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A B S T R A C T   

The multi-fidelity Co-Kriging surrogate model can be applied to combine the accuracy advantage of high-fidelity 
sample evaluation with the efficiency advantage of low-fidelity sample evaluation. In this paper, the hull form 
optimization process for resistance and wake performance of a Japan bulk carrier (JBC) hull at design speed is 
given in detail, where the evaluation results from medium and coarse grids are regarded as the high- and low- 
fidelity data, respectively. 60 high-fidelity hydrodynamic evaluations have been done to construct the Kriging 
model, while the Co-Kriging model uses 30 high-fidelity and 60 low-fidelity evaluations with a 25% reduction of 
the total computation time. The optimization results show that, for the total drag, the Kriging-based optimal hull 
has a 4.57% reduction, while the Co-Kriging-based optimal hull has 5.67%; for the axial wake fraction reduction 
at the propeller disk, the Kriging-based optimal hull has a 7.20% reduction, while the Co-Kriging-based optimal 
hull has 10.37%. Furthermore, in the latter stage of hull form optimization, dimensionality reduction field 
learning can be performed to fully use the viscous-flow-based calculation results. An accurate and efficient 
viscous-flow-based wake field learning method is proposed based on the Kriging model and the Proper 
Orthogonal Decomposition (POD) method with qualitative and quantitative error analysis, which can guide the 
sensitivity analysis of the design variables, the selection of the design variables and spaces, and new flow field 
prediction for comprehensive hull form performance optimization.   

1. Introduction 

When considering comprehensive hydrodynamic performance in 
hull form design optimization, numerical simulations or model tests 
incur high costs. Surrogate models such as single-fidelity Kriging and 
response surface model (RSM) models can significantly reduce compu-
tational costs by evaluating a small number of samples and have already 
been used in many engineering fields for optimization and data-mining 
(Peri et al., 2001; Granados-Ortiz and Ortega-Casanova, 2021). Among 
the single-fidelity surrogate models, the Kriging model has unique ad-
vantages and has been widely used in hull form design optimization (Liu 
et al., 2018, 2021b, 2021c, 2021d). 

From the perspective of the interpolation method, compared with the 
traditional interpolation methods, the Kriging model has both global 
and local spatial statistical properties. In particular, the interpolation 
coefficients generally do not depend on the spatial location of the 

predicted point in traditional interpolation methods, but the interpola-
tion coefficients of the Kriging model are closely related to the location 
of the predicted point, which gives full consideration of the relationship 
between independent variables in the space. In addition, the robustness 
of the Kriging model is strong, that is, the existence of small random 
errors has little impact on the whole Kriging model. From the perspec-
tive of model composition, the Kriging model is composed of a param-
eterized regression model and a non-parameterized random process. 
Furthermore, since the random process is assumed to be Gaussian, its 
good properties make the surrogate model overcome the limitations of 
the general non-parameterized model when processing high- 
dimensional data. 

However, if the evaluation results of numerical simulations or any 
data source with different fidelity are obtained and considered, the final 
constructed surrogate model can be regarded as a multi-fidelity surro-
gate model. For instance, the Co-Kriging surrogate model (Sacks et al., 
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1989) provides the equivalent form of a multi-fidelity Bayesian-based 
model, which does not require prior information and has good compu-
tational characteristics (Forrester et al., 2007). The Co-Kriging model is 
essentially an extension of the single-fidelity Kriging model, which is 
desirable because it takes advantage of the accuracy of high-fidelity 
sample data and the efficiency of low-fidelity sample data. 

Several multi-fidelity surrogate models have already been proposed 
and used to optimize engineering designs, such as robust optimizations 
of airfoils and wings with Mach number uncertainty (Tao and Sun, 
2019), buckling optimization of thin-walled variable-stiffness composite 
cylinders (Guo et al., 2020), aircraft aerodynamic performance optimi-
zation using multi-fidelity deep neural networks (Zhang et al., 2021), 
and thrust optimization of tandem flapping wings with a multi-fidelity 
Co-Kriging model (Ji et al., 2022). 

In hull form optimization field, multi-fidelity surrogate models have 
been gradually regarded these days. Co-Kriging model was used to 
improve the seakeeping (Bonfiglio et al., 2018) and resistance (Bonfiglio 
et al., 2020) performances of Small Waterplane Area Twin Hull 
(SWATH). Raven and Scholcz (2019) combined potential flow and 
viscous flow theory to determine the multi-fidelity surrogate model for a 
fast displacement vessel, which was found successful due to a significant 
reduction of the number of high-fidelity evaluations, but for a contain-
ership, the correlation between low and high-fidelity resistance values 
was found to be poor. Two multi-fidelity models were assessed for the 
uncertainty quantification of a roll-on/roll-off passenger ferry sailing in 
calm water with ship speed and draught uncertainties through viscous 
flow evaluations by different levels of grids (Piazzola et al., 2020, 2022). 
Serani et al. (2019a) and Wackers et al. (2020) extended the 
multi-fidelity surrogate model, which was then used for the shape 
optimization of a NACA hydrofoil, the DTMB-5415 hull model, and the 
operational uncertainty quantification of the total drag of a 
roll-on/roll-off passenger ferry at variable sailing speeds, showing better 
performance in comparison with its single-fidelity counterpart and 
dealing with noisy CFD data. Serani et al. (2019b) discussed four 
different criteria to do the adaptive sampling for multi-fidelity stochastic 
radial basis functions, which were demonstrated by resistance optimi-
zations of a NACA hydrofoil and DTMB-5415 hull. Pellegrini et al. 
(2022a) and Pellegrini et al. (2022b) presented and discussed an 
initialization strategy with a limited training set for adaptive sampling 
and a required fidelity level to reduce the computational cost of evalu-
ating the initial training set, which was applied to the shape optimiza-
tion of a NACA hydrofoil. 

Machine learning (ML) or deep learning (DL) can provide many 
techniques to extract information from data that can be translated into 
knowledge about the underlying fluid mechanics, as long as outcomes 

are held to long-standing critical standards (Brunton et al., 2020). Wu 
et al. (2022) used the unsteady flow field over a foil to train the Con-
ventional Neural Network (CNN) model with different hyperparameter 
settings based on the mode-decomposing CNN autoencoder to compare 
the reconstruction effect. Proper Orthogonal Decomposition (POD), also 
known as Principal Component Analysis (PCA) or Karhunen-Loève 
Expansion (KLE) (Pearson, 1901; Wold et al., 1987; Jolliffe, 1986) is one 
of the most classic, but still most widely-used unsupervised reduced 
order methods. The basic idea of it is to construct a lower-dimensional 
linear space, while making the projection of the high-dimensional data 
on it as large as possible. A POD and Multi-Layer Perceptron 
(MLP)-based neural network technique was employed for fast flow field 
prediction and applied to two classes of scramjet intakes (Brahmachary 
et al., 2021). Furthermore, CNN and MLP-based methods were used to 
predict the physical fields and performance in new flow conditions and 
geometries given the pixelated shape or limited geometric parameters of 
a circular cylinder (Lee and You, 2019), supersonic cascade channel (Li 
et al., 2020), and rotor (Oh et al., 2022). 

In the hull form optimization field, some research has focused on 
applying the reduced-order method to multi-physics field learning in the 
latter stages of hull form optimization (Serani et al., 2016; Serani and 
Diez, 2018). However, hydrodynamic performance evaluation is not 
limited to potential flow theory. For viscous flow calculations, especially 
three-dimensional calculations, the grid topology relationship of new 
hull forms may not be entirely consistent, even though there is no uni-
fied grid topology relationship for unstructured grids (Liu et al., 2021c). 

In this paper, a two-fidelity Co-Kriging surrogate model is first 
applied to a mathematical test function to verify the superiority of the 
Co-Kriging model compared with the single-fidelity Kriging model. 
Then, single-phase and two-phase flow calculation results for the resis-
tance and wake performance of a slow-full Japan bulk carrier (JBC) ship 
hull are compared and discussed in detail to reduce computational cost. 
The coarse- and medium-grid-based single-phase flow simulation results 
are regarded as the low- and high-fidelity data used to construct the 
Kriging and Co-Kriging surrogate models after comparison to ensure the 
strong correlation of the results with two fidelity levels. The sample 
number selection for the Co-Kriging model has been discussed through 
leave-one-out cross-validation. The optimization results by Kriging and 
Co-Kriging models are analyzed and compared to show the advantage 
and feasibility of hull form optimization with the multi-fidelity Co- 
Kriging model. Furthermore, field learning for viscous flow results can 
fully use the expensive numerical calculation results in the latter stages 
of hull form optimization. An accurate and efficient viscous-flow-based 
wake field learning method is proposed based on the Kriging model and 
POD method, which is then applied to the sensitivity analysis of the 
optimization design variables for the JBC ship hull. 

