E-6 4.97498E-6 4.28562E-6 
10 3.85667E-6 2.15379E-6 1.51129E-6 
12 2.55753E-6 1.4896E-6 8.41851E-7  
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Shape Function Based Interpolation Technique (SFBI) and Kernel 
Function Based Interpolation Technique (KFBI) are proposed. 

According to the SFBI, shown as Fig. 5, for an element i with space Ωi, 
the nodal force Fim

S of node m can be computed as follow 

FS
im =

∑

j∈Ωi

pF
j ⋅nF

j ⋅l0⋅Nj
m (31)  

where subscript j means the boundary particle within the element i, but 
not the ghost particles. Nj

m stands for the shape function value of the 
node m at the particle j. pj

F denotes the hydrodynamic pressure of 
boundary particle j obtained by PPE. nj is the normal vector corre-
sponding to the boundary particle j. dp stands for the initial particle 
spacing. Then the particle position can be updated by the interpolation 
based on the current structural velocity, as follow 

wF
j =

∑

m∈Ωi

δm⋅Nj
m (32)  

where wj
F is the displacement of boundary particle j. δm denotes the 

displacement of node m. 
According to the KFBI, shown as Fig. 6, the structure particle i will be 

denoted as a neighbor particle of the node while the distance between 
the particle and the node is smaller than the effective radius re. Then, the 
equivalent nodal hydrodynamic pressure pn

s is estimated by the weighted 
value of force components regarding to the neighbor particles, which is 
defined by 

ps
n =

∑

i
pF

i ⋅nF
i ⋅W(|ri − rn|)

∑

i
W(|ri − rn|)

(33) 

The displacement of boundary particles is calculated by neighbor 
nodal displacement when the distance between the particle and the node 
is smaller than the effective radius re. Then particles’ displacement can 
be obtained by the interpolation based on the kernel functions W(|ri- 
rm|), the nodal displacement δi. 

wF
m =

∑
iδi⋅W(|ri − rm|)
∑

i
W(|ri − rm|)

(34) 

It should be noted that, the effective radius re in the interpolation 

Fig. 13. The time histories of deflection (d) at the plate’s mid-span with grid 
convergence and effective radius check. 

Table 2 
The computational error of different grid size and effective radius.  

H/L H/LError SFBI 
KFBI 

re ¼ dp re ¼ 2dp re ¼ 4dp 

3 
FIE 0.9515 0.8964 0.8770 0.8271 
RMSE 3.85667E-6 4.45135E-6 6.53931E-6 1.50177E-5 

4 FIE 0.9525 0.9541 0.9403 0.8789 
RMSE 2.15379E-6 1.78825E-6 4.87618E-6 1.01918E-5 

5 FIE 0.9567 0.9624 0.9563 0.9469 
RMSE 1.51129E-6 1.08374E-6 1.23371E-6 1.73424E-6  

Fig. 14. Schematic view of dam-break flow with elastic gate.  

Fig. 15. Horizontal and vertical displacements of free end of gate.  

Table 3 
The computational error of different grid size and effective radius.  

L=dp SFBI KFBI 
re = 4dp re = 2dp re = dp 

ε (%) 3.803 5.096 4.102 3.234  
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scheme does not mean the effective radius for the gradient model or 
Laplacian model. Generally, the size of grid in the structure solver is one 
of the most important influence factors of SFBI or KFBI. However, by 
means of KFBI, the effective radius re also has effect on the interpolation 
accuracy. In the next section, the efficiency and accuracy of above two 
interpolation technique is validation. 

4. Numerical simulation 

In this section, the accuracy of present solver in the two-dimensional 
structural response analysis and the interpolation technique is verified 
at first. Then, a series of tests are simulated to verify the applicability of 
the MPS-FEM coupled method in two-dimensional FSI problems, 

including dam break with an elastic gate (Antoci et al., 2007), the tank 
sloshing interacting with an elastic baffle (Idelsohn et al., 2008) and 
dam-break flow impacting onto an elastic obstacle (Liao et al., 2015), 
the obtained numerical results will be compared with experimental and 
numerical result. In the end, the present method is extended to a 3D FSI 
test. 

