
Ocean Engineering 296 (2024) 117083

0029-8018/© 2024 Elsevier Ltd. All rights reserved.

Research paper 

Comparison study on mooring line models for hydrodynamic performances 
of floating offshore wind turbines 

Wenjie Zhong a, Weiwen Zhao a, Decheng Wan a,*, Yan Zhao b 

a Computational Marine Hydrodynamics Lab (CMHL), School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China 
b Key Laboratory of Far-shore Wind Power Technology of Zhejiang Province, Huadong Engineering Corporation Limited, Hangzhou, China   

A R T I C L E  I N F O   

Keywords: 
Floating offshore wind turbine 
Computational fluid dynamics 
Focused wave 
Wave-structure interaction 
Mooring model 

A B S T R A C T   

The mooring system plays a crucial role in the seakeeping ability of floating offshore wind turbines (FOWTs) but 
complicates the overall dynamics of the system. Many quasi-static (QS) and dynamic models for mooring analysis 
exist but a comprehensive comparison among open-source or semi open-source codes in various scenarios is rare. 
In the present study, six mooring models including three dynamic and three QS ones are assessed. The three 
dynamic models are the local discontinuous Galerkin (LDG) finite element method (FEM), the lumped mass (LM) 
method and the finite different method (FDM), and the three QS models are the piecewise extrapolation method 
(PEM), the catenary and the QS of MAP. Three groups of tests involving catenary line under fairlead excitation, 
hanging line with axial excitation and FOWT in waves are conducted. The first two test groups focus on single 
line dynamics to assess among the three dynamic models while the third test group focuses on coupled hydro- 
mooring modeling with the FEM, PEM, catenary and QS coupled to OpenFOAM. The test results show that 
there are substantial differences among the models in various scenarios. And the LDG FEM and LM models are 
recommended to be applied in realistic FOWT hydrodynamics problems.   

1. Introduction 

The interests in deploying the floating offshore wind turbines 
(FOWTs) for extracting wind energy in deep waters urge comprehensive 
research on their dynamic properties in various sea states and opera
tional conditions. FOWT is featured as a multi-body system comprising 
the rotor and nacelle, the tower, the platform and the mooring system, 
and the coupling among the components makes its dynamics a challenge 
to simulate (Antonutti et al., 2016; Liu et al., 2017; Tran and Kim, 2016). 
For interests of the present study, the reaction from moorings compli
cates the dynamics of the structure while serving to provide its sea
keeping ability. The dynamics of the mooring system affects the line 
tensions, the fatigue and extreme loads of other components, the global 
damping of the floating platform, and the motion responses of the 
complete structure (Hall et al., 2014; Kallesøe and Hansen, 2011; Mas
ciola et al., 2013b). The mooring system is thus of great significance for 
the power generation of the mounted wind turbines (Ren et al., 2022). 

For modeling moorings in a FOWT design, both quasi-static (QS) and 
dynamic approaches are feasible candidates. The QS solves for the 
mooring position and tension assuming that the line is in static 

equilibrium, and is popular in use for FOWTs as it is computationally 
efficient, easy to work with, and available in open-source codes, e.g., 
Masciola et al. (2013a). Numerous computational fluid dynamics (CFD) 
researchers used QS models for coupled hydro-mooring (Huang et al., 
2021; Tran and Kim, 2015) or coupled aero-hydro-mooring (Cheng 
et al., 2019; Liu et al., 2017, 2019; Tran and Kim, 2016) analysis of 
FOWTs. The weakness of QS is that the hydrodynamic and inertial forces 
are ignored. These dynamic effects are included in dynamic mooring 
models which are widely used in analytical codes of FOWTs, e.g., Dai 
et al. (2018), Jonkman (2009) and Robertson et al. (2014b). One 
well-known code is the OpenFAST which is capable of conducting fully 
coupled time-domain aero-hydro-servo-elastic analysis of FOWTs. There 
have been several studies conducted to compare the QS and dynamic 
mooring line models in coupled FOWT analysis. The conclusions indi
cate that the inclusion of mooring dynamics is in many cases necessary 
for accurately predicting the mooring loads and FOWT dynamics. For 
example, Kallesøe and Hansen (2011) compared the coupled analysis 
results of a spar-buoy FOWT with dynamic FEM and QS lookup-table 
mooring models. They observed that the FEM model predicts similar 
blade loads but lower tower loads comparing to the QS in normal 
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conditions. Matha et al. (2011) carried out a comparison study using the 
Hywind design and a multi-body mooring line model, and found that the 
dynamic model gives smaller platform motions but larger mooring fa
tigue loads than QS. Masciola et al. (2013b) analyzed the response of the 
DeepCwind in coupled simulations by FAST with the mooring line 
modeled by OrcaFlex and MAP, respectively. They found that the 
mooring dynamics modifies the platform motions only in extreme sea 
states but the mooring line tensions are affected in all load cases. Similar 
conclusions were drawn in Hall et al. (2014), where the FEM and QS 
mooring line models were used for three classes of FOWT designs. The 
implications of the findings for selecting mooring models are that the 
aero-hydro-elastic analysis of FOWTs incorporating mooring dynamics 
is necessary for evaluating mooring line loads in both mild and severe 
environmental conditions. It is pointed out that the comparison studies 
in above literature used analytical FOWT codes while comparisons in the 
framework of CFD are rare. 

There are mainly four types of dynamic mooring models, i.e., lumped 
mass (LM) method, FEM, finite difference method (FDM), and multi- 
body dynamics (MBD) method. The LM was introduced for mooring 
modeling at the end of 1950’s despite that the model was simple and 
neglected the material elasticity and the line-seabed contact (Walton 
and Polachek, 1959). The line elasticity and seabed reaction were 
incorporated into mooring modeling in Wilhelmy et al. (1981) and 
Nakajima et al. (1982), and the improved model was validated via 
forced harmonic oscillation tests. Khan and Ansari (1986) proposed a 3D 
LM model, in which the masses are concentrated at nodes of rigid line 
segments. The model was demonstrated with capabilities of line-seabed 
contact and clump weights. Recently, Hall and Goupee (2015) devel
oped an open-source LM code to be used for standalone and coupled 
simulations, and validated the model against tension measurements of 
the DeepCwind mooring lines obtained by scaled tests in wave tank. The 
code has been officially included into the OpenFAST package for 
coupled aero-hydro-servo-elastic analysis of FOWTs. The LM code has 
also been implemented into the open-source CFD library OpenFOAM for 
coupled analysis of moored floating structures (Jiang et al., 2020). Other 
LM variants have been implemented and applied in marine engineering 
mooring analysis (Touzon et al., 2020; Hermawan and Furukawa, 2020). 
The LM was extended to investigate the effects of the strain and strain 
rate dependent stiffness on the dynamics of FOWTs with catenary and 
taut mooring systems in Li and Choung (2021). Numerous FEM models 
are available, for instance, the typical model ignoring the bending 
stiffness (Aamo and Fossen, 2000) and the comprehensive model 
including bending and torsion effects (Buckham et al., 2004). Formu
lations based on high-order finite elements (Escalante et al., 2011) and 
mixed finite elements (Montano et al., 2007) have also been presented. 
More recently, Palm et al. (2017) developed a FEM model using the local 
discontinuous Galerkin (LDG) FEM with the aim of better modeling snap 
loads than traditional numerical approaches. The model was validated 
against laboratory experiments. In Zhang et al. (2022a), a dynamic 
model of catenary mooring line was developed based on the vector form 
intrinsic finite element (VFIFE) method, and was verified via experi
mental data and other validated models. The VFIFE method has been 
used for the dynamic analysis of marine risers by Li et al. (2018), and the 
static and dynamic analyses of marine pipes by Wu et al. (2020). The 
results showed the feasibility of VFIFE in the nonlinear motion analysis 
of marine structures. The VFIFE method was also used in building a 
modeling framework of FOWTs (Zhang et al., 2022b). In the framework, 
the MBD is used to handle the rigid body motion, and the analysis of 
structural deformation and the solution of motion equations are con
ducted based on VFIFE. The FDM and MBD mooring models are rela
tively less applied in literature. A 3D FDM that incorporates the line 
elasticity was developed by Huang (1994), and was demonstrated via 
modeling a subsea unit towed by a maneuvering vessel. Recently, a FDM 
mooring dynamics model was developed by Chen et al. (2018) and has 
been used for the model-based analysis of FOWTs. It is found on review 
that comparisons of dynamic mooring line models are rare in literature. 

In this study, performances of six mooring line models including 
three dynamic and three QS ones, are compared. The three dynamic 
models are the LDG FEM of Moody (Palm et al., 2017), the LM of 
MoorDyn (Hall and Goupee, 2015) and the FDM of OpenMOOR (Chen 
et al., 2018). And the three QS models are the piecewise extrapolation 
method (PEM), the catenary and the QS of MAP (Masciola et al., 2013a). 
The Moody, MoorDyn, OpenMOOR and MAP are open-source or semi 
open-source codes while the PEM and catenary mooring models are 
developed by the research group of the authors. Three categories of tests 
including catenary cable subjected to fairlead excitation, hanging cable 
with axial excitation and semi-submersible FOWT in waves are carried 
out. The first two test categories focus on single line dynamics to analyze 
among the three dynamic models. In the third test category, four 
hydro-mooring models are built with the FEM, PEM, catenary and QS 
coupled to OpenFOAM, and performances of the quasi-static and dy
namic mooring models are compared for FOWT hydrodynamics in the 
CFD framework. The aim of the present study is to obtain deep insights 
into performances of various mooring line models, and attempts to give 
suggestions for choices of mooring models in FOWT analysis. 

The remainder of the paper is organized as follows. Details of the six 
mooring line models are given in the next section. The three categories 
of tests, i.e., dynamics of catenary cable due to fairlead excitation, dy
namics of hanging cable under axial excitation and hydrodynamics of a 
15 MW semi-submersible FOWT under wave impacts, are described in 
sections 3, 4 and 5, respectively. In each of the three sections, the 
physical problem, the numerical details and the results are presented in 
sequence. Finally, the conclusions are made in section 6. 

2. Mooring line models 

2.1. LDG FEM 

The mooring dynamics represented with LDG FEM from Palm et al. 
(2017) is used. The dynamics of flexible mooring lines is governed by a 
vector-valued wave equation expressed in the global inertia frame as 

∂2r
∂t2 =

1
γ0

∂T
∂s

+
f
γ0

(1)  

where γ0 is the mooring line mass per meter. R denotes the cable position 
in the reference frame and s is the curvilinear abscissa along the 
unstretched line. 