2. JBC hull comprehensive performance optimization case 

2.1. Basic information about the mother ship 

The JBC is a bulk cargo ship that was jointly designed by the National 
Maritime Research Institute (NMRI), Yokohama National University 
(YNU), and the Shipbuilding Research Center of Japan (SRC) and it has 
become an internationally recognized standard ship model with many 
test results for numerical calculation verification (Bakica et al., 2019). 
Its three-dimensional model is shown in Fig. 1, and its main parameters 
at the model scale are shown in Table 1 (Liu et al., 2021a). 

The JBC belongs to the low-full ship category because of its low 
speed and large parallel middle body, resulting in small wave-making 
and predominant viscous drag. The viscous drag is closely related to 
the bow and stern shapes. The hull line shrinks considerably when the 
stern curvature changes rapidly, producing vortex and viscous drag. In 
addition, the stern shape directly affects the velocity distribution at the 
propeller disk, which affects the wake performance. 

Fig. 1. Geometric model of the JBC.  

Table 1 
Primary parameters of JBC ship.  

Parameter Symbol and unit Value 

Length between perpendiculars Lpp (m) 7 
Breadth B (m) 1.125 
Draught T (m) 0.4125 
Molded depth D (m) 0.625 
Drainage volume ∇0 (m3) 2.788 
Wet surface area S0 (m2) 12.4  
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Ocean Engineering 267 (2023) 113321

3

2.2. Verification of drag and flow fields for numerical calculation 

Considering that the wave-making drag is relatively small at the 
design speed and the free surface wave elevation is not large, it is 
necessary to consider whether the free surface changes could be 
neglected in the drag and wake evaluation to reduce the computational 

costs. This consideration determines whether a single-phase model 
(sometimes called a double model because the free surface is a symmetry 
condition), which does not consider the free-surface effect, could be 
used to evaluate the hydrodynamic performance when doing high-cost 
optimization. 

First, the single-phase and two-phase flows for the initial JBC ship 
are numerically calculated at model scale and design speed. There are 
two main differences in the layout of the grids. One difference is that the 
single-phase flow computational grid domain does not extend above the 
calm-water free surface (the plane where the ship design waterline is 
located). The other difference is that multi-level refinement is carried 
out near the free surface because the two-phase flow computational grid 
considers the free surface, while the single-phase flow computational 
grid is not refined near the calm-water free surface. 

Fig. 2 shows the single-phase flow grid’s computational domain size 
and boundaries, and Table 2 lists the specific boundary conditions. Grid 
refinement is mainly concentrated around the hull, especially at the bow 
and stern. Fig. 3 shows the refinement of the computational domain for 
single-phase flow. Details of the mesh generation can be found in Liu 
et al. (2022). 

Fig. 4 shows the two-phase flow grid’s computational domain size 
and boundaries, and Table 3 lists the specific boundary conditions. Grid 
refinement is concentrated mainly on the free surface and around the 
hull, especially at the bow and stern. Fig. 5 shows the refinement of the 
computational domain for two-phase flow, and the local refinement near 

Fig. 2. The size and boundaries of single-phase flow computational domain 
(Unit: m). 

Table 2 
Summary of boundary conditions for single-phase flow.  

Boundary name Boundary condition 

inlet velocity inlet 
hull no-slip wall 
symmetry no-slip 
outlet pressure outlet  

Fig. 3. The refinement of the computational domain for single-phase flow.  

Fig. 4. The size and boundaries of the two-phase flow computational domain 
(Unit: m). 

Table 3 
Summary of boundary conditions for two-phase flow.  

Boundary name Boundary condition 

inlet velocity inlet 
atmosphere no-slip 
hull no-slip wall 
symmetry no-slip 
outlet pressure outlet  

Fig. 5. The refinement of the computational domain for two-phase flow.  

Fig. 6. Grid refinement around the free surface.  
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the free surface is shown in Fig. 6. 
The calculation result of calm-water total drag for two-phase flow is 

obtained by the RANS-based viscous flow calculation platform Open-
FOAM with k-ω SST turbulence model, which is compared with model 
test results in Table 4. 

Fig. 7 shows a comparison between the free-surface wave elevation 
of the JBC in calm water obtained by two-phase flow calculation and the 
model test. The isoline range of free-surface wave elevation is −
0.008 ≤ z

Lpp
≤ 0.012, and the interval is Δz

Lpp
= 0.0005. Fig. 7 shows that 

the bow wave, shoulder wave, and stern wave are well captured, and all 
the main isolines are basically represented. To be honest, there are some 
differences near the ship’s parallel middle body. However, it should be 
stated that, the wave-making near the parallel middle body is rather 
small, which is hard to capture, and the total grid number used here is 
already nearly 6,000,000. Theoretically, through further grid refine-
ment, the calculation result can be better, but the cost can be too high for 
a series of numerical evaluations. 

In addition, Fig. 8 compares the two-phase flow calculation and 
model test results of the axial velocity distribution at several transverse 
sections near the stern of the JBC ship. The velocity distributions are 
generally consistent for the three different sections. In particular, the 
“curved hook” shape shown in Fig. 8(b) near the propeller shaft is well 
captured, although the size and position of the calculated “curved hook” 
shape are slightly lower than the model test result, which is mainly the 
result of the overestimation of turbulent viscosity because of the near- 
wall mesh size (y+ ≈ 30) and the turbulent wall function used in this 
calculation. This mesh is adequate in terms of total drag and overall 
wake performance (such as axial wake fraction) evaluation, considering 
the computational cost of hull form optimization. 

The error between the calculated and the model test total drag co-
efficient Ct is very small, and the comparisons of the free-surface 
elevation together with the axial velocity distribution also verify the 
reliability of the two-phase flow calculation results. However, since the 
free-surface wave elevation is relatively small, a single-phase flow 
calculation can be considered for use in optimizing the stern shape and 
reducing the viscous drag. A comparison between the single-phase and 
two-phase flow results are given below to illustrate the feasibility of 
using single-phase flow to evaluate the resistance and wake performance 
of the JBC ship in this optimization case. 

Fig. 9 shows the vorticity iso-surface near the ship model calculated 
using single- and two-phase flow, where Q equals 20 and is colored by 
axial velocity. The vorticity distribution in the area below the calm- 
water free surface is nearly the same, indicating that there is little dif-
ference in the viscous pressure drag between the two calculations. 

Fig. 10 compares the axial velocity distributions on a section near the 
propeller calculated by single- and two-phase flow. The velocity distri-
bution is nearly the same, and the main difference is probably because of 
the hull model’s freedom of sinkage and trim during the calculation of 
two-phase flow, resulting in a certain upward and downward deviation 
of the velocity distribution contour line. In addition, Fig. 10 also in-
dicates that the small free-surface wave elevation has little influence on 
the wake near the propeller shaft. Therefore, the influence of the free 
surface on the wake near the propeller can be ignored. 

From the above results, we can conclude that, for this hull form 
optimization case, the wave-making drag is rather small, and the single- 
phase flow result can replace the two-phase flow result to construct the 
total drag and wake fraction surrogate models, and the grid refinement 
strategy below the free surface we used here is proper and enough, to 
reduce the calculation cost and accelerate the optimization process. 