4.1. Validation of the structural module 

To validate the accuracy of present structural solver, response of the 
cantilever plate under an initial velocity is studied (Landau and Lifshitz, 
1970; Gray et al., 2001). The sketches of plate geometry and load history 
are shown as Fig. 7. The cantilever plate with a total free span length of 

Fig. 16. Snapshots of structural deformation and free surface. (t = 0.04 s, 0.08 s, 0.12 s, and 0.16 s, respectively).  
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L = 0.2 m and thickness of H = 0.02 m is dispersed into plane elements. 
The plate is subjected to an initial velocity distribution of vy(x), 
perpendicular to the axis of plate as 

Vy(x) = V0C0
f (x)
f (l)

f (x) = (coskL + coshkL)(coshkx − coskx) + (sinkL − sinhkL)(sinhkx

− sinkx) (35)  

where, C0 represents the speed of sound, set as 

C0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
E

2(1 − 2μ) ∗ ρs

√

(36)  

and E, μ and ρs are the Young’s modulus, Poisson’s ratio and density of 
elastic plate as 2 × 106 Pa, 0.4 and 1000 kg/m3, respectively; V0 is ve-
locity amplification factor, which is set as 0.001 in this case. Also, since 
the fundamental mode of vibration is considered, kL = 1.875 (k is the 
wave number). What’s more, the simulation is conducted with three 
kinds of different grid sizes, 0.004, 0.005 and 0.006 m, to check the 
convergence property of the FEM structure module. 

Fig. 8 shows the snapshot of stress field of dynamic response of plate 
by present structure solver at t = 0.57 s under middle gird size. It is noted 
that the structure model has provided stable and smooth stress field. The 
time history of deflection of free end of the cantilever plate, obtained by 
present structure module with different grid sizes is shown in Fig. 9. 
According to the comparison between present results and analytical 
solution, the reproduced structural response can be achieved, and ob-
tained results show that the present structure solver has good conver-
gence. Therefore, present structure solver using FEM is suitable and 
accurate in solving structural deformation. 

4.2. Validation of interpolation technique 

In this section, the coupling algorithm accuracy of the interfacial 
data transformation is validated. A benchmark test of hydrostatic water 
column on a thin deformable plate (Fourey et al., 2017) is reproduced by 
the MPS-FEM coupled method. Fig. 10 shows a schematic sketch of this 

Fig. 17. Water level just behind the gate and 5 cm far from it.  

Fig. 18. Sketches of the rolling tank with elastic beams.  

Table 4 
The computational parameters.  

Fluid Parameters Case1 Case2 

Fluid density (kg/m3) 917 917 
Kinematic viscosity (m2/s) 5 × 10− 5 5 × 10− 5 

Fluid depth (mm) 57.4 114.8 
Rolling frequency (Hz) 0.61 0.83 
Rolling amplitude (degree) 4 4 
Initial particle spacing (m) 0.001 0.001 
Total numbers 34,428 68,856 
Time size in fluid domain (s) 1 × 10− 4 1 × 10− 4 

Structure Parameters Case1 Case2 

Structure density (kg/m3) 1100 1100 
Young’s modulus (MPa) 6 6 
Length (mm) 57.4 114.8 
Width (mm) 4 4 
Initial element numbers 4 × 25 4 × 40 
Time size in structure domain (s) 2 × 10− 3 2 × 10− 3 

Interpolation technique SFBI SFBI  
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benchmark test. The hydrostatic pressure load of a water column of 2 m 
height suddenly subjected on the plate, which eventually reaches out an 
equilibrium state with a constant deformation. The thick (H), density, 
Young’s modulus and Poisson’s ratio of plate are 0.05 m, 2700 kg/m3, 
67.5 GPa and 0.34, respectively. To stabilize the deformation as soon as 
possible, the damping effect is not ignored here. According to the 
theoretical solution, the magnitude of static deformation at the mid-span 
of plate under the hydrostatic pressure loading of 2 m high water column 
would be d0 = -6.85E-5 m. 