For numerical reasons, a first order equation system in terms of a 
state vector u comprising the cable position r, its spatial derivative q and 
the momentum density ν can be made as 

u̇=
∂F(u)

∂s
+ Q(u) (2)  

where 

u= [r, q, ν] (3)  

F(u)=
[

∅,
ν
γ0
,T
]T

(4)  

Q(u)=
[

ν
γ0
,∅, f

]T

(5) 

In the mooring dynamics, only the extensional stiffness is included 
while the bending and torsional stiffnesses are ignored. The internal 
moment M is set to zero in the modeling, and the axial tension force 
vector T is tangential to the cable as 

T =T(ε, ε̇) q
1 + ε (6)  

ε= |q| − 1 (7) 
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where ε is the axial strain. T is the magnitude of tension which contains 
the constitutive relation of the mooring line as a function of strain and 
strain rate. For a linear elastic cable, the tension expresses as T = EAε. 
For completeness, the strain rate is numerically calculated as 

ε̇(k) = q̇(k− 1)⋅q(k)

1 + ε(k) (8)  

where the superscripts (k-1) and (k) indicate at which time step the 
variables are evaluated. 

The symbol f represents all external forces on the mooring line as 

f = f a + f b + f c + f d (9) 

fa includes the inertia force and the added mass force which exist for 
structures accelerating in fluids as 

f a = ρf A0
(
Catar,t +Canar,n + af

)
(10)  

where Ca is the added mass coefficient, and subscripts t and n mean the 
tangential and normal directions respectively. A is the acceleration 
vector. A0 is the cross-sectional area of unstretched cable line. 

Fb is the net force from buoyancy written as 

f b = γ0
ρc − ρf

ρc
g (11)  

where ρc and ρf are the density of the mooring line and fluid, 
respectively. 

Fc is the contact force between the mooring line and the seabed. The 
bilinear spring-damper model is used for the normal force to the contact 
plane and dynamic friction is implemented for the tangential force. For a 
horizontal sea floor, the contact force vector is given as 

f c =

{
Gv + Gh if (zG − rz) ≥ 0
0 otherwise (12)  

Gv =
(

KGdc(zG − rz) − 2ξG

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
KGγ0dc

√
max(ṙz, 0)

)
z (13)  

Gh = μfbz tanh
(

πṙxy

vμ

)
ṙxy⃒
⃒ṙxy
⃒
⃒

(14)  

where zG is the vertical position of the seabed. KG and ξG are the stiffness 
and ratio of critical damping for the cable-seabed interaction, respec
tively. μ is the friction coefficient with a user-specified velocity vμ for 
maximum friction. 

Fd is the drag proportional to the square of the relative velocity be
tween the structure and fluid as 

f d = ρf d
̅̅̅̅̅̅̅̅̅̅̅
1 + ε

√ (
CDt
⃒
⃒vr,t
⃒
⃒vr,t +CDn

⃒
⃒vr,n

⃒
⃒vr,t
)/

2 (15)  

where CD is the drag coefficient, and v is the velocity vector. Note that 
the drag is modeled for circular cross-sections with volume-preserving 
property during axial strain, and the elongation and contraction fac
tors do not fully cancel which leads to a multiplier in the definition. 

The LDG FEM with Legendre basis functions φk of arbitrary order p is 
used to spatially discretize the dynamic equation. The discontinuity 
between elements emerges when deriving the weak form of the gov
erning equation with the numerical flux represented by terms with 
straight overbar in Eq. (16). The equation is manipulated on the eth 
element with the boundaries denoted by sl

e and su
e as shown in Fig. 1. 

∫

Ωe

φkφids
∂ũe

∂t
=

∫

Ωe

φk
∂φi

∂s
dsF̃e

+ [φk(Fe − Fe)]

⃒
⃒
⃒
⃒
⃒
⃒

se
u

se
l

+

∫

Ωe

φkQeds (16) 

∀k, i ∈ [0, p]. The elemental integrals are evaluated by the Gauss- 
Lobatto-Legendre quadrature points and quadrature rules. The key 
step of LDG is that the boundary integral is approximated by a numerical 

flux. As the elements are discontinuous at boundaries, the numerical flux 
enables the coupling between elements. The numerical flux is evaluated 
via the local Lax-Friedrich flux (Bernard, 2008) as: 

Fe ={Fe} + |λ|max[u
e] (17)  

where 

{Fe}= 0.5(F+ +F− ) (18)  

[ue] = 0.5(n+u− +n− u+) (19)  

where superscripts + and – on F and u mean taking values from the 
internal and external sides of the elemental boundary, respectively. The 
normal vector n points outward such that for each line element, n+ = − 1 
on sl

e and n+ = +1 on su
e. 

The maximum eigenvalue in Eq. (17) is chosen as 

|λ|max =

⎧
⎪⎨

⎪⎩

0.8
⃒
⃒
⃒
⃒
[Fe]

[ue]

⃒
⃒
⃒
⃒ if u = q

|ct| otherwise
(20)  

where ct is the tangential wave speed in the cable, and is defined by the 
maximum eigenvalue of the hyperbolic problem as 

ct =

̅̅̅̅̅̅
∂T
∂ε

√

γ0 (21) 

The mooring domain boundaries are of Dirichlet or Neumann types. 
Dirichlet conditions control the position and the momentum while 
Neumann conditions provide the tension. Thus, the fluxes on domain 
boundaries are obtained as 

F− = [∅, νD,T+]
T and u− = [rD, q+, νDγ0]

T on ΓD (22)  

F− =

[

∅,
ν+

γ0
,TN

]T

and u− = [r+, |q+|tN , ν+]
T on ΓN (23)  

where superscript + again means using value from internal side of the 
boundary. Note that the tension condition is weakly embodied in the q 
equation as the correct direction of the force is enforced while retaining 
the norm of the internal field. The tension magnitude is prescribed 
through the force flux in the momentum equation. 

Eq. (16) advances in time with the strong-stability-preserving third- 
order explicit Runge-Kutta scheme (Cockburn and Shu, 2001). A hp-a
daptive mesh refinement scheme is used for limiting the numerical error 
below a preset tolerance ε*. In the mooring line model, the tension 
magnitude T is selected as the indicator variable for the solution quality. 
For smooth solutions, a convergence rate of O (hp+1) is expected, but in 
the presence of discontinuities, the solution converges as O(h) (Krivo
donova et al., 2004). The relative jump defined in Barter and Darmofal 
(2010) is used in Bernard’s formula for the numerical error (Bernard, 
2008) as 

εe =
1̅
̅̅
8

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(⃒
⃒
⃒
⃒
[T]
{T}

⃒
⃒
⃒
⃒

se
l

)2

+

(⃒
⃒
⃒
⃒
[T]
{T}

⃒
⃒
⃒
⃒

se
u

)2
√
√
√
√ (24) 

In order to locate the regions of sharp gradients or shocks, the nature 
of the numerical error is assessed through the shock indicator defined as 

Fig. 1. Discontinuity across segments in the LDG FEM mooring line model.  
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Ie =max

(⃒
⃒
⃒
⃒
[T]
{T}

⃒
⃒
⃒
⃒

se
l

,

⃒
⃒
⃒
⃒
[T]
{T}

⃒
⃒
⃒
⃒

se
u

)

h− 0.5(p+1) (25)  

which rapidly grows to infinity near discontinuities and is small in 
smooth regions. Considering the case of cable slack condition where a 
snap load is expected to emerge in the near future, the shock criteria are 
collectively formulated as 

Se =

⎧
⎨

⎩

1 if Ie ≥ 1 and εe ≥ ε∗
1 if min(Te) ≤ T∗

0 otherwise
(26) 

For the hp-adaptivity scheme, p-refinement has precedence over h- 
refinement in elements of smooth solutions with errors larger than the 
tolerance. If shocks occur, the element is raised to maximum h-refine
ment and the order reduces to linear (p = 1). The h-refinement is 
restricted to splitting elements in half and merging two equally sized 
elements with the same parent. The initial mesh h-resolution is not 
allowed to coarsen, and the splitting hierarchy of elements is thus 
confined to one element of the initial mesh. The control algorithm for 
the hp-adaptive mesh refinement is 

if Se = 1 : p = 1, h = hmin

if Se = 0 :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p = min(p + 1, pmax) if εe ≥ ε∗

h = max(0.5h, hmin) if εe ≥ ε∗ and p = pmax

h = min(2h, hmax) if εe < 0.5p+1ε∗

p = max(p − 1, 1) if εe < hε∗ and h = hmax

(27)  

In h-refinement, the Gauss-Lobatto-Legendre (GLL) quadrature points, 
ξ∈[-1, 1], of the parent element always has the same relation to the 
points of its two child elements. This allows for a precomputed split map 
matrix between modal values of the parent and child elements as 
[

ũ−

ũ+

]

=

[
M− 1φT(ξ)φ(ξs)∅
∅M− 1φT(ξ)φ(ξs)

]

ũ (28)  

ξs =

[
0.5(ξ − 1)
0.5(ξ + 1)

]

(29)  

where superscript - and + describe values in the left and right child el
ements, respectively. M− 1 is the inverse mass matrix and ξs denotes the 
projections of the GLL points of the split elements onto the parent 
elemental domain. 

A separate transform is defined for the merging operation as in Eq. 
(30). Note that to avoid ambiguous midpoint of the adjacent elements, 
the merge map matrix is based on even number of quadrature points in 
the final element. 

ũ=

[
M− 1φT(ξ)∅
∅M− 1φT(ξ)

][
φ(2ξ + 1), ∀ξ < 0
φ(2ξ − 1), ∀ξ > 0

][
ũ−

ũ+

]

(30) 

To treat unwanted overshoots near shocks, the generalized minMod 
slope limiter described in Cockburn and Shu (2001) is used. 

ũe
1 =min Mod

(

θl
ũe

0 − ũe− 1
0

2
, θl

ũe+1
0 − ũe

0

2
, ũe

1

)

, θl ∈ [1, 2] (31)  

where variables with subscripts 0 and 1 refer to the mean and linear 
slope values, respectively. The θl blends the limiter between the classical 
minMod for θl = 1 and the less restrictive, generalized minMod for θl = 2. 
The minMod function is defined as 

min Mod(a, b, c)=

⎧
⎨

⎩

min(a, b, c) if a, b, c > 0
max(a, b, c) if a, b, c < 0
0 otherwise

(32)  

2.2. 

The LM formulation of mooring dynamics from Hall and Goupee 
(2015) is adopted. In the LM approach, the mooring line is discretized 
along the length of the line, resulting in a finite number of evenly-sized 
segments joining n + 1 nodes. Fig. 2 shows that the numbering scheme 
for the segments and nodes of each mooring line obeys a bottom-up 
principle. Specifically, the node indexes for the anchor and fairlead 
are 0 and n, respectively. The segment between nodes 0 and 1 is given an 
index of 1/2 and the last segment between nodes n - 1 and n is marked n - 
1/2. Each line is assigned identical properties, including the density 
(ρm), the unstretched length (lm), the volume-equivalent diameter (dm), 
the Young’s modulus (Em) and the internal damping coefficient (Cint). 
The mooring line segments are treated as massless while the mass is 
evenly distributed to the nodes joining the segment. The equation of 
motion for node i is given as 

(mi +Ai)r̈=Ti+1/2 − Ti− 1/2 +Ci+1/2 − Ci− 1/2 +Wi +Bi + Di (33)  

where ri (={xi, yi, zi}) and mi (=ρmπdm
2 lmI/4) denote the position and 

mass matrix of the node, respectively. The forces in Eq. (33) include the 
buoyancy (subtracting weight) Wi, the seabed reaction force Bi, the axial 
tension Ti, the axial damping Ci, the hydrodynamic added mass Ai and 
drag Di (see Fig. 2). Expressions for the forces are given as follows. 

