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A B S T R A C T   

This paper gives an analytical solution for a plane solitary wave interaction with a concentric structure with 
coaxial multiple-layered porous walls. An analytical solution is obtained based on shallow water wave theory and 
eigenfunction expression matching. Furthermore, a series of simultaneous equations are used to determine po-
tential coefficients. The accuracy of the present model is verified by comparing its output with published results. 
Meanwhile, the impact of various important parameters (i.e., the number of porous walls, annular spacing and 
porosity of walls) with respect to wave forces and relative wave height is examined. It is sufficient to safeguard 
the inner cylinder by using two-three porous walls. For multiple walls with different porous-effect parameters, 
the arrangement of the selected porous effect parameters has a marginal influence on the force of the imper-
meable cylinder. However, the minimum wave run-up on it can be observed when the coefficient of the porous 
walls increases from the outside to the inside. In addition, an impermeable cylinder with two concentric porous 
walls is investigated owing to its higher application prospects.   

1. Introduction 

Perforated breakwaters are typical marine structures. These are 
commonly used to reduce hydrodynamic loads on protected structures 
and safeguard coastal engineering structures that have significant 
environmental impacts and thereby, assure the stability of the port 
water surface for safely conducting docking and water operations. In 
practice, a coaxial cylindrical system with a porous exterior wall is 
applied extensively, e.g., the gravity offshore structure Ekofisk located 
in the North Sea, which can be considered as a porous concentric two- 
cylinder system (see Fig. 1). The gravity offshore structure was 
installed in 1973 at a water depth of around 75 m. It is 90 m high. The 
exterior and interior structure are 140 m and 89 m in diameter, 
respectively. For the concentric structure already in engineering appli-
cation, a large number of theoretical, numerical and experimental 
studies have been carried out by researchers to further explore the 
rational and safe configuration for different sea conditions. 

A model for explaining fluctuating flows in porous media that has 
been gaining attention since Sollitt and Cross (1973) is also the one that 
is most widely applied for porous structures. The porous wave-making 
theory was proposed by Chwang (1983). He discussed the importance 

of wave-effect parameters and porous-effect parameters. Wang and Ren 
(1994) derived the interaction between a sinusoidal wave and a 
concentric cylindrical system. Sankarbabu et al. (2007, 2008) discussed 
the diffraction problem of Airy waves and solitary waves interacting 
with a group of multiple dual-cylinder structures, respectively. By 
employing an experimental and numerical method, Vijayalakshmi et al. 
(2008) calculated the wave run-ups and wave forces on a concentric 
perforated structure. The scaled boundary finite element method has 
been used for the analytical solution of hydrodynamic forces on a 
concentric two-cylinder system (Song and Tao, 2007) and the numerical 
modeling of short-crested wave diffraction from a concentric 
three-cylinder system Tao et al. (2009). Zhu (2011) analysed the wave 
run-up around a coaxial porous system. The Mathieu function and 
modified Mathieu function were used by Wang et al. (2019) to calculate 
the analytical solution for the diffraction of short-crested waves around 
an elliptical cylinder using elliptical coordinates. Under the assumption 
of small-amplitude water wave motion and structural response, Zheng 
et al. (2020) investigated the hydroelastic interaction between water 
waves and a submerged porous elastic disc with negligible thickness in 
water of a finite depth. Sarkar and Bora (2021a, b) investigated the 
hydrodynamic performance of two modified compound cylindrical 
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structures: (1) a bottom-mounted surface-piercing partial-porous cylin-
drical compound structure, and (2) a concentric cylindrical system 
mounted on a cylindrical piece. Liang et al. (2021) investigated the 
scattering of water waves by impermeable and perforated horizontal 
plates considering both circular and elliptical plates, within the frame-
work of linear potential flow theory. Mackay et al. (2021) investigated 
the wave-induced motions of floating cylinders with and without outer 
porous walls. It was found that the porous outer walls provide consid-
erable damping and reduce motion response. 

It is considered that the concentric two-cylinder system may be 
incapable of responding to a marine environment deteriorated by 
climate warming. More recently, Liu et al. (2018) employed a 
semi-analytical solution method to determine the water wave interac-
tion with a concentric structure having multiple permeable external 
cylinders. It is well established that the near-shore sea area is a part of 
the shallow water area. When a wave propagates from a deep water area 
to an offshore area, with the increase in wave height, the water depth 
decreases, wave depth ratio increases, and non-linear effect becomes 
increasingly significant. This increases the error of the linear wave 
theory in the shallow water area. In actual coastal and marine engi-
neering design of ports, it is more appropriate to use shallow water wave 
models to describe the interaction between waves and structures (Zhai 
et al., 2021). As a pioneer in the study of shallow water waves, Isaacson 
(1983) investigated the interaction of a solitary wave with a solid large 
cylinder by an approximate method by using linear boundary condi-
tions. Weng et al. (2016) analysed the diffraction problem of cnoidal 
waves interacting with four porous cylinders. In recent years, many 
scholars have carried out studies on the interaction of solitary wave with 
many different types of structures using numerical modeling methods, e. 
g., a partially submerged thin porous wall(Miao and Wang, 2019), two 
series or parallel cylinders (Hafsia et al., 2021), combination of two thin 
concentric asymmetric porous arc walls(Zhai et al., 2022), a vertical 
cylinder at different locations on a slope beach(Kuai et al., 2021), two 
submerged rectangular obstacles(Ghafari et al., 2021), ect. In order to 
study the interaction between waves and structures more precisely and 
reliably, several scholars have conducted experimental studies. Yang 
et al. (2021) experimentally studied the combined flow-induced forces 