Fig. 11 presents the pressure and stress fields of hydrostatic water 
column on an elastic plate at t = 0.5 s. The numerical conditions for the 
corresponding simulation are H/dp = 10, H/L = 4 and SFBI is used. It 
can be seen that the pressure/stress field is quite smooth. In addition, 
particle convergence and grid convergence study are conducted, to 
investigate the stability and accuracy of two interpolation techniques, 

SFBI and KFBI. From Fig. 12, the particle resolution is from H/dp = 8 to 
H/dp = 12 and the mesh resolution is from H/L = 3 to H/L = 5, where 
SFBI is used for interfacial data interpolation. It can be seen that the 
deformation will eventually reach a stable status, and the calculated 
static deformations are all slightly smaller than the theoretical static 
displacement. However, it would converge to the analytical solution 
with the particle resolution of H/dp = 10 or 12 and the mesh resolution 
of H/L = 4 or 5. Table 1 presents the root-mean-square error (RMSE) 
corresponding to numerical results shown in Fig. 12, where RMSE can be 
expressed as, 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(d(t) − d0)

2

√

(37) 

Through the comparison, it can be found that the interpolation 

Fig. 19. Deformation of baffle and elevation of free surface for Case 1, t = 0.95, 1.35, 1.62, and 1.88 s.  
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accuracy of SFBI under different gird sizes is fairly same, the error is 
relatively small. The MPS-FEM coupled method with the data interpo-
lation technique of SFBI has advancements such as high precision and 
good convergence. 

With regard to the data interpolation technique of KBFI, the inter-
polation accuracy is affected by the grid size L and the effective radius re. 
To validate the effectiveness of KFBI, the simulation with particle res-
olution of H/dp = 10, the mesh resolution from H/L = 3 to H/L = 5 and 
effective radius from re = dp to re = 4dp is conducted, as shown in Fig. 13. 
It can be seen that the numerical result through KFBI is same to the result 
by SFBI, the deformation will eventually reach a stable status, and the 
deformations are all slightly smaller than the theoretical displacement. 

When the finest gird (H/L = 5) is chosen, the numerical result presents 
good agreement with the theoretical displacement under each effective 
radius. When effective radius re is large (re = 4dp), the numerical result is 
always relative smaller. When effective radius re equals dp, the numer-
ical result has a better approximation to the theoretical solution. In order 
to analysis the reason, Table 2 presents the RMSE corresponding to the 
static deformations shown in Fig. 13, and the force interpolation error 
(FIE), which denotes the ratio of the summation of node force to hy-
drostatic pressure. It can be found that the accuracy of the numerical 
result is related to the force interpolation accuracy. The interpolation 
accuracy of SFBI under different gird sizes is fairly same, the error is 
relatively small. In contrast, the method with the data interpolation 

Fig. 20. Deformation of baffle and elevation of free surface for Case 2, t = 1.84, 2.12, 2.32, 2.56 s.  
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Fig. 21. Comparison of the horizontal displacement of the top of baffle (Case1).  

Fig. 22. Comparison of the horizontal displacement of the top of baffle (Case2).  

Fig. 23. Schematic view of dam-break impacting with an elastic obstacle.  
Fig. 24. The gate motion compared with the experiment.  

G. Zhang et al.                                                                                                                                                                                                                                  



Applied Ocean Research 114 (2021) 102775

12

technique of KFBI has the problems such as nonstability and slow 
convergence. However, if the effective radius is chosen more cautiously, 
it could obtain more accurate results with the interpolation technique of 
KFBI than the interpolation technique of SFBI. By comparison, it can be 
found that the data interpolation technique of SFBI is better with its 
stability and robustness, while the data interpolation technique of KFBI 
is better with its accuracy. The likely cause may be that the realistic 
fluid-structure interface differs from the treatment of multilayer 
boundary particles, which may interfere with the force interpolation 
accuracy through KFBI. When the gird size and effective radius are 
selected appropriately, the influence of ghost particles on the interpo-
lation process can be avoided. 