Validation of the double model grids is then implemented. With the 
previously used single-phase flow computational grid considered to be 
the medium grid (S2), the coarse grid (S3) and fine grid (S1) can be 
generated accordingly. The three grid sets distributed around the hull 
are shown in Fig. 11, where the background grid size refinement in each 
coordinate axis has a 

̅̅̅
2

√
-fold relationship, while other conditions keep 

the same. The grid count for each set is listed in Table 5. 
For the RANS-based viscous flow calculation, since the hull is set as a 

boundary face of the calculation region, and if the grid refinement 
around the hull is different, the boundary layer of the hull has a dif-
ference, so the pressure and velocity distributions cannot be the same, 
resulting in different total drags and wake fraction reductions. Table 6 
shows the calculation results and time for the three models’ average 
total drag and axial wake fraction reduction, when setting calculation 
time Δt = 0.001 s and using high performance computing cluster with 
40 processors. From Table 6, the calculation is monotonically conver-
gent for three grids because the convergence rate RG of both the total 
drag and axial wake fraction are between 0 and 1 (Liu et al., 2021c). 
Theoretically, a convergent solution can be obtained by performing a 
series of grid refinements, so the grid layout used is reasonable. 
Furthermore, the calculation time of the three grids shows that they 
have a relatively big difference, and if a single-fidelity model is con-
structed using a medium grid only, the cost can be high enough. 
Therefore, the Co-Kriging model can be used to comprehensively take 
advantageages of the finer-grid result as a high-fidelity result, while the 
coarser-grid result can be regarded as the low-fidelity result to save the 
total calculation time and resource (Liu et al., 2022). 

2.3. New sample hull generation and surrogate model construction 

To conduct the surrogate-based optimization of comprehensive 
performances of the JBC hull, the shape of the initial hull should be 
changed by the hull form deformation method. In this paper, the free- 
form deformation (FFD) method (Liu et al., 2018) is used to deform 
the stern shape, while the shapes of the bow and parallel middle body 
are not changed. The ranges of the three design variables are shown in 
Table 7. 

By changing each of the three design variables only, the deformation 
effects are shown in Fig. 12. It should be noted that all the variable 
ranges are dimensionless values relative to the ship model waterline 
length. Keeping the green dots fixed in the FFD control lattice, variable 
x1 corresponds to the amount of motion of the red (moveable) dots along 
the ship length in Fig. 12(a)~(c), x2 to the amount of motion of the red 
dots along the ship breadth in Fig. 12(d)~(f), and x3 to the amount of 
motion of the red dots along the ship breadth in Fig. 12(g)~(i). It should 

Table 4 
Comparison of calculation and model test results for two-phase flow.  

CFD calculation Model test 
Total drag 
coefficient Ct 

Relative 
error of Ct Pressure 

drag Rp 

(N) 

Frictional 
drag Rf (N) 

Total 
drag Rt 

(N) 

Total drag 
coefficient 
Ct 

10.24 26.59 36.83 4.267 ×
10− 3 

4.289 × 10− 3 − 0.5%  

Fig. 7. Comparison of free surface elevations (upper: CFD; lower: experiment).  
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Fig. 8. Comparisons of axial velocity distribution (u/U) (left: experiment; right: CFD).  
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also be noted that the movable control points along the ship breadth are 
moved symmetrically about the central sheer plane of the hull. The three 
deformation parameters control the degree of contraction of the longi-
tudinal profile of the ship and the degree of contraction of the transverse 
profile of the two stern sections. 

Furthermore, if we locate the red (moveable) points separately, for 
example, when moving some different single points in x, y, z directions, 
there will be a lot of design variables, which will definitely cost much 
more in numerical simulation. Furthermore, the new deformed sample 
hulls may not have good smoothness or even be in unreal shape, which is 
not beneficial to the optimization reliability. Therefore, local deforma-
tion at the stern of the JBC ship can comprehensively optimize its total 
drag Rt and reduction of axial wake fraction (1-w) at the propeller disk at 
the design speed U = 1.179 m/s (corresponding Froude number Fr =
0.142). In addition to the constraints that are the lower and upper 
bounds of the three design variables, the relative differences of the wet 
surface area (S and S0 are for deformed and initial hulls) and drainage 
volume (∇ and ∇0 are for deformed and initial hulls) are also con-
strained to meet the actual design requirements, and the overall opti-
mization problem definition is shown below: 

Fig. 9. Comparison of vorticity iso-surface (Q = 20) calculated by two methods 
(upper: two-phase flow; lower: single-phase flow). 

Fig. 10. Comparisons of axial velocity distribution (u/U) near propeller disk.  

Fig. 11. Grid distributions for uncertainty analysis.  

Table 5 
Grid counts for the three single-phase sets.  

Grid No. Background grid number Total grid number 

S3 70 × 14 × 28 878722 
S2 100 × 20 × 40 2519677 
S1 140 × 28 × 56 6747658  

Table 6 
Grid convergence study for the JBC double-model calculation.  

Grid 
No. 

Total drag Rt 

(N) 
Wake fraction reduction 
1-w 

Calculation CPU time 
(second) 

S3 34.152 0.350 200,000 
S2 32.702 0.347 750,000 
S1 32.156 0.346 2,470,000 
RG 0.377 0.333 –  

Table 7 
Design variables and their ranges.  

Design variable Lower bound Upper bound 

x1 − 0.02 0.02 
y1 (x2) − 0.05 0.05 
y2 (x3) − 0.03 0.03  

X. Liu et al.                                                                                                                                                                                                                                      
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design variables x1, x2, x3

min

⎧
⎪⎨

⎪⎩

f1 = Rt

f2 = 1 − w = 1 −
U
U

s.t.

− 0.02 ≤ x1 ≤ 0.02,

− 0.05 ≤ x2 ≤ 0.05,

− 0.03 ≤ x3 ≤ 0.03,

− 1% ≤
S − S0

S0
≤ 1%,

− 1.5% ≤
∇ − ∇0

∇0
≤ 1.5%.

(1)  

where U = 1
N
∑N

i=1Ui, and Ui represents the axial velocity of the i-th grid 
point, and N is the number of the grid points at the propeller disk. 

The sample points can be selected using different sampling methods 
to ensure their uniformity and orthogonality in the design space, such as 
the Optimal Latin Hypercube Sampling (OLHS) method and Sobol 
(1979) method, to help ensure the precision of the surrogate model. 

For instance, the Sobol method can meet accuracy requirements in 
constructing relatively high-precision surrogate model for high- 
dimensional functions, which has been validated in Wigley and 
DTMB-5415 hull’s hydrodynamic performance optimization cases (Liu 
et al., 2021b, 2021c, 2022). Therefore, Sobol method is adopted as the 
design of experiments method to determine the design variable values of 
the new sample hulls. Before using the Co-Kriging model to construct the 
relationship between the hydrodynamic performance index and the hull 
design variables, an introduction to the Co-Kriging model (Sacks et al., 
1989) is given here. 

A two-fidelity Co-Kriging surrogate model can be established by two 
sets of independent samples with high and low accuracy. First, the 
sample data sets at two levels of fidelity are given: the high-fidelity 
samples Xe = [x(1)e , x(2)

e ,⋯, x(Ne)
e ] consisting of Ne samples and the low- 

fidelity samples Xc = [x(1)c , x(2)c ,⋯, x(Nc)
c ] consisting of Nc samples, so 

the new sample set is X = [XT
c ,X

T
e ]

T, and the function value set is y =

[yT
c , yT

e ]
T . 

Like the Kriging model, the value of the function at a certain point in 

the space is regarded as a random process with a certain expectation and 
variance. Assume Gaussian processes Ze and Zc represent the approxi-
mation of low-fidelity and high-fidelity functions respectively. Based on 
auto-regressive model, the Gaussian processes Ze can be obtained by the 
sum of low-fidelity model multiplied by a constant scale factor ρ and the 
deviation function Zd, as shown below: 

Ze(x)= ρZc(x) + Zd(x) (2) 

The covariance based on the Kriging surrogate model is 

cov
[
Y
(
x(i)

)
,Y

(
x(j)

)]
= σ2ψ

(
x(i), x(j)

)
(3)  

where σ2 is the variance, and the correlation matrix is determined by 
Spatial Correlation Function (SCF), one of whose common forms is the 
Gaussian SCF: 

ψ
(
x(i), x(j)

)
= e

−
∑ndv

k=1
θk|x

(i)
k − x(j)k |

pk

(4)  

where ndv is the number of design variables, and θk, pk are spatially 
related parameters. 

The two-fidelity Co-Kriging model has two SCFs, so it has more 
relevant parameters than the single-fidelity Kriging model, i.e., μc,σ2

c ,μd,

σ2
d , θc, θd, pc, pd, ρ, which need to be estimated. Since the low-fidelity 

sample data is independent of the high-fidelity sample data, the log- 
maximum likelihood can be used to obtain the parameters μc, σ2

c , θc, pc 
in low-fidelity Kriging model, which are just the construction process of 
the single-fidelity Kriging surrogate model to build the approximation of 
Zc with the low-fidelity sample data in the Co-Kriging model. 