Wi =
1
2
(
Wi+1/2 +Wi− 1/2

)
=(ρm − ρw)πdm

2lmg
/

4 (34)  

Bi = dmlm[(zbot − zi)kb − żicb]ez (35)  

Ti+1/2 =Emπdm
2
(

1
lm

−
1

|ri+1 − ri|

)

(ri+1 − ri)

/

4 (36)  

Ti− 1/2 = − Emπdm
2
(

1
lm

−
1

|ri − ri− 1|

)

(ri − ri− 1)

/

4 (37)  

Ci+1/2 =Cintπdm
2 1
lm

(ri+1 − ri)

|ri+1 − ri|
2 [(xi+1 − xi)(ẋi+1 − ẋi)+ (yi+1 − yi)(ẏi+1

− ẏi)+ (zi+1 − zi)(żi+1 − żi)]

/

4 (38)  

Ci− 1/2 = − Cintπdm
2 1
lm

(ri − ri− 1)

|ri − ri− 1|
2 [(xi − xi− 1)(ẋi − ẋi− 1)+ (yi − yi− 1)(ẏi

− ẏi− 1)+ (zi − zi− 1)(żi − żi− 1)]

/

4 (39)  

Air̈i =Aqir̈i +Apir̈i = ρwπdm
2lm
[
Cataqi +Canapi

]/
4 (40)  

Di =Dqi +Dpi = ρwdmlm
{

πCdtUqi
⃒
⃒Uqi

⃒
⃒+CdnUpi

⃒
⃒Upi

⃒
⃒
} /

2 (41)  

The hydrodynamic forces on line segments are calculated with Morison 
equation, and Cat, Can, Cdt and Cdn denote the tangential and transverse 
added mass coefficients, tangential and transverse drag coefficients 
respectively. Quiescent water is assumed in hydrodynamic analysis. 
Thus, the relative water velocity over node i is taken as (-ṙ i). To resolve 
the relative velocities and accelerations into transverse and tangential 
components, the tangent direction qi at node i is defined as the average 
of the tangent directions of two adjacent segments (see Fig. 2), and is 
calculated by qi = (ri+1 - ri-1)/|ri+1 - ri-1|. Thus, the tangential compo
nent of the relative velocity is given by Uqi = (-ṙ i⸱qi)qi. The transverse 
direction pi is perpendicular to qi and on an identical plane with (-ṙ i), 
and the transverse component of the velocity is given as Upi = (ṙ i⸱qi)qi - ṙ 
i. In a similar way, the tangential and transverse components of the 
acceleration are aqi = (-r̈ i⸱qi)qi and api = (r̈ i⸱qi)qi - r̈ i, respectively. 

The seabed vertical reaction force when a node contacts the seabed is 

W. Zhong et al.                                                                                                                                                                                                                                  



Ocean Engineering 296 (2024) 117083

5

considered with a linear spring-damper approach. Kb and cb in Eq. (35) 
represent the stiffness and viscous damping per unit area of the seabed, 
respectively. Eq. (35) is only active when a node touches the seabed, i. 
e., zi < zbot. Horizontal friction from contact with the seabed is not 
implemented. 

The second-order system of ordinary differential equation (33) are 
reduced to a system of first-order differential equations, and then solved 
via a constant-time-step second-order Runge–Kutta (RK2) integration 
algorithm. 

2.3. FDM 

The FDM dynamic mooring line model from Chen et al. (2018) is 
used. The formulation for mooring dynamics is built in Frenet frame 
with local x, y and z coordinates aligned with the tangential, normal and 
binormal directions of the curved line respectively as shown in Fig. 3. 
The Lagrangian coordinate system is parametrized by arc length s along 
the unstretched line and two angles φ and θ. A fixed Cartesian coordinate 
system (x0, y0, z0) is also defined for each mooring line as seen in Fig. 3. 
The origin of the Cartesian coordinate is set at the anchor with x0 
pointing upwards and the x0 - y0 plane is the vertical plane defined by 
the anchor and the initial fairlead. The horizontal and vertical distances 
between anchor and initial fairlead are denoted as lc and hc, respectively. 

The line position in the Cartesian coordinate system can be computed 
with s, φ, θ and the strain ε after solving the equations in the Lagrangian 
coordinate system as shown below. 

∂ε
∂s

−
m

f ′(ε)
∂u
∂t

+
m

f ′(ε)
v cos θ

∂φ
∂t

−
m

f ′(ε)
w

∂θ
∂t

+ β
∂ε
∂t

+
Sbκ2

f ′(ε)
−

Snκ3

f ′(ε)

−
w0

f ′(ε)
cos φ cos θ +

Fdt

f ′(ε)
= 0 (42)  

∂Sn

∂s
− (m+man)

∂v
∂t

− m(u cos θ+w sin θ)
∂φ
∂t

+ f (ε)κ3 + Sbκ3 tan θ+w0 sin φ+Fdn = 0 (43)  

∂Sb

∂s
− (m+man)

∂w
∂t

+mv sin θ
∂φ
∂t

+mu
∂θ
∂t

+Cmρ πd2

4
− Snκ3 tan θ − f (ε)κ2

− w0 cos φ sin θ+Fdb = 0
(44)  

EI
∂κ2

∂s
+(EI − GJ)κ3

2 tan θ − Sb(1 + ε)3
= 0 (45)  

EI
∂κ3

∂s
+(GJ − EI)κ3κ2 tan θ + Sn(1 + ε)3

= 0 (46)  

∂u
∂s

−
∂ε
∂t

+ κ2w − κ3v = 0 (47)  

∂v
∂s

− (1+ ε)cos θ
∂φ
∂t

+ κ3(u+w tan θ) = 0 (48)  

∂w
∂s

+(1+ ε) ∂θ
∂t

− κ3v tan θ − κ2u = 0 (49)  

∂φ
∂s

−
κ3

cos θ
= 0 (50)  

∂θ
∂s

− κ2 = 0 (51)  

where equations (42)–(44) represent force balances in the three di
rections of the local frame, and equations (45) and (46) are the moment 
balances ignoring distributed external moments. Equations (47)–(49) 
are the compatibility relations, and equations (50) and (51) are the 

Fig. 2. Schematic of the LM mooring line model.  

Fig. 3. Coordinate systems of a mooring line in the FDM mooring line model.  
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definition of material curvatures. In these equations, w0 is the sub
merged mooring weight per unit length; f(ε) is the axial tension; Sn and 
Sb are the in-plane and out-of-plane shear forces, respectively; u, v and w 
are the tangential, normal and binormal velocities, respectively; κ3 and 
κ2 are the in-plane and out-of-plane material curvatures, respectively; d, 
m, EI and GJ are the circular cross-section diameter, the mass per unit 
length, the bending and torsional stiffnesses, respectively; man 
(=Canρπd2/4) is the added mass in the normal direction; Cm is the inertia 
coefficient. A proportional structural damping is included in the 
formulation as (Azcona et al., 2017) 

Fsd = βf ′(ε) ∂ε
∂t

(52)  

where β is the damping coefficient with unit s/m. 
Hydrodynamic drags in the tangential, normal, and binormal di

rections are computed by 

Fdt = −
1
2

ρdπCdtu|u|
̅̅̅̅̅̅̅̅̅̅̅
1 + ε

√
(53)  

Fdn = −
1
2

ρdCdnv
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
v2 + w2

√ ̅̅̅̅̅̅̅̅̅̅̅
1 + ε

√
(54)  

Fdb = −
1
2

ρdCdbw
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
v2 + w2

√ ̅̅̅̅̅̅̅̅̅̅̅
1 + ε

√
(55)  

where Cdt, Cdn and Cdb are the drag coefficients in the three local 
directions. 

For the seabed reaction to mooring contact, an elastic foundation is 
implemented while the horizontal friction is ignored. The seabed reac
tion force acts in the vertical direction and its role is to reduce the wet 
weight of the line part grounded on the seabed. The effective wet weight 
of the mooring line is defined as 

we(si)=w0 + ksxc(si) (56)  

where ks is the seabed stiffness and si is the line coordinate of node i. In 
Chen et al. (2018), it is stated that the dynamic solution is insensitive to 
ks which can be chosen such that the mooring wet weight is balanced by 
the seabed completely when xc (si) = -d, i.e., ks = w0/d. 

The ten equations (42)–(51) for the mooring motions can be written 
in a vector form as 

M
∂Y
∂t

+K
∂Y
∂s

+ F(Y, s, t) = 0 (57)  

where Y = [ε, Sn, Sb, u, v, w, φ, θ, κ2, κ3]. 
For numerical solution of the equation set (57), the box method and 

generalized-α method are adopted for the spatial and temporal dis
cretization, respectively. In the spatial discretization, a set of n-1 matrix 
equations (n nodal points along the line and one equation per half grid 
point) can be derived as 

M̃j− 1/2

[
Ẏj− 1
Ẏj

]

+ K̃j− 1/2

[
Yj− 1
Yj

]

+ F̃j− 1/2 = 0 (58)  

where the dot over Y signifies its differentiation with respect to time and 
the subscript j means the node number. The matrices and vectors have 
dimensions N × 2N and N × 1, respectively (N is the number of 
dependent variables at each node, i.e., ten for the present problem). To 
close the equation set, N extra equations provided by the boundary 
conditions are needed. Zero curvature boundary conditions at the fixed 
anchor and fairlead of the mooring line are introduced as 

u(1) = 0, v(1) = 0,w(1) = 0, κ2
(1) = 0, κ3

(1) = 0 (59)  

κ2
(N) = 0, κ3

(N) = 0 (60)  

where the superscripts (1) and (N) denote the anchor and fairlead nodes, 

respectively. 
The other three boundary conditions for the dynamics of the system 

under induced motion of the top of the mooring line are given in terms of 
the fairlead velocity denoted by Ut, Vt and Wt as 

Ut =(u cos φ cos θ − v sin φ + w cos φ sin θ)(N) (61)  

Vt =(u sin φ cos θ + v cos φ + w sin φ sin θ)(N) (62)  

Wt =( − u sin θ + w cos θ)(N) (63) 

Incorporating the boundary conditions, the semi-discrete equation of 
motion for all of the dependent variables at all of the nodes reduces to 

M̃Ẏ + K̃Y + F̃ = 0 (64) 

For temporal discretization, the generalized-α method given in Gobat 
and Grosenbaugh (2001) is used to avoid issues of Crank-Nicholson 
noise and lack of numerical dissipation. In the generalized-α method, 
temporal weighted averaging of the velocity, displacement and force 
vectors applied to Eq. (64) leads to a semi-discrete equation of the form 

(1 − αm)M̃Ẏi
+αmM̃Ẏi− 1

+(1 − αk)K̃Yi +αkK̃Yi− 1 +(1 − αk)F̃i
+αkF̃i− 1

= 0
(65) 

The temporal difference equation is the same as for the generalized 
trapezoidal rule. 