4.3. Dam-break flow through an elastic gate 

The first FSI test for the present coupled method is a case of the dam- 
break flow through an elastic gate, which was published by Antoci et al. 
(2007), the obtained numerical result is compared with experimental 
and numerical data. The initial configuration is illustrated in Fig. 14. 
The elastic gate is of 0.005 m thickness and 0.079 m length with the 
density and Poisson’s ratio of 1100 kg/m3 and 0.4. Due to the linear 
constitutive model applied in this paper, the Young’s modulus of the 
elastic gate is 10 MPa, which is relatively smaller than the experiment. 
The fluid partition consists of water with density of ρ = 1000 kg/m3 and 
kinematic viscosity of ν = 1.01×10− 6 m2/s. The initial particle spacing is 
set as dp = 0.001 m. As for the structure domain, the structural damping 
is assumed negligible compared to inertial forces. In this test, the effi-
ciency and accuracy of above two interpolation techniques are in vali-
dation once again. The gird size is set as L = dp and the effective radius is 
chosen to re = dp, 2 dp, 4dp, respectively. 

Horizontal and vertical displacements of free end of gate are shown 
in the Fig. 15 versus the experiment result and numerical result from 
Antoci et al. (2007). From the figure, it can be observed that the nu-
merical results obtained by two interpolation techniques present good 
agreement with the experiment result. Specially, when the value of 
effective radius re is more centered, the numerical result has a better 
approximation to the experiment result. In order to more visually 
observe and compare two interpolation techniques, the error in quan-
titative between experimental data and numerical result is shown in 
Table 3. It can be found that the accuracy of KFBI is greatly affected by 
the effective radius. By comparison, the conclusion obtained is 
approximate to the test of hydrostatic water column on a deformable 

plate. In the following numerical simulation, SFBI is the only choice. 
A set of snapshots including the deformation process of elastic gate 

and elevation of free surface based on SFBI are shown in Fig. 16, with the 
corresponding experimental photos (Antoci et al., 2007) at the same 
instants. It can be observed that once the gate is pushed open by the 
pressure of stored water, the water column flow out immediately. Dur-
ing the stage t = 0.04~0.12 s, the deflection of elastic gate as well as the 
stress increases gradually, while the level of the free surface decreases. 
After t = 0.12 s, decrease of the deformation and stress of gate can be 
observed. From the presented figure, the reproduced free surface pro-
files as well as elastic gate displacements appear to be consistent with 
those observed in the experiment. MPS-FEM coupled solver has pre-
sented a considerable stability in the reproduction of stress field in the 
elastic gate as well as hydrodynamic pressure field. 

Fig. 17 shows the time variation of the water level. Two probes of 
water height are set behind the gate and at the center of the water 
column. From the figure, it can be seen that the tendency of the varia-
tions is consistent of the result by Antoci et al. (2007). As a consequence, 
present MPS-FEM coupled method is capable in solving free-surface flow 
interacting with deformable structures. 

4.4. Tank sloshing interacting with an elastic baffle 

The second test for MPS-FEM coupled method is the flow in a 
sloshing tank interacting with an elastic baffle as compared with the 
experiment result and numerical result by Idelsohn et al. (2008). Two 
kinds of filling rates are numerically investigated in this paper, the initial 
configuration is illustrated in Fig. 18. The bottom clamped baffle is 
immersed in the fluid. The fluid used is sunflower oil with a kinematic 
viscosity of 50 times (5 × 10− 5 m2/s) that of water at room temperature. 
The tank is free to roll around the center of bottom of the container, the 
motion governing equation can be defined as 

θ(t) = θ0sin(ϖt) (38) 

The calculation parameters are listed in Table 4. A series of snapshots 
related to the simulation of the liquid sloshing interacting with 
deformable baffle are shown in Fig. 19 and Fig. 20. From the figure, the 
deformation of baffle and elevation of free surface can be observed. The 
reproduced profiles of the deformed baffle and free surface are coinci-
dent with those observed in the experiment. In the Case1, while the fluid 
flows over the structure, a bubble cavity forms near the top of baffle, 
which doesn’t exist in the experiment. The possible reason for the 

Fig. 25. The x-direction deformation of free end of elastic obstacle.  
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bubble cavity may be the three-dimensional characteristics of real flow, 
in the experiment the channel is open and air is able to escape. In the 
Case2, though the interaction between fluid and structure is more 
intense, hydrodynamic pressure and structure stress are still stable and 
smooth. Generally, the agreement between the numerical results and the 
experimental ones are acceptable. 