To estimate the rest parameters μd,σ2
d ,θd,pd,ρ, we define 

d= ye − ρyc(Xe) (5) 

Here, the low-fidelity function values yc at high-fidelity sample 
points Xe are needed. If the high-fidelity sample set Xe is a subset of the 
low-fidelity sample set Xc, their yc(Xe) values are the real values of the 
low-fidelity function. At this point, the log-maximum likelihood func-
tion of the approximate function for high-fidelity samples can be used to 
do the estimations similar with the above process. 

Finally, the best-predicted value ŷe(x) of the to-be-predicted sample 
point, which is just an arbitrary point in the variables space, can be 
obtained: 

Fig. 12. Stern deformation diagrams and effects of the JBC based on the FFD method.  
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ŷe(x)= μ̂ + cT C− 1(y − 1μ̂) (6)  

where μ̂ is the hyper-parameter obtained by log-maximum likelihood 
estimation, c is the covariance of X and x, and C is the overall covariance 
matrix. 

Similar to the single-fidelity Kriging surrogate model, it can be 
proved that the above Co-Kriging surrogate model is an interpolation of 

the existing high-fidelity sample data. However, it performs a regression 
to the low-fidelity sample data Xc except for Xe. 

One test function considered here contains three independent vari-
ables (Chen et al., 2021), and the high- and low-fidelity functions are 
given as: 

Fig. 13. Comparison between different surrogate models and the real function.  
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fe( x→)= e1.4(x2 − x1) cos
(

7πx3

2

)

+ sin[5π(x3 − x1)] (7)  

fc( x→)= [1+ 1.4(x2 − x1)]cos
(

7πx3

2

)

+ sin
[
5π(x3 − x1)

2] (8) 

The low-fidelity function performs a low-order Taylor expansion of 
some terms and elevates the degree of the other terms in the high-fidelity 
function. Although the real (high-fidelity) function is ternary, it has 
strong nonlinearity. Therefore, this example can be considered a true 
reflection of the difference between results obtained through high- and 
low-fidelity numerical simulations in the actual hull form optimization 
process. The low- and high-fidelity function sample sizes selected by the 
Sobol method are 240 and 120, respectively. Setting x2 = 1, the cloud 
maps of the function predicted by the Kriging and Co-Kriging surrogate 
models, together with the real function, are shown in Fig. 13. 

Fig. 13 (a) is the surrogate model for the low-fidelity function, which 
indeed has difference from the true (high-fidelity) function. Further-
more, surrogate model in Fig. 13 (b) has small difference, compared to 
the real function in Fig. 13 (e), however, the “mode” correspondence 
between the two is somewhat different. For the Co-Kriging model in 
Fig. 13 (c), although there are 360 sample points, it should be noted here 
that it can be regarded as practical evaluation of hydrodynamic per-
formance with different fidelity; therefore, the computation time for the 
two fidelities is much different. Using less time in total, the Co-Kriging 
model can give a more realistic reflection of the changing trend of the 

objective function. Last but not least, although Kriging model with 240 
high-fidelity samples are constructed in Fig. 13 (d), which has smaller 
difference, the computational cost can be very high for the real hull form 
optimization case. 

Therefore, a multi-fidelity Co-Kriging model with higher accuracy 
can be established by using fewer high-fidelity samples and more low- 
fidelity samples. It can be predicted that more reliable optimization 
results would be obtained using Co-Kriging for hull form optimization 
problems and that the total calculation costs will be reduced to some 
degree compared with a Kriging model using more high-fidelity samples. 
Of course, this depends on the difference in computational cost between 
the two fidelity samples while comprehensively considering the calcu-
lation efficiency and accuracy. 

Traditionally, we use 10 times or more new sample hulls to construct 
single-fidelity surrogate models for hull form optimization problems. 
Considering that the optimization objective has two in this paper, we 
decide to use 60 samples to ensure the accuracy of the two single-fidelity 
Kriging models. Furthermore, the maximum numbers of high-fidelity 
and low-fidelity samples are also 60 for Co-Kriging models. The high- 
fidelity sample data are the total drag and wake fraction reduction of 
each sample hull calculated using the medium grid (S2), while the low- 
fidelity sample data are the total drag and wake fraction reduction of 
each sample hull calculated using the coarse grid (S3). Here, it should be 
noted that the S3 or S2 grid for each new sample hull can be kept similar 
by using consistent grid settings to minimize systematic errors. 

The single-fidelity Kriging model and the multi-fidelity Co-Kriging 
model can approximate the two objective functions and the design 
variables using the above-described high- and low-fidelity sample data. 
The single-fidelity Kriging models for determining the design variables 
based on total drag and wake fraction reduction are designated as sur-
rogate models 1 and 2, respectively. The multi-fidelity Co-Kriging 
models based on total drag and wake fraction reduction for determining 
the design variables are designated as surrogate models 3 and 4, 
respectively. 

Three main error indicators of each surrogate model can be deter-
mined through leave-one-out cross-validation to measure the error of 
the surrogate model with a sample number Ns quantitatively, namely the 
Average Absolute Error (AAE), Maximum Absolute Error (MAE), and 
Root Mean Square Error (RMSE): 

AAE=
1
Ns

∑Ns

i=1
|ŷi − yi| (9)  

MAE= max
1≤i≤Ns

|ŷi − yi| (10)  

RMSE=
1
Ns

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑Ns

i=1
(ŷi − yi)

2

√
√
√
√ (11)  

where ̂yi represents the predicted value through leave-one-out surrogate 
model, and yi represents the real value of the leave-one-out sample 
point. 

In total, the three error indicator values for Kriging models 1 and 2, 
constructed using the 60 high-fidelity samples, are small when the 
correlation function and deterministic polynomial function are the 
Gaussian correlation function and zero-order deterministic polynomial 
(“corrgauss-regpoly0”) (see Table 8). 

Therefore, to facilitate further discussion, the same correlation 
function and deterministic polynomial form are adopted for the two Co- 
Kriging models 3 and 4 (see Table 9). On the premise that the number of 
low-fidelity samples is 60, the influences of different high-fidelity sam-
ples on the main error indicators are discussed, as listed in Tables 10 and 
11 for models 3 and 4, respectively. 

From the three error indicators of models 3 and 4, it can be seen that, 
when changing the number of high-fidelity samples from 10 to 60, if the 
high-fidelity-sample number is small, the error may be relatively big, 

Table 8 
Error analysis of surrogate model 1.   

regpoly0 regpoly1 regpoly2  

corrgauss 0.0810 0.0834 0.0488 AAE 
0.4067 1.0634 0.5406 MAE 
0.1096 0.1665 0.0898 RMSE 

corrspline 0.0770 0.0588 0.0439 AAE 
0.9236 0.9348 0.5414 MAE 
0.1437 0.1330 0.0856 RMSE  

Table 9 
Error analysis of surrogate model 2.   

regpoly0 regpoly1 regpoly2  

corrgauss 0.0032 0.0036 0.0023 AAE 
0.0262 0.0476 0.0311 MAE 
0.0058 0.0072 0.0047 RMSE 

corrspline 0.0026 0.0026 0.0020 AAE 
0.0493 0.0452 0.0312 MAE 
0.0068 0.0062 0.0046 RMSE  

Table 10 
Error analysis of surrogate model 3.  

Number of high-fidelity samples Ne  

15 20 30 40 50 60 

0.1197 0.1621 0.1343 0.1048 0.0719 0.1070 AAE 
0.4028 0.3564 0.3215 0.3749 0.3055 0.3046 MAE 
0.1729 0.1539 0.1147 0.1043 0.0829 0.1015 RMSE  

Table 11 
Error analysis of surrogate model 4.  

Number of high-fidelity samples Ne  

15 20 30 40 50 60 

0.0051 0.0037 0.0047 0.0041 0.0041 0.0047 AAE 
0.0119 0.0108 0.0153 0.0148 0.0125 0.0123 MAE 
0.0064 0.0053 0.0061 0.0052 0.0048 0.0048 RMSE  
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while if we choose too many high-fidelity samples, the total cost will be 
high. Therefore, comprehensively considering the calculation efficiency 
of hydrodynamic evaluation and the accuracy of the constructed Co- 
Kriging surrogate model, the number of high-fidelity samples can be 
chosen as 30. The distribution of high-fidelity (solid red circles) and low- 
fidelity (solid green squares) sample points is shown in Fig. 14, where 
the high-fidelity data are obtained from the medium grid (S2) evaluation 
results, and the low-fidelity data are obtained from the coarse grid (S3) 
evaluation results. It is not difficult to see that the 30 high-fidelity 
samples are subsets of the 60 low-fidelity samples and are evenly 
distributed in the design space to reduce the additional interpolation 
errors of the Co-Kriging model. 