between solitary wave-current and a vertical cylinder. Wang et al. 
(2021) completed an experiment on wave-induced run-up process and 
loads on cylinder in a solitary wave to simulate the nonlinear interaction 
between the tsunami-like wave and cylindrical structure. 

To the authors’ knowledge, there are no publications that report 
investigations on the interaction between solitary wave and a vertical 
cylinder with multiple concentric porous walls. However, this structure 
is being used in coastal engineering, e.g., a vertical breakwater with 
multiple porous walls constructed for the Dalian chemical production 
terminal, China Liu et al. (2018). Therefore, it is necessary to carry out 
theoretical research in this area to provide theoretical guidelines for 
subsequent engineering design. 

In the present study, this work is to theoretically investigate the 
diffraction problem of solitary wave interaction with a concentric sys-
tem having multiple concentric porous walls. By comparing the results 
of the present model with those of existing research, its accuracy is 
confirmed. We examined the effects of the number of porous walls, 
distance ratios, porous-effect parameters on the wave loads and run-ups 
on the present structure. Meanwhile, a concentric three-cylinder system 
was investigated as a particular case because of its larger application 
prospects in marine engineering. It should be noted that although the 
concentric three-cylinder system protects the interior structure better 
than the concentric two-cylinder system, it has some disadvantages, e.g., 
it needs higher engineering costs; the existence of the middle wall oc-
cupies the physical space, which may lead to the phenomenon of gap 
resonance during the transmission of the waves. With the current 
analysis method, concentric cylindrical systems can be assessed rapidly 
for hydrodynamic forces and wave run-ups. The paper is laid out as 
follows. The problem is formulated in Section 2. The validity of the 
proposed model is examined in Section 3. Then, the analytical results are 
presented in Section 4 before the work is summarised in Section 5. 

2. Mathematical model 

A schematic of a solitary wave interacting with an impermeable 
cylinder and multiple concentric porous walls having a negligible 
thickness is shown in Fig. 2. The still water depth is h. As shown in Fig. 2, 
we assumed that there are m (m= 0,1, ..., ​ M) concentric porous walls to 
protect the impermeable cylinder of radius R. 

The m − th wall radius is written in order from the inside to the 
outside as Rm = R + mΔR (ΔR indicates the annular spacing between 
adjacent walls and between the first porous wall and impermeable cyl-
inder). In this scenario, the fluid is divided into M + 1 subdomains: the 
domainΩ1 (R≤ r≤ R1), domains Ωm (Rm− 1 ≤ r≤ Rm, 2≤ m≤ M), and 
the outermost domain ΩM+1 (r≥ RM). A cylindrical coordinate system 
Orθz, is applied for convenience. The z-axis is directed vertically upward 
from the bottom of the water. The fluid was assumed to be inviscid, 
incompressible, and with an irrotational motion. The velocity potential 
Φ(r, θ, z, t) = Re[φ(r, θ, z, t)]. Here, φ is the complex velocity potential. 
Furthermore, φ in each region Ωm (m= 1, 2, ...,M+1) can be described 
asφ(m) = φI + φ(m)

S . Here, φI and φ(m)

S are the incident and scattered 
potential, respectively. 

The concentric structure is subjected to right-propagating solitary 

Fig. 1. Ekofisk gravity structure in the North Sea (Song and Tao, 2007).  