Fig. 21 and Fig. 22 show the time histories of the horizontal 
displacement of the top of baffle in both cases obtained by MPS-FEM 
coupled method compared with the experiment data and numerical 
results from Idelsohn et al. (2008). From the figure of Case1, it can be 
seen that the trend of numerical curve evolves consistent with the 
experiment. Though the displacement is a little higher than the experi-
ment result, it agrees with the numerical result from Idelsohn et al. 

(2008). In the Case2, both amplitude and period of displacement are in 
good agreement with experimental data. It can be confirmed that the 
MPS-FEM coupled method is of effectiveness in solving the periodic and 
violent interaction between free-surface flow and deformable structures. 

4.5. 2D dam-break flow impacting into an elastic plate 

The third validation case is dam-break impacting on an elastic 
obstacle, reproducing the experiment in Liao et al. (2015). As illustrated 
in Fig. 23, a two-dimensional water tank, with a length of 0.8 m and a 
height of 0.6 m, is set. The initial water column near the left-hand wall 
has a width of 0.2 m and a height of 0.3 m. An elastic obstacle is bottom 
clamped in the water tank, and the distance between the obstacle and 

Fig. 26. Free surface profile and deformable structure at typical time steps.  
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the right-hand side wall is 0.2 m. The elastic obstacle has a thickness of 
0.004 m and a height of 0.09 m. The density of the obstacle is 1161.54 
kg/m3, Young’s modulus is 3.5 × 106 Pa. The initial particle spacing and 
grid size are set as dp = 0.001 m and L = 0.002 m, respectively. SFBI is 
used for interfacial data interpolation in this section. 

It is worth noting that, the accurate considering of the gate motion at 
the initial stage of the dam breaking test has an essential effect on the 
formation of the dam-breaking flow and the impact force on the struc-
ture. In addition, the gradual lifting-up of the gate slightly delays the 
collapse of the water column. Therefore, at the initial stage, reasonably 
good accuracy can be obtained by consideration of the gate motion. To 
accurately reproduce the gate motion in the present method, the gate is 
discretized by boundary particles that move upward with the following 
motion law, 

Hg(t) = − 333.13185t3 + 81.9191t2 − 0.31955t
(0 < t < 0.1) (39)  

where Hg(t) denotes the vertical displacement of the gate. The com-
parision between fitted curve used in the simulation and the experi-
mental data is ploted in Fig. 24. The horizontal displacement of the 
obstacle is shown in the Fig. 25, compared with the result from Liao 
et al. (2015). From the figure, it can be seen that at the instant t = 0.25 s, 
the negative displacement can be obviously captured in the numerical 
simulation. Results show that the main features of phenomenon at the 

initial impacting stage are captured by the numerical method, the pre-
sent MPS-FEM coupled method is capable for simulating the interaction. 
Especially, a phase error between the experimental data and the nu-
merical result without gate can be observed. The similar phenomenon 
also appears in Liao et al. (2015). It can be seen that the considering of 
the gate motion at the initial stage of the dam breaking test has an 
essential effect. While during the post impact period (after 0.6 s), The 
rebound of the elastic obstacle in the numerical results is larger than that 
in the experiment. As Sun et al. (2021b) and Khayyer et al. (2021) 
pointed out, the possible reason is that the air cavity enclosed by the 
water is ignored in present paper, which might significantly affect the 
flow field and the hydrodynamic loading. The modeling of this problem 
using a multi-phase MPS-FEM model is an ongoing research in the future 
article. Generally, the agreement between the numerical result and the 
experiment result is acceptable. 