Yi =Yi− 1 + Δt
[
(1 − γ)Ẏi− 1

+ γẎi] (66) 

The three parameters, i.e., αm, αk and γ, together define the gener
alized-α method. And a number of algorithms can be realized through 
the generalized-α method. For example, the box method is implemented 
when the three parameters are all set to 0.5. The scheme can be reduced 
to a one-parameter algorithm by requiring the second-order accuracy, i. 
e., αm - αk + γ = 0.5, and enforcing eigenvalues of the amplification 
matrix to be real and equal as the frequency variable goes to infinity. The 
three parameters of the generalized-α method are then calculated by 

αk =
λ∞

λ∞ − 1
, αm =

3λ∞ + 1
2λ∞ − 2

, γ =
− 1

λ∞ − 1
(67)  

where λ∞ is the value of the eigenvalue at infinity. For the parameter λ∞, 
there does not appear to be a clear approach to choosing an optimal 
value. Gobat and Grosenbaugh (2006) found that values between − 0.3 
and − 0.7 are suitable for most mooring line analyses. In the present 
study, a default value of − 0.5 is used. 

2.4. 

The PEM which is a QS mooring line model was implemented by the 
research group of the authors (Cheng et al., 2019). Two coordinate 
systems including global and local ones are defined for each mooring 
line in PEM as shown in Fig. 4. The origin of the local system O’ - x’y’z’ 
locates at the fairlead throughout, and the x’y’ plane is defined by 
instantaneous mooring line orientation. The local reference system can 
be obtained by moving the global system to the fairlead and rotating by θ 
angle to follow the mooring line plane. The mooring line is discretized 
into a series of segments, over which equations of static equilibrium in 
horizontal and vertical directions are established as (see Fig. 5) 

Ti+1
x = Ti

x + Dids sin φi+1 + Fids cos φi+1 (68)  

Ti+1
z = Ti

z − Dids cos φi+1 + Fids sin φi+1 + widl (69)  

where Tx and Tz are horizontal and vertical components of the mooring 
line tension, respectively; φ is the angle of the tension vector with 
respect to the horizontal plane; w is the net weight of mooring line in 
water per unit length; D and F are normal and tangential components of 
the drag, respectively; and the subscript i means the ith node at start 
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point of the ith line segment. Dl and ds are the segment lengths before 
and after elongation respectively, and they are related by the line ten
sion as 

ds=
(

1+
Ti+1

EA

)

dl (70) 

The secant method in an iterative manner is executed as shown by 
Fig. 6. In each iteration, the extrapolating step proceeds from the fair
lead to the anchor, and the extrapolated anchor is compared to the 
actual one by the coordinates. The iteration converges when the error in 
anchor location is less than a preset value. If the test fails, a new iteration 
starts to correct the mooring line solution based on the error in the 
previous iteration. To demonstrate the correction process, the following 
relations are defined. 

x’k
0 = f

(
Tk

xn,T
k
zn

)
(71)  

z’k
0 = g

(
Tk

xn, Tk
zn

)
(72)  

X′
0 = f (Txn, Tzn) (73)  

Z′
0 = g(Txn,Tzn) (74)  

where f and g functions represent the extrapolating step to predict the x 
and y coordinates of the anchor in the local system, respectively. X’0k and 
z’0

k are the extrapolated anchor coordinates in the kth iteration while X′0 
and Z′0 are the actual anchor coordinates. Txn

k and Tzn
k are the fairlead 

tension predictions in the kth iteration while Txn
k and Tzn

k are the real 
fairlead tension solutions. The errors in coordinates are calculated as 

ek
x =X′

0 − x′k
0 (75)  

ek
z =Z′

0 − z′k
0 (76)  

ek =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
Xk

err

)2
+
(
Zk

err

)2
√

(77) 

Rewriting Eq. (73) and Eq. (74) using the extrapolated fairlead 
tensions in the kth iteration with the Taylor expansion ignoring high 
order terms and doing some manipulations, the fairlead tension 
correction equations are obtained as follows. 

Tk+1
xn = Tk

xn +

[(

ek
x

∂g
∂Tzn

− ek
z

∂f
∂Tzn

)/(
∂f

∂Txn

∂g
∂Tzn

−
∂f

∂Tzn

∂g
∂Txn

)]

(Tk
xn ,Tk

zn)
(78) 

Fig. 4. Coordinate systems of a mooring line in the PEM mooring line model.  

Fig. 5. Force analysis of a mooring line segment in the PEM mooring 
line model. 

Fig. 6. Schematic of the iterative algorithm in the PEM mooring line model.  
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Tk+1
zn = Tk

zn +

[(

ek
z

∂f
∂Txn

− ek
x

∂g
∂Txn

)/(
∂f

∂Txn

∂g
∂Tzn

−
∂f

∂Tzn

∂g
∂Txn

)]

(Tk
xn ,Tk

zn)
(79) 

To obtain the four partial derivatives in Eq. (78) and Eq. (79), the 
extrapolated mooring line results in the k-1st iteration are used as fol
lows. Note that the approximations in Eq. (81) and Eq. (83) help reduce 
the number of extrapolating loops by one in each iteration without 
affecting the final predictions. 

∂f
∂Txn

⃒
⃒
⃒
⃒
(Tk

xn ,Tk
zn)

=
f
(
Tk

xn,Tk
zn

)
− f
(
Tk− 1

xn ,Tk
zn

)

Tk
xn − Tk− 1

xn
(80)  

∂f
∂Tzn

⃒
⃒
⃒
⃒
(Tk

xn ,Tk
zn)

=
f
(
Tk

xn,Tk
zn

)
− f
(
Tk

xn, Tk− 1
zn

)

Tk
zn − Tk− 1

zn
≈

f
(
Tk− 1

xn ,Tk
zn

)
− f
(
Tk− 1

xn ,Tk− 1
zn

)

Tk
zn − Tk− 1

zn

(81)  

∂g
∂Txn

⃒
⃒
⃒
⃒
(Tk

xn ,Tk
zn)

=
g
(
Tk

xn,Tk
zn

)
− g
(
Tk− 1

xn , Tk
zn

)

Tk
xn − Tk− 1

xn
(82)  

∂g
∂Tzn

⃒
⃒
⃒
⃒
(Tk

xn ,Tk
zn)

=
g
(
Tk

xn,Tk
zn

)
− g
(
Tk

xn,Tk− 1
zn

)

Tk
zn − Tk− 1

zn
≈

g
(
Tk− 1

xn , Tk
zn

)
− g
(
Tk− 1

xn ,Tk− 1
zn

)

Tk
zn − Tk− 1

zn

(83)  

2.5. Catenary 

The analytical catenary mooring line model of QS nature by the 
research group of the authors is used. The model is capable of solving 
mooring lines of catenary shape with parts lied on the ground, but 
extension in line is omitted. A schematic of the model is shown in Fig. 7. 
In the figure, X and H are the horizontal and vertical distances between 
the anchor and the fairlead respectively, and L is the constant length of 
the line. Position P is the tangent point between the line and the ground, 
and is the origin of the coordinate system P-xz of the instantaneous 
mooring line. The length of the line lying on the ground is denoted as p 
while the length of the portion forming the catenary shape is denoted as 
q. Analytical solution to the mooring line shown in Fig. 7 is given as 

z=

⎧
⎨

⎩

a
(

cosh
x
a
− 1
)

0 ≤ x ≤ X − p

0 − p ≤ x < 0
(84)  

Where a (=Th/w) is the catenary parameter, Th is the horizontal tension 
at any section, and w is the net weight of mooring line in water per unit 
length. The two unknowns a and p are calculated by the following 
equations. 

a=
(L − p)2

− H2

2H
(85)  

e

[

(X− p)⋅ 2H
(L− p)2 − H2

]

−
2H

L − p − H
− 1= 0 (86)  

2.6. QS 

The QS mooring line model of MAP developed by Masciola et al. 
(2013a) is used. The model is similar to the catenary model in section 2.5 
but line extension is allowed herein. The reference frame and relevant 
entities of the model are plotted in Fig. 8. The analytical solutions for the 
mooring line with parts lying on the ground are given as 

x(s)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s 0 ≤ s ≤ γ

s +
CBw
2EA

[
s2 − 2sγ + γλ

]
γ ≤ s ≤ LB

LB +
H
w

sinh− 1
[

w(s − LB)

H

]

+
Hs
EA

+
CBw
2EA

[
γλ − LB

2] LB ≤ s ≤ L

(87)  

z(s)=

⎧
⎪⎪⎨

⎪⎪⎩

0 0 ≤ s ≤ LB

H
w

⎧
⎨

⎩

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +

[
w(s − LB)

H

]2
√

− 1

⎫
⎬

⎭
+

w(s − LB)
2

2EA
LB ≤ s ≤ L

(88)  

T(s)=

{
max[H + CBw(s − LB), 0] 0 ≤ s ≤ LB̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

H2 + [w(s − LB)]
2

√

LB ≤ s ≤ L
(89)  

where s denotes the length along the unstretched line; w is the net weight 
of mooring line in water per unit length; EA represents the extensional 
stiffness; LB is the length of the line lying on the ground; CB is the friction 
coefficient of the line-seabed contact; γ and λ are defined as follows. 

γ = LB −
H

CBw
(90)  

λ=
{

γ if γ > 0
0 otherwise (91)  

3. Dynamics of catenary cable due to fairlead excitation 

3.1. Problem description 

The cable experiments from Azcona et al. (2017) are used for the 
comparison of the three dynamic mooring models. Fig. 9 illustrates the 
configuration of the experiments. As is shown, the wave tank having a 
size of 50m × 30m × 5 m gives the depth of 5 m in all the tests. The chain 
line submerged in the water with an initial catenary shape is actuated at 
the top suspension point into a sinusoidal horizontal motion in the plane 
of the cable. The properties of the chain line are given in Table 1, and the 
parameters used in the tests are presented in Table 2. The chain model 
properties are resulted by a scale of 1/40, and the 5 m depth basin 
corresponds to a 200 m depth sea and the full-scale line properties are 
close to the OC4 FOWT mooring lines (Robertson et al., 2014a). Two 

Fig. 7. Schematic of the catenary mooring line model.  Fig. 8. Schematic of the QS mooring line model.  
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configurations of lines are used, i.e., chains with fairlead-to-anchor 
distances of 19.364 m and 19.872 m. For each chain, both static and 
dynamic analyses are conducted. In the dynamic cases, three periods, i. 
e., 1.58s, 3.16s and 4.74s, are used, which correspond to the oscillation 
periods of 10s, 20s and 30s in full scale, respectively. The amplitude of 
the forced motions is fixed at 0.25 m, which is 10 m in full scale. 
Moreover, in the tests, 8 markers located successively along the chain 

line are used to measure the motion. As is shown in Table 3, the gap 
between adjacent markers along the chain line is approximately 0.5 m. 