Fig. 2. Definition sketch.  
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waves of height H and speed c0 propagating to the positive direction of 
the x− axis. When only first-order approximation is considered, the free- 
surface elevation ηI can be written in the following form according to 
Isaacson (1983): 

ηI =Hsech2

[ ̅̅̅̅̅̅̅
3H
4d3

√

(x − ct)

]

(1)  

where H, t, c =
̅̅̅̅̅
gh

√
, and g are the wave height, time, wave speed for 

first-order approximation, and acceleration due to gravity, respectively. 
ηI can be represented by a Fourier integral as follows (Isaacson, 1983) 

ηI =
H
2π

∫ +∞

− ∞
A(k)cos k(x − ct)dk (2)  

where i =
̅̅̅̅̅̅̅
− 1

√
, A(k) = A( − k) and the Fourier transform A(k) of ηI is 

A(k)=
4πh3k

3H
cosech

⎡

⎣πk
̅̅̅̅̅̅̅
h3

3H

√ ⎤

⎦ (3) 

Then, the corresponding incident potential φI can be expressed as 
follows: 

φI =
H

2π
̅̅̅̅̅̅̅̅
h/g

√

∫ +∞

− ∞

A(k)
ik

eik(x− ct)dk =
H

π
̅̅̅̅̅̅̅̅
h/g

√

∫ +∞

0

A(k)
ik

eikxe− ikctdk (4) 

Furthermore, φI can be rewritten as 

φI =

∫ +∞

0
φ̂I [k(x − ct)]dk (5)  

where, 

φ̂I [k(x − ct)]=
H
̅̅̅̅̅̅̅̅
h/g

√
1
π

A(k)
ik

eik(x− ct) (6) 

Evidently, φ̂I[k(x − ct)] satisfies the relationship ∂φ̂ I
∂x − ikφ̂I = 0. 

Similarly, the scattered potential in the outermost region ΩM+1 can be 
written as φ(M+1)

S =
∫+∞

0 φ̂(M+1)
S dk. The integrated solution for scattering 

in the outermost region also satisfies this radiation condition. Further-
more, the radiation condition at infinity must be satisfied by φ̂(M+1)

S , i.e. 

lim
r→∞

̅̅
r

√
(∂φ̂(M+1)

φ̂S

∂r
− ikφ̂ φ̂(M+1)

φ̂S

)

= 0 (7) 

Furthermore, Equation (4) can be expanded into a Fourier complex 
form using the following identity: 

eikx =
∑∞

n=0
εnJn(kr)cos(nθ

)
(8)  

in which, 

εn =

{
1 for n = ​ 0
2in for n ≥ 1 (9)  

and Jn(x) is the Bessel function of order n. 
Thus, the incident wave potential in the outermost domain ΩM+1 can 

be written as 

φI =
H
̅̅̅̅̅̅̅̅
h/g

√
1
π

∫ ∞

0

A(k)
ik

e− ikct
∑∞

n=0

[
εnJn(kr)cos(nθ

)]
dk (10) 

The following matching conditions satisfied on the impermeable 
cylinder and the surfaces of these porous walls: 

∂φ(1)

∂r
= 0 for r = R (11)  

∂φ(m)

∂r
=

∂φ(m+1)

∂r
for r = Rm, m = 1, 2, ..., M (12) 

The boundary conditions on the porous walls can are given by 
(Williams et al., 2000) 

∂φ(m)

∂r
=

∂φ(m+1)

∂r
=

Gm

c

(
∂φ(m+1)

∂t
−

∂φ(m)

∂t

)

for r = Rm, m = 1, 2, ..., M

(13)  

where the porous-effect parameters Gm (m= 1, 2, ..., M) are denoted as 
Gm = ρcdm/μ (Chwang, 1983). Furthermore, ρ is the fluid density, μ is 
the viscosity constant, and dm is the material constants having the 
dimension of length. In general, Gm = 0 represents an impermeable wall, 
andGm→ + ∞ indicates that the wall vanishes. For typical offshore 
porous structures, the porous-effect coefficient Gm is normally less than 
2. More detailed analysis on the determination of Gm value for porous 
structures can be found in Li et al. (2006). It is worth mentioning that the 
current model in this article has some limitations in calculating the wave 
loads acting on the impermeable cylinder, i.e., not predicting the pore 
pressure and soil stresses that result in an overestimation of the design of 
the porous structures. 

3. Analytical derivation 

The total velocity potential φ(M+1) in the outermost region, ΩM+1, is 
composed of the incident potential φI and scatter potential φ(M+1)

S . 
Where the scatter potential φ(M+1)

S must satisfy the radiation and 
boundary conditions in Equations (7), (12), and (13), respectively. It 
may be written in the following form: 

φ(M+1)
ext =φI + φ(M+1)

S (14) 

The wave scattered potential for ΩM+1 can be written as 

φ(M+1)
S = −

H
̅̅̅̅̅̅̅̅
h/g

√
1
π

∫ ∞

0

A(k)
ik

e− ikct
∑∞

n=0

[

A(M+1)
n H(1)

n

(
kr
)
cos
(
nθ
)
]

dk (15)  

where A(M+1)
n is the unknown complex potential coefficient and H(1)

n (x)
denotes the Hankel function of the first type of order n. Thus, the total 
wave potential is given by 

φ(M+1)
ext =

H
̅̅̅̅̅̅̅̅
h/g

√
1
π

∫ ∞

0

A(k)
ik

e− ikct
∑∞

n=0

[

εnJn
(
kr
)
+B(M+1)

n H(1)
n

(
kr
)
cos
(
nθ
)
]

dk

(16) 