The similarities and differences of the flow field calculation results 
for two sets of grids are investigated, taking the original hull as an 
example. Fig. 15 shows the high- and low-fidelity results of axial velocity 
distribution at the propeller disk. It is evident that the general velocity 
distribution trend is mostly consistent, with slight differences near the 
longitudinal plane, such as the hook-shaped low-speed area, and the 
velocity isolines obtained from the coarse grid are less smooth than from 
the medium grid. 

Fig. 16 presents the high- and low-fidelity results for the vorticity iso- 
surface distribution (Q = 20) around the hull, showing that the general 
trend is also mostly consistent. The vorticity iso-surface is only slightly 
different near the ship’s stern, and the coarse grid vorticity iso-surface is 
somewhat less smooth than the medium grid. 

To sum up, the coarse and medium grid results’ strong correlation is 
obvious in the flow field comparisons, which is beneficial to ensure the 
precision of the multi-fidelity surrogate model. 

2.4. Optimization results and analysis 

According to the Kriging models 1 and 2 and the Co-Kriging models 3 
and 4 discussed in the preceding section, the second-generation Non- 
dominated Sorting Genetic Algorithm (NSGA-II) (Liu et al., 2020), is 
used to solve the multi-objective hydrodynamic performance optimi-
zation problem. Table 12 shows the main optimization parameters. 

Based on the constructed Kriging and Co-Kriging surrogate models, 
optimal Pareto solution sets of the optimization problem can be obtained 
using the NSGA-II, and each point on the Pareto front (corresponding to 
each new hull form) has different degrees of performance improvement 
(objective function value decrease) compared with the initial hull. The 
Pareto front iteration processes based on Kriging and Co-Kriging sur-
rogate models are given in Fig. 17. 

Two typical optimal solutions are selected from each Kriging-based 

Fig. 14. Sample points for low-fidelity (green) and high-fidelity (red) evalua-
tions. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 

Fig. 15. Comparison of velocity distribution at the propeller disk for two grids.  

Fig. 16. Comparison of Q = 20 iso-surface calculated using two grids.  

Table 12 
Multi-objective optimization parameters setup for the JBC.  

Parameter Value 

Population size 200 
Maximum iteration 150 
Crossover rate 0.8 
Mutation rate 0.2 
Optimal population ratio 0.9  
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and Co-Kriging-based Pareto front to verify the reliability of optimiza-
tion results, so a total of four optimal hulls (Opt1-K, Opt2-K, Opt3-CoK, 
Opt4-CoK) can be obtained, and the convergence diagram for the three 
design variables for the four optimal hulls are given below in Fig. 18. 

The initial and optimal hulls’ transverse and sheer body plans are 
compared, as shown in Figs. 19 and 20. 

There is a relatively large difference in the hull lines for the two 
optimal hulls obtained based on the Kriging model (Opt1-K and Opt2-K). 
However, the difference in hull lines is relatively small for the two 
optimal hulls based on the Co-Kriging model (Opt3-CoK and Opt4-CoK). 
However, the profile generally has a contraction, which gradually 
changes the stern section from a “U” shape to a “V” shape. The detailed 
design variable values for the four typical optimal hulls are provided in 
Table 13. 

From Table 13, Opt1-K represents the optimal hull based on the 
Kriging surrogate model 1 for total drag. However, because of the 
Kriging model error, the CFD prediction result of its total drag is slightly 
larger than for the Kriging model and even larger than the total drag of 
Opt2-K. Although a 4.57% drag decrease is achieved, it can be inferred 
that the Kriging model has a relatively large error in the vicinity of the 
real optimal solution, so there is still a certain distance between the 
obtained and the real optimal hulls. Opt2-K represents the optimal hull 
based on Kriging model 2 for wake fraction reduction. However, because 
of the Kriging model error, the CFD prediction result of the wake fraction 
reduction is slightly larger than for the Kriging model, although there is 
still a reduction of 7.20%, which is conducive to improving the propeller 
propulsion efficiency. 

Opt3-CoK represents the optimal hull based on Co-Kriging surrogate 

model 3 for total drag. Although the CFD prediction result of its total 
drag is slightly larger than for the Co-Kriging model, it has better 
resistance performance than Opt1-K, and the total drag is optimized by 
5.67%. This indicates that the Co-Kriging model can find a better 
optimal solution than the Kriging model. Opt4-CoK is the optimal hull 
based on Co-Kriging model 4 for wake fraction reduction. Compared 
with the initial hull, the wake fraction reduction is optimized by 
10.37%, which is better than Opt2-K so that the propeller propulsion 
efficiency can be significantly improved. 

Similar with the mathematical function validation case given above, 
it can be inferred that the Co-Kriging model can well capture the 
changing trend of the design space, so the optimal design variables 
obtained by Co-Kriging model can be regarded to be closer to the real 
minimum of the objective function and Co-Kriging model better reflects 
the changing trend around the real minimum. At the same time, the 
overall computation time has a 25% reduction. 

In addition, the wet surface areas of the four optimal hulls Opt1-K, 
Opt2-K, Opt3-CoK, and Opt4-CoK are 12.37, 12.35, 12.36, and 12.37 
m2, respectively, and the drainage volumes are 2.769, 2.752, 2.763 and 
2.765 m3, respectively. Therefore, the relative changes in wet surface 
area and drainage volume for the optimal hulls are no more than 0.6% 
and 1.3%, respectively, which meet the actual optimization 
requirements. 

Fig. 21 compares the vorticity iso-surface distributions around the 
initial and optimal hulls. The area of the vorticity iso-surface near the 
ship stern decreases, indicating that the overall vorticity of the ship stern 
decreases to varying degrees. This leads to a decrease in the ship’s 
viscous pressure drag and total drag, confirming the reliability of 

Fig. 17. Pareto front iteration process.  

Fig. 18. Convergence diagram for the three design variables for the four optimal hulls.  
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optimization results. Opt3-CoK clearly has a smaller vorticity iso-surface 
area than Opt1-K. 

The dynamic pressure distribution comparison of the initial and 
optimal hulls is given in Fig. 22. Because the bow shape of the JBC hull 
has not been changed, the pressure distribution at the ship bow is 
entirely consistent. However, the low-pressure region’s area and 
amplitude at the stern bottom and contraction section have different 
degrees of decrease for each optimal hull. This causes the differential 

pressure between bow and stern to decrease, resulting in a total drag 
decrease, also confirming the optimization results’ reliability. 

Fig. 23 compares the axial velocity distributions at the propeller disk 
for the initial and optimal hulls. The velocity distributions of the optimal 
hulls have significant changes compared with the initial hull, and the 
decreases in area and amplitude of the low-speed region lead to overall 
average axial velocity increases. Therefore, the wake fraction reduction 
decreases, conducive to propeller propulsion efficiency, and Opt4-CoK 

Fig. 19. Transverse line comparison of the initial and optimal hulls.  

Fig. 20. Sheer line comparison of the initial and optimal hulls.  

Table 13 
Summary of optimal results.  

/ Design variable value Total drag Rt Wake fraction reduction 1-w 

x1 y1 y2 Model prediction (N) CFD calculation (N) Reduction ratio Model prediction CFD calculation Reduction ratio 

Initial 0 0 0 / 32.702 / / 0.347 / 
Opt1-K − 0.005 0.05 0.010 30.361 31.206 4.57% 0.325 0.328 5.48% 
Opt2-K 0.018 0.05 0.025 30.787 30.532 6.64% 0.308 0.322 7.20% 
Opt3-CoK 0.02 0.017 0.03 29.402 30.847 5.67% 0.300 0.319 8.07% 
Opt4-CoK 0.02 0.013 0.027 29.806 31.021 5.14% 0.297 0.311 10.37%  
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has the highest average axial velocity. 
In summary, the multi-fidelity Co-Kriging surrogate model can be 

established by using the viscous flow evaluation method with coarse and 
medium grids. The optimal hulls obtained by the multi-fidelity Co- 
Kriging model have better comprehensive resistance and wake perfor-
mance than those from the single-fidelity Kriging model. Therefore, the 
optimization effects are more significant, and the Co-Kriging model is 
shown to be a data-driven model by investigating the deviation of the 
two-fidelity sample data and achieving a relatively high-precision sur-
rogate model. 