3.2. Simulation details 

The dynamic mooring line models of LDG FEM (Palm et al., 2017), 
LM (Hall and Goupee, 2015) and FDM (Chen et al., 2018) are compared. 
The numerical settings are almost the same as the experiments except 
minor differences in cable and seabed contact models due to different 
capabilities of the codes. In specific, only axial stiffness of the cable is 
considered in LDG FEM and LM while axial, bending and torsional 
stiffness are implemented in FDM. For the seabed contact, both vertical 
reaction force and horizontal friction between mooring and seabed are 
considered in LDG FEM while only vertical force is computed in LM and 
FDM. Note that the oscillation of cable tension observed under snap load 
conditions is claimed to be related to the ignorance of horizontal seabed 
friction in Azcona et al. (2017). This is further discussed in this study. 
Table 4 shows the parameters used in the line-seabed contact model. 

A convergence study for the three models is conducted with the test 
cases 3 and 6. For each test, three numbers of segments, i.e., 28, 42 and 
60, are used. It is found that the cable discretized into 42 elements is 
sufficient for accurate numerical computation. 

3.3. Static cases 

The static cases 1 and 2 in Table 2 are simulated by LDG FEM, LM and 
FDM, and the results are compared to the data of Azcona et al. (2017) in 
Fig. 10. It is seen that for both line configurations, the experimental and 
numerical results agree well, confirming the reliability of the models in 
computing the static catenary shape of mooring lines and thus providing 
accurate initial mooring states for dynamic analysis. A quantitative 
comparison of the fairlead tension is presented in Table 5. It is shown 
that the present results are in accordance with the experimental and 
numerical results in Azcona et al. (2017). The LDG FEM and FDM give 
the same fairlead tension in both line configurations. The maximum 
relative differences to the measured data for test cases 1 and 2 are 0.37% 
and 2.62% respectively and occur both by LM. 

3.4. Dynamics cases 

The present predicted fairlead tensions of dynamic cases are 
compared to the measured and simulated data from Azcona et al. (2017) 
in Fig. 11. The numerical tool used in Azcona et al. (2017) is a LM 
formulation. The figure shows the tension at the mooring fairlead 
against the fairlead displacement, and the data is plotted after the steady 
state has been reached. 

As seen in Fig. 11(c)–(d), the agreement of the LDG FEM, LM and 
FDM results with the experimental data is all good when the excitation 
periods are 3.16s and 4.74s. The LDG FEM appears to be the best among 
the three models as it follows closely the fairlead tension variation of 
both the experimental and numerical results (Azcona et al., 2017). Note 
that these two periods of excited mooring motion correspond to the 
harmonic condition described in Suhara et al. (1981), where the fairlead 
tension varies sinusoidally in the time domain. For the excitation period 
of 1.58s, Fig. 11(a) and (b) show that the best match to the experimental 
and numerical data over the whole cycle is the LDG FEM model while 
the LM and FDM give evidently higher predictions when the fairlead 
moves away from the anchor. The dynamic cases with this period are the 

Fig. 9. Configuration of the catenary cable experiments.  

Table 1 
Properties of the mooring line.  

Parameters Values 

Unstretched length 21 m 
Mass per unit length 0.069 kg/m 
Line density 7850 kg/m3 

Axial stiffness 3.416E5 N 
Coefficient for the structural Rayleigh damping 0.0001 
Equivalent hydrodynamic diameter 0.0034 m 
Added mass coefficient 1.0 
Normal drag coefficient 1.4 
Tangential drag coefficient 0.67  

Table 2 
Parameters used in the experimental tests.  

Cases d Type Amplitude Period 

1 19.364 Static / / 
2 19.872 Static / / 
3 19.364 Dynamic 0.25 m 1.58 s 
4 19.364 Dynamic 0.25 m 3.16 s 
5 19.364 Dynamic 0.25 m 4.74 s 
6 19.872 Dynamic 0.25 m 1.58 s 
7 19.872 Dynamic 0.25 m 3.16 s 
8 19.872 Dynamic 0.25 m 4.74 s  

Table 3 
Position of the markers along the chain line.  

Markers Position along the chain line from fairlead 

1 0.656 m 
2 1.155 m 
3 1.655 m 
4 2.149 m 
5 2.646 m 
6 3.152 m 
7 3.655 m 
8 4.164 m  

Table 4 
Characteristics of the line-seabed contact and friction models.  

Parameters Values 

Vertical seabed stiffness 5.882E3 N/m3 

Vertical seabed damping 2.941E1 Ns/m3 

Friction coefficient 0.5  
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most challenging ones among the tests as the mooring line undergo the 
snap condition in each excitation loop (Suhara et al., 1981). As displayed 
by the measurements in the two plots, the mooring line with a 
fairlead-to-anchor distance of 19.364 m partially loses tension when the 
fairlead moves towards the anchor, while for the mooring line with a 
fairlead-to-anchor distance of 19.872 m, the fairlead tension entirely 
loses during the same process and approximates zero over half of the 
oscillation period. The sudden snap load after the slack state poses dif
ficulties for accurate modeling of mooring dynamics. It is observed in 
Fig. 11(a) and (b) that the most discrepancies of fairlead tension for LM 
and FDM occur approximately at the time when the fairlead departs 
from the anchor with the maximum velocity. 

One thing worth noting is that as indicated by the experimental data 
for case 6 in Fig. 11(b), when the chain fairlead starts reversing motion 
from approaching the anchor, the mooring line that falls freely is 
abruptly pulled tight producing a snap load, i.e., a sharp increase in the 
internal tension, and during the recovery process, the fairlead tension 
experiences a plateau before again ascending to peak value. This tension 
variation course is roughly captured by the LM model in Azcona et al. 
(2017), but the tension plateau is largely smeared with the starting point 
advanced. The same effect occurs for the numerical models in the pre
sent study. Moreover, fairlead tension fluctuation emerges during the 
recovery period for the LDG FEM formulation which exhibits the best 
reliability with regards to measurements at all other moments. The 
similar fluctuation has also been observed for the numerical tool used in 
Azcona et al. (2017), and was claimed to be related to the omission of 
seabed friction in the dynamic mooring modeling. In order to boost the 
account, Azcona et al. (2017) applied both the seabed friction model in 
OPASS and the seabed damping model in 3DFloat to the mooring line 
dynamics. It was asserted in Azcona et al. (2017) that the friction or 
damping from the seabed takes effect on mooring line segments resting 
on the seabed such that small motions of these segments and thus 

tension fluctuations are avoided during the tension-less period of the 
dynamic loop. In other words, the horizontal reaction force from the 
seabed acts as a mitigating mechanism to damp out the unphysical high 
frequency fluctuations. Nevertheless, the present LDG FEM results 
plotted in Fig. 11(b) are obtained with the seabed friction model 
switched on and set up according to Table 4. It should be pointed out 
that slight fairlead tension fluctuations occur occasionally during the 
excitation loop for the LDG FEM in all the dynamic cases as seen in 
Fig. 11. It is guessed that the dramatic tension fluctuations during the 
slack-snap process of the high frequency excitation test case 6 are 
attributed to the inherent capability of the model. In addition, the LM 
and FDM methods which possess only spring-damper mooring-seabed 
contact model show no fluctuations in the sharp tension recovery. The 
assertation on the causes for the unphysical high frequency tension 
fluctuations in Azcona et al. (2017) may not apply to the LM and FDM 
models used in the present study. It is suspected by the authors that as 
the axial damping on a chain line can effect from seabed friction, 
tangential drag and internal damping, the latter two factors may 
contribute to the suppression of high frequency oscillation for LM and 
FDM. 

Figs. 12–17 show the comparison of trajectory of markers (see 
Table 3) along the mooring line for test cases 3–8, respectively. In each 
figure, motion results of makers 1–8 are presented in sub-figures. 
Experimental and numerical results from Azcona et al. (2017) are also 
included. The scale and length of both the x and z axis are the same in all 
plots to provide a convenient visual comparison for all makers. 

It is seen in the six figures that the motion of the mooring line 
markers is majorly horizontal in positions near the fairlead and trans
forms to a vertical manner away from the fairlead. Figs. 12–14 and 
16–17 indicate that the agreement of the numerical results obtained by 
LDG FEM, LM and FDM to the measured data is very good, and the most 
promising mooring dynamics model appears to be LDG FEM which is 
consistent with the observations on Fig. 11. In specific, the predicted 
marker motions by LDG FEM show the closest match to measurements in 
the figures while both LM and FDM show slight deviations during one 
loop of excitation. For the test case 6 shown in Fig. 15 where the 
mooring line with a fairlead-to-anchor distance of 19.872 m is excited 
with a period of 1.58s, a considerable shift of the marker motion is 
observed for the results obtained by FDM, and only LDG FEM gives 
satisfactory predictions. This is consistent with the fairlead tension shift 
for FDM in Fig. 11(b). Also note that for this most challenging test case, 
the markers located deep into the water experience a complex motion 

Fig. 10. Comparison of static catenary mooring line shape for (a) test case 1 and (b) test case 2.  

Table 5 
Comparison of static catenary mooring line fairlead tension for test case 1 and 2.  

Methods Test case 1 Test case 2 

Exp. (Azcona et al., 2017) 8.13 N 14.48 N 
LM (Azcona et al., 2017) 8.10 N 14.70 N 
LDG FEM 8.14 N 14.82 N 
LM 8.10 N 14.86 N 
FDM 8.14 N 14.82 N  
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Fig. 11. Comparison of fairlead tension for (a) test case 3, (b) test case 6, (c) test case 4, (d) test case 7, (e) test case 5, and (f) test case 8.  
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Fig. 12. Comparison of trajectory described by (a) marker 1, (b) marker 2, (c) marker 3, (d) marker 4, (e) marker 5, (f) marker 6, (g) marker 7, and (h) marker 8 for 
test case 3. 

Fig. 13. Comparison of trajectory described by (a) marker 1, (b) marker 2, (c) marker 3, (d) marker 4, (e) marker 5, (f) marker 6, (g) marker 7, and (h) marker 8 for 
test case 4. 
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Fig. 14. Comparison of trajectory described by (a) marker 1, (b) marker 2, (c) marker 3, (d) marker 4, (e) marker 5, (f) marker 6, (g) marker 7, and (h) marker 8 for 
test case 5. 

Fig. 15. Comparison of trajectory described by (a) marker 1, (b) marker 2, (c) marker 3, (d) marker 4, (e) marker 5, (f) marker 6, (g) marker 7, and (h) marker 8 for 
test case 6. 
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Fig. 16. Comparison of trajectory described by (a) marker 1, (b) marker 2, (c) marker 3, (d) marker 4, (e) marker 5, (f) marker 6, (g) marker 7, and (h) marker 8 for 
test case 7. 

Fig. 17. Comparison of trajectory described by (a) marker 1, (b) marker 2, (c) marker 3, (d) marker 4, (e) marker 5, (f) marker 6, (g) marker 7, and (h) marker 8 for 
test case 8. 
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behavior with the trajectory resembling the number “8” (See Fig. 15(g)– 
(h)). This movement results from the rapid loss and recovery of tension 
during the high frequency excitation motion. An interpretation for the 
occurrence of the complex marker motion is referred to Azcona et al. 
(2017). It is seen in Fig. 15(g)–(h) that the crossover motion of markers 
is well reproduced with the LDG FEM while the LM reduces the motion 

curve into a simply connected loop. Moreover, the LM gives strange 
marker motions during the free fall period as represented by the blue 
dashed curves in Fig. 15(a)–(c). It is suspected that the inferiority of the 
LM formulation for high frequency motions may result from the 
simplification of the mooring dynamics into concentrated mass linked 
with spring and damper. 