Fig. 26 shows a comparison between experiment and simulation at 
different time instants. As can be seen from the figure, at the instant t =
0.25 s the water head reaches the front side of the elastic obstacle and 
impacts the structure immediately. Then elastic obstacle produces an 
obvious deformation under the violent impact. During the stage of t =
0.25~0.35 s, water head climbs upwards along the elastic obstacle, at 
the same time the displacement of elastic obstacle becomes larger. An 
upward inclined jet flow along the elastic structure is generated, slam-
ming the right lateral wall. Due to the gravity of jet flow and the 
diversion effect of the lateral wall, a clockwise roll motion is formed in 
the right side of the elastic obstacle, and a reverse impact was performed 
on the elastic structure. It can be observed that obtained deformation of 
elastic obstacle and free surface flow are in good agreement with 
experiment. It can be confirmed that MPS-FEM coupled method is of 
effectiveness in solving two-dimensional FSI problems. 

4.6. 3D dam-break flow impacting into an elastic plate 

In this section, the proposed MPS-FEM coupled method will be 
extended to a 3D FSI test. The 3D dam-breaking case is investigated by 
comparing with the 2D results and the published data (Liao et al., 2015). 
The numerical configuration is identical with the last section, except 
that the thickness is set as 0.1 m. To visually observe the 3D flow fea-
tures, snapshots at certain time instants are depicted in Fig. 27, in which 
the fluid particles are coloured by pressure and the structure meshes are 
coloured by the stress. In order to observe the interaction between fluid 
flow and deformable structure more visually, the flow field between 
0.3–0.6 m is presented. It can be found that, the flow in the z direction 
(thickness direction) presents a slight variation, except for the splashing 
part. It also can be seen that the stress distribution on the plate is vari-
ation in the z direction. Meanwhile, the same 3D characteristics can be 
captured when observing the horizontal displacements of the elastic 
plate, as shown in Fig. 28. In the figure, the horizontal displacements of 
two markers, which are set in the center of the plate and the side of the 
plate, are compared with the 2D FSI result and experimental data. It can 
be seen that the two 3D results almost coincide with the 2D result. The 
3D characteristics is the most distinct at initial impacting stage, until the 
plate deflects to the maximum deformation. It can be found that, present 
MPS-FEM coupled method is capable in simulating 3D FSI problems, and 
capable to capture the 3D characteristics. 

5. Conclusion 

This paper presents the partitioned MPS-FEM method in solving the 
interaction between free surface flows and deformable structure. MPS 
method is applied to solve the fluid field, while the solid part is modeled 
with FEM, a weak coupling strategy is implemented to couple two 
method. Two types of data interpolation techniques applied on the two- 
dimensional isomerous interface are proposed, including the Shape 
Function Based Interpolation Technique (SFBI) and Kernel Function 
Based Interpolation Technique (KFBI). Through the benchmark test of 

Fig. 27. The simulation of 3D dam breaking flow impacting on an elastic plate.  

Fig. 28. The x-direction deformation of free end of elastic obstacle.  
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hydrostatic water column on a thin deformable plate and 2D FSI test of 
dam-breaking flow interacting with the elastic gate, the precision and 
convergence of the present interpolation techniques are validated. The 
outcomes indicated that the data interpolation technique of SFBI is 
better with its stability and robustness, while the data interpolation 
technique of KFBI is better with its accuracy when the effective radius is 
more centered. 

Then, through the other two 2D FSI tests, it can be confirmed that the 
coupled method is of stability in solving the periodic and violent FSI 
problems. Although, some difference because of ignoring the influence 
of gas phase still exist. Therefore, in future studies, the present model 
should be coupled with multi-phase model. Generally, the coupled 
method can well describe the deformation and the breakup of the free 
surfaces, and the movement and the deformation of elastic solid objects. 
In the last test of 3D FSI case of the water impact onto an elastic obstacle, 
the proposed MPS-FEM coupled method is successfully extended to a 3D 
model. It means that present MPS-FEM coupled method is effective and 
capable in simulating 2D/3D FSI problems. In addition, with 3D dam- 
breaking FSI test, the importance of considering 3D characteristic in 
some typical FSI problems is highlighted. 