It should be noted that the Kriging model employs 60 high-fidelity 
samples, while the Co-Kriging model adopts 60 low-fidelity samples 
and 30 high-fidelity samples. In terms of surrogate model accuracy, 
when there are more objective functions, it is suggested that the number 
of low-fidelity samples should be slightly increased to construct the Co- 
Kriging model according to actual demand, and the number of high- 
fidelity samples can be adjusted in the same way. 

Last but not the least, in terms of computational efficiency, for this 
optimization case, a high-fidelity sample takes about 2 days to evaluate, 
while a low-fidelity sample takes only about half a day. Therefore, the 
Co-Kriging model constructed in this case has a much lower computa-
tional cost while still producing optimal hulls that have much better 
comprehensive hydrodynamic performance. This again reflects the Co- 
Kriging model’s superiority over the Kriging model in terms of compu-
tational efficiency and accuracy. 

3. POD-based wake field learning of the JBC ship hull 

In the latter stages of hull form optimization, flow field dimension-
ality reduction learning can be performed to fully use the flow field 
results of the new sample hulls using linear reduced order methods, such 
as POD method (Diez et al., 2015; Liu et al., 2021c). 

In POD method, for all samples in the database, the average wake 

field x can be got at first, and regard the wake field of any sample hull 
form as a linear superposition of the average field and an infinite number 
of unit orthogonal basis modes as follows: 

xi = x +
∑∞

j=1
aijuj (12)  

where 

aij =(xi − x)T uj,
(
ui, uj

)
= δij (13) 

If only M (finite) basis modes u1, u2,⋯, uM are selected, the recon-
structed wake field xrec

i can be expressed as 

xrec
i = x +

∑M

j=1
aijuj (14) 

Because of the truncation of the number of series items, a “cutoff 
error” EM(u1, u2,⋯, uM) can be measured by the square sum of the 
modulus length of the error vector in Euclidean space, namely 

EM(u1, u2,⋯, uM)=
∑N

i=1

⃦
⃦xi − xrec

i

⃦
⃦2 (15) 

Denote the difference between the wake field of each sample hull 
form xi and the average field x as x̃i = xi − x, and define the matrix X̃ =

(x̃1, x̃2,⋯, x̃N), then 

X̃X̃
T
=

∑N

i=1
(xi − x)(xi − x̃)T (16) 

Assuming that M is certain, the constrained optimization problem on 
the basis u1, u2,⋯, uM can be defined and optimized by the Lagrange 
multiplier method, and we have 

X̃X̃
T
uj = λjuj (17)  

That is to say, the basis should be the eigenvectors corresponding to the 

eigenvalues of matrix S = X̃X̃
T
. From singular value decomposition of 

matrix X̃: 

X̃ =UDVT = σ1u1vT
1 + σ2u2vT

2 + ⋯ + σrurvT
r (18)  

where σ1 ≥ σ2 ≥ ⋯ ≥ σr > 0, we have 

X̃X̃
T
uj = σ2

j uj (19)  

where the basis uj happens to be the j-th column of the matrix U obtained 
by singular value decomposition of X̃, and the reconstructed field can be 
obtained by Eq. (14). 

The dimensionality reduction learning framework for the wake field 
is shown in Fig. 24. 

Constructing a flow field database based on the viscous flow evalu-
ation results for flow field learning by dimensionality reduction methods 
in the hull form optimization field has great importance and practical 
significance. Based on the viscous flow performance optimization results 
for the JBC hull using the medium grid (S2), the viscous wake flow field 
dimensionality reduction learning process and results are given below. 

The flow field database is quite different from potential flow evalu-
ation results because the grid topological relations at the propeller disk 
for different sample hulls may not be entirely consistent because there 
are no regular grid topological relations. The volumetric grid is usually 
unstructured in viscous flow CFD calculations based on the Finite Vol-
ume Method (FVM). However, the POD method for free-surface and hull 
pressure field learning in Liu et al. (2021c) assumes that the grid topo-
logical relations in the new sample hull geometric/physical field data-
base are exactly the same. Therefore, when viscous flow results are used 
to perform flow field learning, it is necessary to preprocess the flow field 

Fig. 21. Comparison of Q = 20 iso-surfaces around the optimal hulls.  

Fig. 22. Comparison of pressure distributions of the initial and optimal hulls.  
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data of each sample hull to conduct flow field learning and rapid pre-
diction using the POD method. 

A new two-dimensional mesh can be established, and a wake field 
interpolation or other mapping by the Kriging model can be performed 
from each original (unstructured) grid to a new (structured) grid to 

ensure that the wake field data for each new sample hull has the same 
grid topological relationship. Since the axial velocity field region of 
interest is a circle at the propeller disk, the new grid can be established 
using polar coordinates. 

Fig. 25 shows sample original unstructured and new structured two- 

Fig. 23. Comparison of velocity distributions at the propeller disk of the optimal hulls.  

Fig. 24. Framework for POD-based wake field learning.  
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dimensional grids of the wake field at the propeller disk. Fig. 25(b) 
shows the “O-type” grid adopting 40 radial × 120 circumferential grid 
points, totaling 4800 grid points used for dimensionality reduction 
learning of the wake field. 

Fig. 25. Original and mapping wake field grids.  

Fig. 26. Comparison of wake fields before and after mapping.  

Fig. 27. Changes in the square root of eigenvalues corresponding to 
each mode. 

Fig. 28. Cumulative energy of the first several modes.  
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Fig. 29. Average wake field and fields corresponding to the first 14 modes.  
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In addition, the physical field is made dimensionless, that is, the axial 
velocity Ui of each grid point at the propeller disk is normalized by the 
main flow velocity, which is the sailing speed of the ship U = 1.179 m/s. 

ui =
Ui

U
(20)  

where N is the number of the structured grid points. 
As mentioned previously, the wake field on the original grid has a 

strong spatial correlation between grid points, and since the number of 
the original grid points for a certain velocity field is about 3000, it is 
quite enough for constructing a high-precision Kriging model that can 
comprehensively account for the global and local spatial correlation of 
the data in the region. Therefore, a Kriging model in the propeller disk 
region can be constructed using the original two-dimensional grid co-
ordinates and their corresponding dimensionless axial velocity values. 
The dimensionless axial velocity values at the new grid points can then 
be predicted and mapped. Furthermore, from the comparison figure of 
the field before and after mapping. 

Taking one of the sample hulls as an example, Fig. 26 compares the 
dimensionless wake field before and after mapping. It can be seen that 
the wake field is nearly identical before and after mapping, indicating 
that the error due to the mapping operation proposed in this paper is 
rather small. As a result, the mapped field can be used to replace the 
original field to do the POD implementation and field forecasting of a 
new sample hull. 

The wake field evaluation results for 60 sample hulls with the me-
dium grid (S2) are preprocessed as above to establish the wake field 
database, and the POD-based wake field dimensionality reduction 
learning is then conducted. 

First, the mode order M required for flow field learning is deter-
mined. Figs. 27 and 28 show the arithmetic square root of the eigen-
values corresponding to each mode contained in the database (arranged 
from largest to smallest) and the cumulative energy at different modes, 
respectively. 

According to the POD results and the energy contained in each basis 
mode shown in Fig. 28, the first 14 basis modes capture 99% of the total 
wake field energy of the new hulls, where each basis mode has the same 
structured grid topology as the 60 mapped axial velocity fields. The 
average dimensionless axial velocity field and the first 14 basis modes 
are shown in Fig. 29. 

Except for the average field, the dimensionless axial velocity field 
corresponding to each basis mode is small in value, and the decrease 
becomes more evident with increasing mode number. In addition, 
because the basis modes are orthogonal, it can be seen from Fig. 29 that 
the positions of high-speed and low-speed regions in each mode are 
almost “staggered”. For example, in Fig. 29(o), a high-speed region 
appears near the propeller shaft for the 14th mode, while other modes 

do not have high-speed regions there. In fact, this phenomenon makes it 
possible to reconstruct the actual wake field through the linear super-
position of each basis mode. 