4. Dynamics of hanging cable under axial excitation 

4.1. Hanging cable with payload 

A hanging cable excited axially is simulated to assess the dynamic 
mooring models (Zhu, 2010). As shown in Fig. 18, the hanging cable 
attached with a spherical payload at the lower end is excited by a si
nusoidal motion at the upper support. As expected, only axial response is 
aroused in the cable. Table 6 and Table 7 summarize the properties of 
the cable and the payload, respectively. Two cases with oscillation 
amplitude of 0.078 m and frequencies of 0.807 Hz and 1.270 Hz are 
analyzed. The simulated tension at the top end normalized by the static 
tension T0 along with the experimental data from Zhu (2010) is shown in 
Fig. 19. Only results obtained by LDG FEM and LM are presented as the 
FDM lacks the functionality for concentrated mass. It is noted that the 
LDG FEM is used with the tangential drag coefficient of the cable raised 
to 1.0 since the simulation would crash with the original low value of 
0.01. As seen in the figure, for the low frequency case, a harmonic 
tension variation is produced, and both LDG FEM and LM underestimate 
the amplitude of fluctuation with the LDG FEM predictions showing a 
better match to the experiments. For the high frequency case, snap loads 
occur as shown by the dark solid line in Fig. 19(b). The results obtained 
by LDG FEM show high frequency oscillations and are evidently low in 
peak tension. It is found that the result is closely related to the tangential 
drag coefficient in that a small value (e.g., 1.0) leads to a relatively large 
peak tension but with unphysical fluctuations while a large value sup
presses the fluctuation but gives a further low peak tension. The internal 
damping, in contrast, appears to have insignificant effect on the stability 
and accuracy in this axial loading case. The results given by LM with 
normal setting of internal damping ratio ξ = 1.0000 considerably 
underpredict the tension and show a smooth variation. When the ratio is 
reduced to a very low value 0.0025 as Rodriguez Luis et al. (2020), the 
snap loading condition emerges. 

Based on the analysis, it is concluded that for axial loading condi
tions, the damping along the cable line is essential for numerical sta
bility. In LDG FEM, the internal damping mechanism is not sufficient for 
dissipating unphysical oscillations while damping from tangential drag 
is needed. In LM model, both internal damping and tangential drag 
contribute to eliminating high frequency oscillations. The difference can 
be explained by the formulation of the models (see Eq. (1) and Eq. (33)). 
As indicated by the equations, the internal damping force is directly 
acted on discretized nodes in LM and thus its effect on damping the 
motion is straight while in LDG FEM, the force from internal damping is 
added into the spatial term which is integrated over the element such 
that impacts from neighboring elements may counteract to reduce the 
effect. 

Fig. 18. Schematic of the hanging cable excited at upper end.  

Table 6 
Properties of the hanging cable.  

Parameters Values 

Unstretched length 18.9 m 
Mass per unit length 0.0112 kg/m 
Axial stiffness 1.342E5 N 
Diameter 0.0016 m 
Normal drag coefficient 1.2 
Tangential drag coefficient 0.01  
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4.2. Hanging cable without payload 

To further examine the performance of the dynamic mooring models 
for axial excitation problems, a hanging cable without payload is 
considered. The test configuration is modified in that the lower end is 
kept fixed during the sinusoidal motion of the upper end. The same 
material property of the cable as that in section 4.1 is used. Two cases 
with oscillation amplitude of 0.078 m and frequencies of 0.807 Hz and 
1.270 Hz are analyzed. S 

It is found that the FDM fails for this problem. Tests indicate that the 
FDM seems to have a high requirement on the mooring line to be cate
nary. For the extreme case of a vertically placed cable, it fails to run. This 
may be due to the curvature terms in the governing equations which are 
closely connected with the shape of cable. For the other two models, the 
simulated tension at the top end normalized by the static tension T0 is 
shown in Fig. 20. It is seen that in both cases, the two mooring models 
give identical results. It is also noted that changing the tangential drag 
coefficient has negligible effect on the LDG FEM predictions. This is in 
contrast to the case in section 4.1 where a free lower end with payload is 

used. It implies that the axial damping mechanism is more effective 
when no free end exits in the mooring boundaries. 

5. Hydrodynamics of a 15 MW semi-submersible FOWT under 
wave impacts 

5.1. Physical model 

To assess the mooring line models in CFD framework, the hydrody
namics of the UMaine VolturnUS-S semi-submersible platform under 
irregular and freak waves is simulated (Allen et al., 2020). This floater 
structure is designed for supporting the IEA 15 MW wind turbine which 
indicates the trend of large-scale wind turbines (Gaertner et al., 2020). 
As shown in Fig. 21, the reference platform consists of one main column 
on which the wind turbine tower is mounted, three offset columns 
radially placed surrounding the central tower, and three rectangular 
bottom pontoons connecting offset columns to the central one. The 
whole FOWT is deployed in a water depth of 200 m and the draft of the 
platform is 20 m under still water level (SWL). Three catenary mooring 
lines equally arranged around the platform is used for keeping the 
structure in place. Parameters of the FOWT system are depicted in 
Fig. 21 and the gross properties are presented in Table 8 and Table 9. 

5.2. Numerical details 

The numerical setup for the VolturnUS-S semi-submersible platform 
is shown in Fig. 22. The computational domain is sized to 900 m, 500 m 

Table 7 
Properties of the payload sphere.  

Parameters Values 

Diameter 0.2032 m 
Mass 12.2 kg 
Added mass coefficient 0.18 
Drag coefficient 0.5  

Fig. 19. Tension at the upper end of the hanging cable with payload: (a) f = 0.807 Hz; (b) f = 1.270 Hz.  

Fig. 20. Tension at the upper end of the hanging cable without payload: (a) f = 0.807 Hz; (b) f = 1.270 Hz.  
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and 300 m in the x, y and z coordinates, respectively. The wave prop
agates from the leftmost boundary to the outlet at the rightmost, and the 
platform locates 300 m downstream of the wavemaker. A medium 
density mesh is generated as plotted in Fig. 23. More numerical details 
including the mesh convergence study are referred to Zhong et al. 

(2023). 
The LDG FEM, PEM, catenary and QS mooring line models are 

coupled to OpenFOAM to form the hydro-mooring models. In all the 
couplings, the mooring attachment points on the platform are used as 

Fig. 21. Schematic of the IEA 15 MW wind turbine mounted on the VolturnUS-S semi-submersible platform: (a) Front view; (b) Side view; (c) Top view; (d) Plan view 
of the mooring system. 

Table 8 
Main parameters of the VolturnUS-S semi-submersible platform.  

Parameter Value 

Depth of platform base below SWL 20 m 
Elevation of central column above SWL 15 m 
Displacement 20206.0 m3 

Mass (including ballast) 1.7854 × 107 kg 
Center of mass location below SWL 14.94 m 
Platform roll inertia about CM 1.251 × 1010 kg m2 

Platform pitch inertia about CM 1.251 × 1010 kg m2 

Platform yaw inertia about centerline 2.367 × 1010 kg m2  

Table 9 
Main parameters of the mooring system for the VolturnUS-S semi-sub
mersible platform.  

Parameter Value 

Unstretched length 850.0 m 
Volume-equivalent diameter 0.3330 m 
Equivalent mass density 685.00 kg/m 
Equivalent axial stiffness 3.270 × 109 N 
Normal drag coefficient 1.11 
Tangential drag coefficient 0.20 
Normal Added mass coefficient 0.82 
Tangential added mass coefficient 0.27  
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Dirichlet boundary conditions for the mooring solvers. And the resultant 
force from each mooring line is returned to the CFD solver for the rigid 
body dynamics. The CFD-FEM, CFD-PEM and CFD-catenary models are 
built with the rigidBodyDynamics class of OpenFOAM while the CFD-QS 
are built with the sixDoFRigidBodyMotion class due to the mooring code 
structures. The CFD-PEM and CFD-catenary models are implemented by 
the authors. Details on the CFD-FEM and CFD-QS models are referred to 
Palm et al. (2017) and Chen and Hall (2022), respectively. For all the 
coupled simulations, convergence tests on the number of mooring line 
discretization elements have been conducted. Converged results can be 
obtained with 20, 170, 170 and 50 line segments for CFD-FEM, 
CFD-PEM, CFD-Catenary and CFD-QS models, respectively. 

Two wave conditions, i.e., irregular waves with random and focused 
component phases, are selected. The irregular wave with a significant 
height of 6 m and a peak period of 15s is used. Frequency range between 

0.04 Hz and 0.20 Hz is discretized into 32 pieces for reproducing the 
JONSWAP spectrum. For the focused wave, the focusing time and 
location are 100s and 300 m, respectively. Details on the generation of 
focused waves are referred to Zhong et al. (2023). 

5.3. Platform motion response 

The motion responses in surge, heave and pitch of the semi- 
submersible platform under irregular and focused waves are shown in 
Figs. 24 and 25, respectively. The results obtained with the four hydro- 
mooring models are compared in the figures. It is seen that the platform 
undergoes irregular movements in the irregular wave case while the 
motion exhibits focusing behaviors as the wave in the focused wave 
case. In both cases, the CFD-PEM model gives the largest predictions 
particularly in surge and heave. In specific, the floating platform surges 

Fig. 22. Computational domain of the dynamic responses of the VolturnUS-S semi-submersible platform under waves: (a) View from top; (b) View from outlet.  

Fig. 23. Mesh arrangement for the dynamic responses of the VolturnUS-S semi-submersible platform under waves: (a) Global view; (b) Local view; (c) Cutaway view.  
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to the farthest downstream when using PEM as the mooring model. And 
both the mean position and amplitude of the heave motion are increased 
to the most among the coupled models. These are related to the simu
lated mooring line profiles in PEM results and will be discussed in sec
tion 5.5. For the CFD-catenary model, the responses of the platform tend 
to be underpredicted. As seen in Figs. 24 and 25, the motion curves 
obtained with the CFD-catenary model are visibly lower than those 
obtained with the CFD-FEM model except for the surge in irregular wave 
condition. The results are thought to be related to the ignorance of axial 
stiffness in the catenary mooring model, which uses constant cable 
length to form the line shape throughout. The fact that longer line 
segments are to be lifted when stiff cable is used explains the higher 
mooring forces. The mooring line fairlead tension when the platform is 
at the initial position evaluated by the four hydro-mooring models are 
shown in Table 10. The table confirms that the catenary model gives the 
largest mooring line tension among the models. Besides, the mooring 
tension predicted by PEM is the lowest and is even less than half of that 
obtained by FEM. This is in accordance with the observations on the 
motion results in Figs. 24 and 25. The QS predicted tension shows the 

best match to the FEM result in Table 10. In Figs. 24 and 25, the motion 
responses predicted by the CFD-QS model also exhibit the best agree
ment with those of the CFD-FEM model. But it is pointed out that the 
surge response given by the CFD-QS model is overestimated in the 
irregular wave case and underestimated in the focused wave case. In 
heave response, nearly identical results are shown between the CFD-QS 
and CFD-FEM models in both wave cases while in pitch response, the 
amplitudes of motion are enlarged with the CFD-QS model. 