In future, our work is to improve the computational efficiency by 
recourse to graphics processing unit (GPU) computing (Xie et al., 2020) 
and multi-resolution (Khayyer et al., 2019) scheme. In addition, there 
are some excellent works worth learning, such as particle generator for 
arbitrarily complex geometry (Zhu et al., 2021), the elastoplastic 
deformation of structures (Ming et al., 2016), wave-structure interaction 
problem (Ni et al., 2019), Fluid-ice-structure interaction problem (Ren 
et al., 2019; Ni et al., 2020), and coupling hydrodynamic problems 
(Zhang et al., 2020; Zhuang and Wan, 2021). 
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Dettmer, W.G., Perić, D., 2007. A fully implicit computational strategy for strongly 
coupled fluid–solid interaction. Arch. Comput. Meth. Eng. 14 (3), 205–247. 

Farhat, C., Lesoinne, M., 2000. Two efficient staggered algorithms for the serial and 
parallel solution of three-dimensional nonlinear transient aeroelastic problems. 
Comput. Methods Appl. Mech. Eng. 182 (3–4), 499–515. 

Tallec, P.L., Mouro, J., 2001. Fluid structure interaction with large structural 
displacements. Comput. Methods Appl. Mech. Eng. 190 (24–25), 3039–3067. 

Zhang, Y.L., Wan, D.C., 2018. MPS-FEM coupled method for sloshing flows in an elastic 
tank. Ocean Eng. 153, 416–427. 

Rao, C.P., Zhang, Y.L., Wan, D.C., 2017. Numerical simulation of the solitary wave 
interacting with an elastic structure using MPS-FEM coupled method. J. Mar. Sci. 
Appl. 16, 395–404. 

Rao, C.P., Wan, D.C., 2018. Numerical study of the wave-induced slamming force on the 
elastic plate based on MPS-FEM coupled method. J. Hydrodyn. Ser. B (Engl. Ed.) 30 
(1), 70–78. 

Zhang, G.Y., Chen, X., Wan, D.C., 2019. MPS-FEM coupled method for study of wave- 
structure interaction. J. Mar. Sci. Appl. 18 (4), 387–399. 

Gao, W., Matsunaga, T., Duan, G.T., Koshizuka, S., 2021. A coupled 3D isogeometric/ 
least-square MPS approach for modelling fluid–structure interactions. Comput. 
Methods Appl. Mech. Eng. 373, 113538. 

Antoci, C., Gallati, M., Sibilla, S., 2007. Numerical Simulation of Fluid–structure 
Interaction by SPH. Comput. Struct. 85 (11), 879–890. 

Khayyer, A., Gotoh, H., 2011. Enhancement of stability and accuracy of the moving 
particle semi-implicit method. J. Comput. Phys. 230, 3093–3118. 

Tamai, T., Koshizuka, S., 2014. Least squares moving particle semi-implicit method. 
Computat. Partic. Mech. 1, 277–305. 

Khayyer, A., Gotoh, H., Shimizu, Y., Gotoh, Y.K., 2017a. On enhancement of energy 
conservation properties of projection-based particle methods. Eur. J. Mech. B. Fluids 
66, 20–37. 

Lind, S.J., Xu, R., Stansby, P.K., Rogers, B.D., 2012. Incompressible smoothed particle 
hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for 
stability and validations for impulsive flows and propagating waves. J. Comput. 
Phys. 231 (4), 1499–1523. 

Duan, G.T., Yamaji, A., Koshizuka, S., Chen, B., 2019. The truncation and stabilization 
error in multiphase moving particle semi-implicit method based on corrective 
matrix: which is dominant? Comput. Fluids 190, 254–273. 

Khayyer, A., Gotoh, H., Shimizu, Y., 2017b. Comparative study on accuracy and 
conservation properties of two particle regularization schemes and proposal of an 
optimized particle shifting scheme in ISPH context. J. Comput. Phys. 332, 236–256. 