The ratio of the sum of square error of each new sample hull’s 
reconstructed (predicted) dimensionless wake field information by the 
reduced-order model and its corresponding actual dimensionless wake 
field information (total error energy) to the sum of squares of each new 
sample hull’s actual dimensionless wake field information (total energy) 
can be obtained, and the relative error er can be defined as the arithmetic 
square root of that ratio, i.e., 

er =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑Np

i=1
(ui − ũi)

2

∑Np

i=1
u2

i

√
√
√
√
√
√
√
√

(21) 

The relationship between the relative error er and node number M 
can be obtained for each sample in the database. The relationship is 
shown in Fig. 30 for one selected sample from the database. 

As M increases, the relative error of the reconstructed wake field 
corresponding to the new sample hull decreases monotonically, and 
when M reaches 14, the relative error is less than 1%, indicating that the 
reconstructed flow field has high reliability. 

The absolute errors in the reconstructed wake field of the above new 
sample hull for different values of M are shown in Fig. 31. It is evident 
that the absolute error of the wake field decreases gradually with 
increasing M. Therefore, the dimensionality reduction learning effect 
can be considered good when M = 14. In other words, based on the wake 
field database, the axial velocity field at the propeller disk for any new 
hull form in the design space can be predicted quickly and accurately. 

A sensitivity analysis can be carried out for each design variable in 
the optimization case using the dimensionality reduction learning re-
sults. The three design variables are normalized as follows 

x∗i =
xi − xi,min

xi,max − xi,min
, i = 1, 2, 3 (22) 

Then, the axial velocity field variation at the propeller disk can be 
obtained when the three dimensionless design variables x∗

1, x∗
2, x∗

3 change 
from 0 to 1. 

The sensitivity analysis is conducted on the normalized design var-
iables x∗

1, x∗
2, x∗

3 using 0.1 as the interval. The wake field corresponding 
to each new hull can be quickly predicted using the POD results instead 
of the much more expensive numerical simulations, as shown in 
Figs. 32–34. 

Fig. 32 shows that the high-speed regions on the left and right sides 
of the wake field expand upward, and the low-speed regions are rela-
tively squeezed and become smaller with increasing x∗

1, while the low- 
speed area near the propeller shaft expands. Similar sensitivity ana-
lyses can be performed for other design variables. 

Fig. 33 shows sections at the ship stern with increasing x∗
2. In general, 

the high-speed regions on the left and right sides and at the bottom of the 
wake field expand upward and toward the propeller shaft, while the 
contour lines of the hook-shaped low-speed region near the propeller 
shaft converge with those below the propeller shaft. 

It can be seen from Fig. 34 that the high-speed regions on the left and 
right sides of the wake field expand towards the propeller shaft with 
increasing x∗

3, while the contour lines of the hook-shaped low-speed 
region near the propeller shaft converge with those below the propeller 
shaft. However, the overall wake change with x∗

3 is smaller than with x∗
2. 

Therefore, the sensitivity to x∗
3 is somewhat weaker than to x∗

2. In 
addition, as x∗

3 increases, the inflection point of the contour line in the 
high-speed region tends to draw close from the left and right sides below 
the propeller shaft to the sides above the propeller shaft. 

Again, it should be explained that in the sensitivity analysis, only one 
design variable value is changed to exclude the effects of the other 
variables. However, because the design variable values of the new 

Fig. 30. Relationship between the relative error of the wake field of a new hull 
and number of modes M. 
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Fig. 31. Absolute error in the reconstructed wake field for different M.  
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Fig. 32. Variation of wake fields with changes in the first design variable value.  
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Fig. 33. Variation of wake fields with changes in the second design variable value.  
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Fig. 34. Variation of wake fields with changes in the third design variable value.  
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sample hulls are generally obtained through the space-filling design of 
experiments method to ensure good uniformity and orthogonality 
among the samples, the new hulls used for sensitivity analysis are not 
included in the new N = 60 sample hull database of used for batch hy-
drodynamic performance evaluation. In other words, the flow field in-
formation of a series of new hulls used for sensitivity analysis is quickly 
predicted based on the sample hull database of N = 60 and the dimen-
sionality reduction method, which saves significant computational costs 
in the viscous-flow-based hydrodynamic evaluation of a series of new 
hulls. 

The sensitivity analysis of the optimization design variables above 
shows how the axial velocity field at the propeller disk changes when 
each design variable changes within its variation range. This can further 
guide the selection of the design space and hull form optimization var-
iables and the rapid flow field prediction of any new hull form in the 
design space. 

The wake field learning process is implemented on personal com-
puter, and the calculation information for the wake field database is 
listed:  

(i) CPU information: Intel(R) i7-4790 K @ 2.00 GHz;  
(ii) grid number: about 452,000;  

(iii) dimensionality reduction calculation: approximately 3600 CPU 
seconds;  

(iv) wake field prediction for a new sample hull: approximately 20 
CPU seconds. 

It is not difficult to see that the time needed to construct the Co- 
Kriging model is much less than that for single-fidelity Kriging model, 
and the wake field prediction can be very effective rather than doing a 
new calculation of a new hull. 

4. Conclusions and future work 

In this paper, data-driven surrogate models, including single-fidelity 
Kriging and multi-fidelity Kriging models, are constructed and 
compared in detail. The Co-Kriging model can fully use the relationship 
between the high- and low-fidelity sample data for a mathematical test 
function and has a relatively smaller error than the Kriging model. The 
calm-water resistance and wake performances of the JBC ship at its 
design speed are then optimized, where the Kriging and Co-Kriging 
surrogate models are established through the viscous-flow evaluation 
method using coarse and medium grids. In this case, 60 high-fidelity 
hydrodynamic evaluations have been done to construct the Kriging 
model, while the Co-Kriging model uses 30 high-fidelity and 60 low- 
fidelity evaluations with a 25% reduction of the total computation 
time, while obtaining better-performed hulls. Therefore, it can be seen 
that not only the potential and viscous flow results can be regarded as 
low- and high-fidelity results respectively, but also the coarse- and fine- 
mesh viscous flow results, to construct Co-Kriging model, which can be 
successfully applied in the simulation-based hydrodynamic performance 
optimization of hull forms. 

Furthermore, an accurate and efficient viscous-flow-based wake field 
learning method is proposed based on the Kriging model and the POD 
method when the grid topological relations for different sample hulls are 
entirely consistent. As a result, forecasts through dimensionality 
reduction field learning can be much quicker than evaluating new hull 
forms using high-fidelity viscous flow calculations, and the sensitivity 
analysis can be a guidance for the future optimization for the ship wake 
field. Therefore, this paper’s dimensionality reduction learning method 
for the viscous flow field has significant potential and a wide applica-
bility range. 

Meanwhile, we have to say, one bottleneck of the multi-fidelity Co- 
Kriging model is still the dimensionality of the optimization problem, so 
only three design variables are selected for JBC hull’s drag and wake 
performance optimization. Moreover, the effectiveness of multi-fidelity 

Co-Kriging model may be reduced when the correspondence between 
the fidelity levels is relatively small, but it’s fortunate that the corre-
spondence of the two-fidelity data we use is big enough. 

Further study will focus on the viscous flow field learning method for 
three-dimensional flow field. What’s more, sample number choice 
strategy for the two or more-fidelity data can be studied by comparing 
different time cost and drag and wake performance gain, to give further 
elucidation of the multi-fidelity model’s advantages. 
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Forrester, A.I.J., Sóbester, A., Keane, A.J., 2007. Multi-fidelity optimization via surrogate 
modeling. Proc. Math. Phys. Eng. Sci. 463, 3251–3269. 

Granados-Ortiz, F.J., Ortega-Casanova, J., 2021. Machine learning-aided design 
optimization of a mechanical micromixer. Phys. Fluids 33, 063604. 

Guo, Q., Hang, J., Wang, S., Hui, W., Xie, Z., 2020. Buckling optimization of variable 
stiffness composite cylinders by using multi-fidelity surrogate models. Thin-Walled 
Struct. 156, 107014. 

Ji, T., Jin, F., Xie, F., Zheng, H., Zhang, X., Zheng, Y., 2022. Active learning of tandem 
flapping wings at optimizing propulsion performance. Phys. Fluids 34, 047117. 