5.4. Mooring line fairlead tension 

The time series of the mooring line fairlead tension under irregular 
and focused waves are shown in Figs. 26 and 27, respectively. Only the 
results of mooring lines 1 and 2 are plotted because of the symmetry of 
the configuration. It is seen that in both wave conditions, fairlead ten
sions of both mooring lines given by the CFD-catenary model are visibly 
higher than those of the CFD-FEM model, while the results obtained by 
the CFD-PEM model are significantly lower than all other coupled 
models. The CFD-QS model shows the best match to the CFD-FEM model 

Fig. 24. Motion responses of the VolturnUS-S semi-submersible platform under the irregular wave: (a) Surge; (b) Heave; (c) Pitch.  
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in mooring line tension predictions in Figs. 26 and 27 though the am
plitudes of tension variations are visibly larger when the mooring dy
namics is included. 

Moreover, it is seen in Figs. 26 and 27 that the variations of the 
mooring line fairlead tensions predicted by the CFD-PEM, CFD-catenary 
and CFD-QS models are generally in phase with each other while the 
mooring tension time series given by the CFD-FEM show noticeably 
different phase property. This is apparently due to the nonlinearity in 
the mooring dynamics of the FEM model. To further analyze the relation 
between the mooring line fairlead tension and the platform motions, 
these two types of results obtained by the four models are plotted 

together in Fig. 28. It is seen in Fig. 28 that for the three mooring line 
models which exclude dynamics, the mooring tension variations 
generally follow the motions in surge but with small phase lags. This is 
consistent with Niranjan and Ramisetti (2022) which states that the 
crests and troughs in mooring tensions are the same as the variations in 
platform surge. The facts that the motions in the three degrees of 
freedom (DOFs) in longitudinal plane can all contribute to the mooring 
system reactions and there are phase differences between the three types 
of motions shown in Fig. 28(b)–(d) explain the phase lags. An analysis on 
the phase differences between motions in focused wave condition is 
referred to the previous work of the authors (Zhong et al., 2023). For the 
dynamic mooring model, no clear correlation between the simulated 
mooring tension and platform surge is identified. As the mooring dy
namics is additionally influenced by fluid added mass and drag, 
nonlinearity arises in the dynamic model. And this modifies the phases 
in the mooring forces. 

5.4.1. Mooring line profile 
As the mooring tension is related to the lifted mooring line above sea 

bottom, the mooring line profile is examined. The profiles of mooring 

Fig. 25. Motion responses of the VolturnUS-S semi-submersible platform under the focused wave: (a) Surge; (b) Heave; (c) Pitch.  

Table 10 
The mooring line fairlead tension at the initial platform position.  

Coupled models Mooring line fairlead tension 

CFD-FEM 2436.4 KN 
CFD-PEM 1223.1 KN 
CFD-catenary 2824.4 KN 
CFD-QS 2443.8 KN  
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line 1 at the times 95s and 103s in the focused wave condition are shown 
in Fig. 29. The results obtained by the CFD-QS model are not shown 
since the node position output is not available. The selected two times 
correspond to the instants when the mooring line fairlead tension given 
by the CFD-FEM model obtains local maximum and minimum as shown 
in Fig. 27(a). 

It is first seen in Fig. 29 that the lifted mooring line shows a 
completely different shape in the CFD-PEM model comparing to other 
models. The suspended line has the least length among the models and 
the reacting force is also the lowest as demonstrated in Fig. 27. The 
reason may lie in the PEM procedure, in which the extrapolation pro
ceeds from the fairlead to the anchor and the loop repeats until the error 
in computed to real anchor positions is lower than a preset value. This 
scheme gives a line shape which tends to be vertically suspended other 
than catenary. The mooring line profiles simulated by the CFD-FEM and 
CFD-catenary models show general agreement in Fig. 29. But it is 
observed that there exists notable mismatch over the line range touching 
the sea bottom. This is in fact due to the overall mooring shape condi
tion. The mooring dynamics considered in CFD-FEM contributes to the 

nonlinearity in the mooring line motion which alters the phases of the 
line profile. The difference in status of the mooring line profile leads to 
the phase difference in mooring force shown in Fig. 27. 

6. Conclusions 

In this study, six mooring line models are compared with the aim of 
obtaining deep insights into performances of the models. The line 
models include three dynamics ones, i.e., the LDG FEM of Moody, the 
LM of MoorDyn and the FDM of OpenMOOR, and three QS ones, i.e., the 
PEM, the catenary and the QS of MAP. The Moody, MoorDyn, Open
MOOR and MAP are open-source or semi open-source codes while the 
PEM and catenary models are developed by the research group of the 
authors. Three groups of tests including catenary cable subjected to 
fairlead excitation, hanging cable under axial excitation and FOWT in 
waves are carried out. The first two test groups focus on single line 
dynamics to analyze among the three dynamic models while the third 
test group focuses on coupled hydro-mooring modeling with the FEM, 
PEM, catenary and QS coupled to OpenFOAM. The test results show that 

Fig. 26. Mooring line fairlead tension of the VolturnUS-S semi-submersible platform under the irregular wave: (a) Mooring line 1; (b) Mooring line 2.  

Fig. 27. Mooring line fairlead tension of the VolturnUS-S semi-submersible platform under the focused wave: (a) Mooring line 1; (b) Mooring line 2.  
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there are substantial differences among the models in various scenarios. 
The main conclusions are summarized in the following.  

1. For the dynamics of a single catenary cable under fairlead excitation, 
the three dynamic mooring line models, i.e., LDG FEM, LM and FDM, 
all give satisfactory predictions for low and intermediate frequency 
mooring dynamics. But for high frequency mooring dynamics, the 
accuracies of LM and FDM reduce especially for the snap loading 
condition. Overall, the LDG FEM exhibits the best performance 
among the three dynamic models. However, one deficiency of LDG 
FEM is the unpredictable slight tension fluctuations over the motion 
cycle, the cause of which need further investigations. Moreover, the 
most efficient model is the LDG FEM since modal basis other than 
nodal basis is used in the FEM formulation, and the least efficient is 
the FDM whose time cost is several times of those of LDG FEM and 
LM. For coupling the mooring dynamics model to a floating structure 
numerical model in realistic applications, the LDG FEM and LM are 
recommended.  

2. For the dynamics of a single hanging cable with axial excitation, 
when the lower end is free with a spherical payload, both LDG FEM 
and LM underestimate the fluctuation amplitude in the low 

frequency case. In the high frequency case when snap loads occur, 
the results of LDG FEM and LM are closely related to the tangential 
drag and internal damping, respectively. For the similar hanging 
cable test but with the lower end fixed, the LDG FEM and LM give 
identical results. Results reveal that Neumann boundary conditions 
weaken the robustness of LDG FEM and LM. Moreover, FDM fails for 
the axial loading scenarios due to the capability of the model and a 
high requirement on the mooring line to be catenary.  

3. For the hydrodynamics of the IEA 15 MW semi-submersible FOWT 
under irregular and focused waves, four hydro-mooring models are 
established with the FEM, PEM, catenary and QS coupled to Open
FOAM. In both wave conditions, the CFD-PEM model gives the 
largest predictions which are related to the simulated mooring line 
profiles in PEM results. The CFD-catenary model tends to under
predict the dynamic responses which is thought to be related to the 
ignorance of axial stiffness in the catenary mooring model. The CFD- 
QS predictions show the best match to the CFD-FEM results but with 
smaller variation amplitude in mooring line fairlead tension. More
over, the CFD-PEM, CFD-catenary and CFD-QS models which 
exclude dynamics predict generally in phase mooring tensions which 
follow the platform surge motions. The inclusion of mooring 

Fig. 28. Comparison of variation phase between the mooring line fairlead tension and the platform motions for the VolturnUS-S semi-submersible platform under the 
focused wave: (a) The CFD-FEM model; (b) The CFD-PEM model; (c) The CFD-catenary model; (d) The CFD-QS model. 
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dynamics in CFD-FEM modifies the phases in mooring forces and 
introduces nonlinearity to the dynamics. 
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Azcona, J., Munduate, X., González, L., Nygaard, T.A., 2017. Experimental validation of 
a dynamic mooring lines code with tension and motion measurements of a 
submerged chain. Ocean. Eng. 129, 415–427. 

Barter, G.E., Darmofal, D.L., 2010. Shock capturing with PDE-based artificial viscosity 
for DGFEM: Part I. Formulation. J. Comput. Phys. 229 (5), 1810–1827. 

Bernard, P.E., 2008. Discontinuous Galerkin Methods for Geophysical Flow Modeling, 
PhD Thesis. Universite catholique de Louvain. 

Buckham, B., Driscoll, F.R., Nahon, M., 2004. Development of a finite element cable 
model for use in low-tension dynamics simulation. J. Appl. Mech. 71 (4), 476–485. 

Chen, L., Basu, B., Nielsen, S.R., 2018. A coupled finite difference mooring dynamics 
model for floating offshore wind turbine analysis. Ocean. Eng. 162, 304–315. 

Chen, H., Hall, M., 2022. CFD simulation of floating body motion with mooring 
dynamics: coupling MoorDyn with OpenFOAM. Appl. Ocean Res. 124, 103210. 

Cheng, P., Huang, Y., Wan, D., 2019. A numerical model for fully coupled aero- 
hydrodynamic analysis of floating offshore wind turbine. Ocean. Eng. 173, 183–196. 

Cockburn, B., Shu, C.W., 2001. Runge-Kutta discontinuous Galerkin methods for 
convection-dominated problems. J. Sci. Comput. 16, 173–261. 

Dai, J., Hu, W., Yang, X., Yang, S., 2018. Modeling and investigation of load and motion 
characteristics of offshore floating wind turbines. Ocean. Eng. 159, 187–200. 

Escalante, M.R., Sampaio, R.R., Rosales, M.B., Ritto, T., 2011. A reduced order model of a 
3D cable using proper orthogonal decomposition. Mecanica Computacional 30 (13), 
1143–1158. 

Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G., Abbas, N., 
Meng, F., Bortolotti, P., Skrzypinski, W., Scott, G., Feil, R., Bredmose, H., Dykes, K., 
Shields, M., Allen, C., Viselli, A., 2020. IEA Wind TCP Task 37: Definition of the IEA 
15-Megawatt Offshore Reference Wind Turbine. National Renewable Energy Lab. 
(NREL), Golden, CO (United States). NREL/TP-5000-75698.  

Gobat, J.I., Grosenbaugh, M.A., 2001. Application of the generalized-a method to the 
time integration of the cable dynamics equations. Comput. Methods Appl. Mech. 
Eng. 190 (37–38), 4817–4829. 

Gobat, J.I., Grosenbaugh, M.A., 2006. Time-domain numerical simulation of ocean cable 
structures. Ocean. Eng. 33 (10), 1373–1400. 