Tsuruta, N., Khayyer, A., Gotoh, H., 2013. A short note on dynamic stabilization of 
moving particle semi-implicit method. Comput. Fluids 82, 158–164. 

Lee, B.H., Park, J.C., Kim, M.H., Hwang, S.C., 2011. Step-by-step improvement of MPS 
method in simulating violent free-surface motions and impact-loads. Comput. 
Methods Appl. Mech. Eng. 200 (9–12), 1113–1125. 

Zhang, Y.X., Wan, D.C., 2012. Apply MPS method to simulate liquid sloshing in LNG 
tank. In: Proceedings of 22nd International Offshore and Polar Engineering 
Conference. Rhodes, Greece, pp. 381–391. 

Zhang, Y.X., Wan, D.C., Hino, T., 2014. Comparative study of MPS method and level-set 
method for sloshing flows. J. Hydrodyn. Ser. B (Engl. Ed.) 26 (4), 577–585. 

G. Zhang et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0001
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0001
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0001
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0002
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0002
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0003
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0003
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0003
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0004
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0004
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0004
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0005
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0005
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0006
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0006
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0007
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0007
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0007
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0008
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0008
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0009
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0009
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0009
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0010
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0010
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0010
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0011
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0011
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0012
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0012
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0012
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0013
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0013
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0013
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0014
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0014
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0014
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0015
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0015
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0015
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0016
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0016
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0016
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0017
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0017
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0017
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0018
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0018
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0018
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0019
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0019
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0019
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0020
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0020
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0021
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0021
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0021
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0022
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0022
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0022
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0023
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0023
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0023
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0024
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0024
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0025
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0025
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0025
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0026
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0026
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0027
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0027
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0028
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0028
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0028
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0029
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0029
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0029
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0030
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0030
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0031
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0031
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0031
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0032
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0032
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0033
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0033
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0034
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0034
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0035
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0035
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0035
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0036
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0036
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0036
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0036
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0037
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0037
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0037
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0038
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0038
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0038
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0039
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0039
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0040
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0040
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0040
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0041
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0041
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0041
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0042
http://refhub.elsevier.com/S0141-1187(21)00251-0/sbref0042


Applied Ocean Research 114 (2021) 102775

16

Tang, Z.Y., Zhang, Y.L., Wan, D.C., 2016a. Numerical simulation of 3D free surface flows 
by overlapping MPS. J. Hydrodyn. Ser. B (Engl. Ed.) 28 (2), 306–312. 

Tang, Z.Y., Zhang, Y.L., Wan, D.C., 2016b. Multi-resolution MPS method for free surface 
flows. Int. J. Comput. Methods 13 (4), 1641018. 

Tanaka, M., Masunaga, T., 2010. Stabilization and smoothing of pressure in MPS method 
by quasi-compressibility. J. Comput. Phys. 229 (11), 4279–4290. 

Khayyer, A., Gotoh, H., Shao, S.D., 2009. Enhanced predictions of wave impact pressure 
by improved incompressible SPH methods. Appl. Ocean Res. 31 (2), 111–131. 

Belytschko, T., Liu, W.K., Moran, B., Elkhodary, K., 2014. Nonlinear Finite Elements for 
Continua and Structures. John Wiley & Sons Inc. 

Newmark, N.M., 1959. A method of computation for structural dynamics. J. Eng. Mech. 
Div. 85 (3), 67–94. 

Hsiao, K.M., Lin, J.Y., Lin, W.Y., 1999. A consistent corotational finite element 
formulation for geometrically nonlinear dynamic analysis of 3-D beams. Comput. 
Methods Appl. Mech. Eng. 169, 1–18. 

Landau, L.D., Lifshitz, E.M., 1970. Theory of elasticity. In: Course of Theoretical Physics, 
7. Pergamon Press, Oxford.  

Gray, J.P., Monaghan, J.J., Swift, R.P., 2001. SPH elastic dynamics. Comput. Methods 
Appl. Mech. Eng. 190 (49), 6641–6662. 
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