Jolliffe, I.T., 1986. Principal component analysis. J. Appl. Stat. 87, 41–64. 
Lee, S., You, D., 2019. Data-driven prediction of unsteady flow over a circular cylinder 

using deep learning. J. Fluid Mech. 879, 217–254. 
Li, Y., Chang, J., Kong, C., Wang, Z., 2020. Flow field reconstruction and prediction of 

the supersonic cascade channel based on a symmetry neural network under complex 
and variable conditions. AIP Adv. 10, 065116. 

Liu, X., Chen, S., Zhao, W., Wan, D., Wang, Y., 2021a. Liutex-based centripetal force field 
model for improving the resistance and wake performances of JBC ship sailing in 
calm water. J. Hydrodyn. 33, 494–502. 

X. Liu et al.                                                                                                                                                                                                                                      

http://refhub.elsevier.com/S0029-8018(22)02604-X/sref1
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref1
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref2
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref2
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref3
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref3
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref3
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref4
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref4
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref4
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref5
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref5
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref6
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref6
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref7
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref7
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref7
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref8
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref8
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref10
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref10
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref11
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref11
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref11
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref12
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref12
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref13
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref14
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref14
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref15
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref15
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref15
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref16
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref16
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref16


Ocean Engineering 267 (2023) 113321

23

Liu, X., Wan, D., Chen, G., 2018. Kriging-based surrogate model combined with weighted 
expected improvement for ship hull form optimization. In: Proceedings of the ASME 
37th International Conference on Ocean, Offshore and Arctic Engineering (OMAE), 
78388. 

Liu, X., Wan, D., Hu, C., 2020. Multi-objective hull form optimization of trimaran’s total 
drag at different speeds. In: Proceedings of the 30th International Ocean and Polar 
Engineering Conference (ISOPE), pp. 3850–3857. 

Liu, X., Zhao, W., Wan, D., 2021b. Hull form optimization based on calm-water wave 
drag with or without generating bulbous bow. Appl. Ocean Res. 116, 102861. 

Liu, X., Zhao, W., Wan, D., 2021c. Linear reduced order method for design-space 
dimensionality reduction and flow-field learning in hull form optimization. Ocean 
Eng. 237, 109680. 

Liu, X., Zhao, W., Wan, D., 2021d. Optimization of the roll motion for box-shaped hull 
section with anti-rolling sloshing tanks and fins in beam waves. J. Hydrodyn. 33, 
688–697. 

Liu, X., Zhao, W., Wan, D., 2022. Multi-fidelity co-Kriging surrogate model for ship hull 
form optimization. Ocean Eng. 243, 110239. 

Oh, S., Lee, S., Son, M., Kim, J., Ki, H., 2022. Accurate prediction of the particle image 
velocimetry flow field and rotor thrust using deep learning. J. Fluid Mech. 939, A2. 

Pearson, K., 1901. On lines and planes of closest fit to systems of points in space. Philos. 
Mag. A 2 (11), 559–572. 

Pellegrini, R., Wackers, J., Broglia, R., Serani, A., Visonneau, M., Diez, M., 2022a. 
A multi-fidelity active learning method for global design optimization problems with 
noisy evaluations. Eng. Comput. 1–24. 

Pellegrini, R., Wackers, J., Serani, A., Visonneau, M., Diez, M., 2022b. Towards 
automatic parameter selection for multifidelity surrogate-based optimization. In: 
Proceedings of the 9th Conference on Computational Methods in Marine 
Engineering. 

Peri, D., Rossetti, M., Campana, E.F., 2001. Design optimization of ship hulls via CFD 
techniques. J. Ship Res. 45, 140–149. 

Piazzola, C., Tamellini, L., Pellegrini, R., Broglia, R., Serani, A., Diez, M., 2022. 
Comparing multi-index stochastic collocation and multi-fidelity stochastic radial 
basis functions for forward uncertainty quantification of ship resistance. Eng. 
Comput. 1–29. 

Piazzola, C., Tamellini, L., Pellegrini, R., Broglia, R., Serani, A., Diez, M., 2020. 
Uncertainty quantification of ship resistance via multi-index stochastic collocation 

and radial basis function surrogates: a comparison. Proceedings of the AIAA Aviation 
2020 Forum 1, 1–23, 3160.  

Raven, H.C., Scholcz, T.P., 2019. An assessment of multifidelity procedures for ship hull 
form optimisation. In: Proceedings of the 8th International Conference on 
Computational Methods in Marine Engineering. 

Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P., 1989. Design and analysis of computer 
experiments. Stat. Sci. 4 (4), 409–423. 

Serani, A., Diez, M., 2018. Shape optimization under stochastic conditions by design- 
space augmented dimensionality reduction. In: Proceedings of the 19th AIAA/ISSMO 
Multidisciplinary Analysis and Optimization Conference. 

Serani, A., Fasano, G., Liuzzi, G., Lucidi, S., Iemma, U., Campana, E.F., Stern, F., Diez, M., 
2016. Ship hydrodynamic optimization by local hybridization of deterministic 
derivative-free global algorithms. Appl. Ocean Res. 59, 115–128. 

Serani, A., Pellegrini, R., Broglia, R., Wackers, J., Visonneau, M., Diez, M., 2019a. An 
adaptive N-fidelity metamodel for design and operational-uncertainty space 
exploration of complex industrial problems. In: Proceedings of the VIII International 
Conference on Computational Methods in Marine Engineering. 

Serani, A., Pellegrini, R., Wackers, J., Jeanson, C.E., Queutey, P., Visonneau, M., 
Diez, M., 2019b. Adaptive multi-fidelity sampling for CFD-based optimisation via 
radial basis function metamodels. Int. J. Comput. Fluid Dynam. 33, 237–255. 

Sobol, I., 1979. On the systematic search in a hypercube. SIAM J. Numer. Anal. 16 (5), 
790–793. 

Tao, J., Sun, G., 2019. Application of deep learning based multi-fidelity surrogate model 
to robust aerodynamic design optimization. Aero. Sci. Technol. 92, 722–737. 

Wackers, J., Visonneau, M., Serani, A., Pellegrini, R., Broglia, R., Diez, M., 2020. Multi- 
fidelity machine learning from adaptive- and multi-grid RANS simulations. In: 
Proceedings of the 33rd Symposium on Naval Hydrodynamics. 

Wold, S., Esbensen, K., Geladi, P., 1987. Principal component analysis. Chemometr. 
Intell. Lab. Sys. 2 (1), 37–52. 

Wu, X., Wu, S., Tian, X., Guo, X., Luo, X., 2022. Effects of hyperparameters on flow field 
reconstruction around a foil by convolutional neural networks. Ocean Eng. 247, 
110650. 

Zhang, X., Xie, F., Ji, T., Zhu, Z., Zheng, Y., 2021. Multi-fidelity deep neural network 
surrogate model for aerodynamic shape optimization. Comput. Methods Appl. Math. 
373, 113485. 

X. Liu et al.                                                                                                                                                                                                                                      

http://refhub.elsevier.com/S0029-8018(22)02604-X/sref17
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref17
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref17
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref17
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref18
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref18
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref18
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref19
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref19
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref20
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref20
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref20
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref21
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref21
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref21
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref22
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref22
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref23
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref23
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref24
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref24
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref25
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref25
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref25
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref26
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref26
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref26
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref26
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref27
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref27
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref28
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref28
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref28
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref28
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref29
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref29
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref29
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref29
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref30
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref30
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref30
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref31
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref31
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref32
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref32
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref32
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref33
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref33
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref33
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref34
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref34
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref34
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref34
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref35
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref35
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref35
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref36
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref36
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref38
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref38
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref39
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref39
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref39
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref40
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref40
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref41
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref41
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref41
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref42
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref42
http://refhub.elsevier.com/S0029-8018(22)02604-X/sref42

	Multi-fidelity model and reduced-order method for comprehensive hydrodynamic performance optimization and prediction of JBC ...
	1 Introduction
	2 JBC hull comprehensive performance optimization case
	2.1 Basic information about the mother ship
	2.2 Verification of drag and flow fields for numerical calculation
	2.3 New sample hull generation and surrogate model construction
	2.4 Optimization results and analysis

	3 POD-based wake field learning of the JBC ship hull
	4 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