Hall, M., Buckham, B., Crawford, C., 2014. Evaluating the importance of mooring line 
model fidelity in floating offshore wind turbine simulations. Wind Energy 17 (12), 
1835–1853. 

Hall, M., Goupee, A., 2015. Validation of a lumped-mass mooring line model with 
DeepCwind semisubmersible model test data. Ocean. Eng. 104, 590–603. 

Hermawan, Y.A., Furukawa, Y., 2020. Coupled three-dimensional dynamics model of 
multi-component mooring line for motion analysis of floating offshore structure. 
Ocean. Eng. 200, 106928. 

Huang, S., 1994. Dynamic analysis of three-dimensional marine cables. Ocean. Eng. 21 
(6), 587–605. 

Huang, Y., Zhuang, Y., Wan, D., 2021. Hydrodynamic study and performance analysis of 
the OC4-DeepCwind platform by CFD method. Int. J. Comput. Methods 18 (4), 
2050020. 

Jiang, C., el Moctar, O., Paredes, G.M., Schellin, T.E., 2020. Validation of a dynamic 
mooring model coupled with a RANS solver. Mar. Struct. 72, 102783. 

Jonkman, J.M., 2009. Dynamics of offshore floating wind turbines-model development 
and verification. Wind Energy: An International Journal for Progress and 
Applications in Wind Power Conversion Technology 12 (5), 459–492. 

Kallesøe, B.S., Hansen, A.M., 2011. Dynamic mooring line modeling in hydro-aero-elastic 
wind turbine simulations. In: International Ocean and Polar Engineering Conference. 
ISOPE-I. 

Khan, N.U., Ansari, K.A., 1986. On the dynamics of a multicomponent mooring line. 
Comput. Struct. 22 (3), 311–334. 

Fig. 29. The instantaneous profiles of mooring line 1 of the VolturnUS-S semi-submersible platform under the focused wave: (a) t = 95s; (b) t = 103s.  

W. Zhong et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S0029-8018(24)00420-7/sref1
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref1
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref2
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref2
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref2
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref2
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref2
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref3
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref3
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref3
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref4
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref4
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref4
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref5
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref5
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref6
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref6
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref7
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref7
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref8
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref8
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref9
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref9
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref10
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref10
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref11
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref11
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref12
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref12
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref13
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref13
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref13
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref14
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref14
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref14
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref14
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref14
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref15
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref15
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref15
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref16
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref16
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref17
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref17
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref17
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref18
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref18
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref19
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref19
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref19
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref20
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref20
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref21
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref21
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref21
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref22
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref22
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref23
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref23
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref23
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref24
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref24
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref24
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref25
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref25


Ocean Engineering 296 (2024) 117083

24

Krivodonova, L., Xin, J., Remacle, J.F., Chevaugeon, N., Flaherty, J.E., 2004. Shock 
detection and limiting with discontinuous Galerkin methods for hyperbolic 
conservation laws. Appl. Numer. Math. 48 (3–4), 323–338. 

Li, C.B., Choung, J., 2021. Effects of strain-and strain rate-dependent nonlinear mooring 
line stiffness on floating platform motion. Ocean. Eng. 241, 110011. 

Li, X., Guo, X., Guo, H., 2018. Vector form intrinsic finite element method for nonlinear 
analysis of three-dimensional marine risers. Ocean. Eng. 161, 257–267. 

Liu, Y., Xiao, Q., Incecik, A., Peyrard, C., Wan, D., 2017. Establishing a fully coupled CFD 
analysis tool for floating offshore wind turbines. Renew. Energy 112, 280–301. 

Liu, Y., Xiao, Q., Incecik, A., Peyrard, C., 2019. Aeroelastic analysis of a floating offshore 
wind turbine in platform-induced surge motion using a fully coupled CFD-MBD 
method. Wind Energy 22 (1), 1–20. 

Masciola, M., Jonkman, J., Robertson, A., 2013a. Implementation of a multisegmented, 
quasi-static cable model. In: International Ocean and Polar Engineering Conference. 
ISOPE-I. 

Masciola, M., Robertson, A., Jonkman, J., Coulling, A., Goupee, A., 2013b. Assessment of 
the importance of mooring dynamics on the global response of the DeepCwind 
floating semisubmersible offshore wind turbine. In: International Ocean and Polar 
Engineering Conference. ISOPE-I. 

Matha, D., Fechter, U., Kuhn, M., Cheng, P.W., 2011. Non-linear Multi-Body Mooring 
System Model for Floating Offshore Wind Turbines. EWEA offshore. 

Montano, A., Restelli, M., Sacco, R., 2007. Numerical simulation of tethered buoy 
dynamics using mixed finite elements. Comput. Methods Appl. Mech. Eng. 196 
(41–44), 4117–4129. 

Nakajima, T., Motora, S., Fujino, M., 1982. On the dynamic analysis of multi-component 
mooring lines. In: Offshore Technology Conference, pp. OTC–4309. 

Niranjan, R., Ramisetti, S.B., 2022. Insights from detailed numerical investigation of 15 
MW offshore semi-submersible wind turbine using aero-hydro-servo-elastic code. 
Ocean. Eng. 251, 111024. 

Palm, J., Eskilsson, C., Bergdahl, L., 2017. An hp-adaptive discontinuous Galerkin 
method for modelling snap loads in mooring cables. Ocean. Eng. 144, 266–276. 

Ren, Y., Venugopal, V., Shi, W., 2022. Dynamic analysis of a multi-column TLP floating 
offshore wind turbine with tendon failure scenarios. Ocean. Eng. 245, 110472. 

Robertson, A., Jonkman, J., Masciola, M., Song, H., Goupee, A., Coulling, A., Luan, C., 
2014a. Definition of the Semisubmersible Floating System for Phase II of OC4. 
National Renewable Energy Lab. (NREL), Golden, CO (United States). NREL/TP- 
5000-60601.  

Robertson, A., Jonkman, J., Vorpahl, F., Popko, W., Qvist, J., Froyd, L., Chen, X., 
Azcona, J., Uzunoglu, E., Guedes Soares, C., Luan, C., 2014b. Offshore code 

comparison collaboration continuation within IEA wind task 30: phase II results 
regarding a floating semisubmersible wind system. In: International Conference on 
Offshore Mechanics and Arctic Engineering, vol. 45547. American Society of 
Mechanical Engineers. V09BT09A012.  

Rodriguez Luis, A., Armesto, J.A., Guanche, R., Barrera, C., Vidal, C., 2020. Simulation of 
marine towing cable dynamics using a finite elements method. J. Mar. Sci. Eng. 8 
(2), 140. 

Suhara, T., Koterayama, W., Tasai, F., Hiyama, H., Sao, K., Watanabe, K., 1981. Dynamic 
behavior and tension of oscillating mooring chain. In: Offshore Technology 
Conference. OnePetro. 

Touzon, I., Nava, V., Gao, Z., Mendikoa, I., Petuya, V., 2020. Small scale experimental 
validation of a numerical model of the HarshLab2.0 floating platform coupled with a 
non-linear lumped mass catenary mooring system. Ocean. Eng. 200, 107036. 

Tran, T.T., Kim, D.H., 2015. The coupled dynamic response computation for a semi- 
submersible platform of floating offshore wind turbine. J. Wind Eng. Ind. Aerod. 
147, 104–119. 

Tran, T.T., Kim, D.H., 2016. Fully coupled aero-hydrodynamic analysis of a semi- 
submersible FOWT using a dynamic fluid body interaction approach. Renew. Energy 
92, 244–261. 

Walton, T.S., Polachek, H., 1959. Calculation of Nonlinear Transient Motion of Cables, 
vol. 65. Department of the Navy, David Taylor Model Basin. 

Wilhelmy, V., Fjeld, S., Schneider, S., 1981. Non-linear response analysis of anchorage 
systems for compliant deep water platforms. In: Offshore Technology Conference. 
OTC-4051. 

Wu, H., Zeng, X., Xiao, J., Yu, Y., Dai, X., Yu, J., 2020. Vector form intrinsic finite- 
element analysis of static and dynamic behavior of deep-sea flexible pipe. Int. J. Nav. 
Archit. Ocean Eng. 12, 376–386. 

Zhang, Y., Shi, W., Li, D., Li, X., Duan, Y., 2022a. Development of a numerical mooring 
line model for a floating wind turbine based on the vector form intrinsic finite 
element method. Ocean. Eng. 253, 111354. 

Zhang, Y., Shi, W., Li, D., Li, X., Duan, Y., Verma, A.S., 2022b. A novel framework for 
modeling floating offshore wind turbines based on the vector form intrinsic finite 
element (VFIFE) method. Ocean. Eng. 262, 112221. 

Zhong, W., Zhang, X., Wan, D., 2023. Hydrodynamic characteristics of a 15 MW semi- 
submersible floating offshore wind turbine in freak waves. Ocean. Eng. 283, 115094. 

Zhu, Z.H., 2010. Dynamic modeling of cable system using a new nodal position finite 
element method. International journal for numerical methods in biomedical 
engineering 26 (6), 692–704. 

W. Zhong et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S0029-8018(24)00420-7/sref26
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref26
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref26
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref27
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref27
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref28
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref28
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref29
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref29
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref30
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref30
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref30
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref31
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref31
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref31
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref32
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref32
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref32
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref32
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref33
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref33
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref34
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref34
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref34
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref35
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref35
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref36
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref36
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref36
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref37
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref37
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref38
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref38
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref39
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref39
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref39
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref39
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref40
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref40
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref40
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref40
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref40
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref40
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref41
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref41
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref41
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref42
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref42
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref42
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref43
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref43
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref43
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref44
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref44
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref44
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref45
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref45
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref45
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref46
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref46
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref47
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref47
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref47
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref48
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref48
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref48
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref49
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref49
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref49
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref50
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref50
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref50
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref51
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref51
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref52
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref52
http://refhub.elsevier.com/S0029-8018(24)00420-7/sref52

	Comparison study on mooring line models for hydrodynamic performances of floating offshore wind turbines
	1 Introduction
	2 Mooring line models
	2.1 LDG FEM
	2.2 
	2.3 FDM
	2.4 
	2.5 Catenary
	2.6 QS

	3 Dynamics of catenary cable due to fairlead excitation
	3.1 Problem description
	3.2 Simulation details
	3.3 Static cases
	3.4 Dynamics cases

	4 Dynamics of hanging cable under axial excitation
	4.1 Hanging cable with payload
	4.2 Hanging cable without payload

	5 Hydrodynamics of a 15 ​MW semi-submersible FOWT under wave impacts
	5.1 Physical model
	5.2 Numerical details
	5.3 Platform motion response
	5.4 Mooring line fairlead tension
	5.4.1 Mooring line profile


	6 Conclusions
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	References