The wave potential for the annual region Ωm (m= 2,3, ...,M) can be 
written as 

φ(m) =
H
̅̅̅̅̅̅̅̅
h/g

√
1
π

∫ ∞

0

A(k)
ik

e− ikct
∑∞

n=0

[

A(m)
n Jn

(
kr
)
+B(m)

n H(1)
n

(
kr
)
cos
(
nθ

)]

dk

(17) 

The wave potential for the interior region Ω1 is given as 

φ(1)
int =

H
̅̅̅̅̅̅̅̅
h/g

√
1
π

∫ ∞

0

A(k)
ik

e− ikct
∑∞

n=0
A(1)

n Un(kr)cos(nθ)dk (18)  

in which, 

Un(kr)=

⎧
⎪⎨

⎪⎩

Jn(kr) −
J ′

n(kR)

H(1)
n

′

(kR)
H(1)

n (kr) for ​ R ∕= 0

Jn(kr) for ​ R = 0

(19)  

where A(m)
n (m= 1, 2, ...,M) and B(m)

n (m= 2, 3, ...,M+1) are potential 
coefficients to be determined. 

Substitution of Equations 16–18 into Equations 12 and 13 yields. 
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For the M-th porous wall, 
⎧
⎪⎪⎨

⎪⎪⎩

B(M+1)
n H(1)

n

′

(kRM)− A(M)
n J ′

n(kRM)− B(M)
n H(1)

n

′

(kRM)=− εnJ ′

n(kRM)

B(M+1)
n

[
H(1)

n

′

(kRM)− iGMH(1)
n (kRM)

]
+iGMA(M)

n Jn(kRM)+iGMB(M)
n H(1)

n (kRM)

=iGMεnJn(kRM)− εnJ′

n(kRM)

(20)   

For the m − th ​ (m= 2, 3, ..., M − 1) porous wall, 
⎧
⎪⎪⎨

⎪⎪⎩

A(m+1)
n J′

n(kRm− 1) + B(m+1)
n H(1)

n

′

(kRm− 1) − A(m)
n J ′

n(kRm) − B(m)
n H(1)

n

′

(kRm) = 0

A(m+1)
n

[
J
′

n(kRm) + iGmJn(kRm)
]
+ B(m+1)

n

[
H(1)

n

′

(kRm) + iGmH(1)
n (kRm)

]

+iGmA(m)
n Jn(kRm− 1) + iGmB(m)

n H(1)
n (kRm) = 0

(21) 

For the 1-st porous wall, 

Fig. 3. Comparison of the maximum dimensionless wave force on a solid cylinder between the present results and those of Isaacson (1983) and Basmat (2002), 
respectively:(a) plot of dimensionless wave force with wave parameter at M = 0; (b) plot of dimensionless wave force with corresponding time t at.χ = 1, R = 0,
R1 = 1 ​ m, M = 1 

Fig. 4. Variations of the dimensionless wave force and run-up on the interior cylinder for various values of M:(a) wave force, ΔR/R = 1, Gm = 1; (b) wave run-up, 
ΔR/R = 1 Gm = 1, χ = 1.0. 

Fig. 5. Variations of the dimensionless wave force and run-up on the porous walls:(a) wave force ΔR/R = 1, Gm = 1, M = 5; (b) wave run-up, ΔR/ R = 1, Gm = 1, M 
= 5, χ = 1.0. 
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Equations (20) − (25) constitute a complete set of equations with the 
unknown coefficients A(1)

n , A(2)
n , …, A(M)

n , B(2)
n , B(3)

n , …, and B(M+1)
n , for the 

entire fluid domain, which implies that these unknown coefficients can 
be obtained for the complete system of equations. By solving Equations 
(20) − (22), the explicit expressions of these unknown coefficients are 
obtained in a form 

A(1)
n =

εnP(M)

A(M)
[
H(1)

n
′

(kRM)J ′

n(kRM) + P(M)
]
+ B(M)

[
H(1)

n
′

(kRM)
]2 (23)  

B(M+1)
n =

εn
{

B(M)
[
H(1)

n

′

(kRM)J
′

n(kRM) + P(M)
]
+ A(M)

[
J ′

n(kRM)
]2}

A(M)
[
H(1)

n
′

(kRM)J ′

n(kRM) + P(M)
]
+ B(M)

[
H(1)

n
′

(kRM)
]2 (24) 

Fig. 6. Variations of the dimensionless wave force and run-up on the interior cylinder:(a) wave force, ΔR/R = 1, χ = 1; (b) wave run-up, ΔR/R = 1, χ = 1.0, M = 5.  

Fig. 7. Nondimensional wave forces on the solid interior cylinder with respect to χ for permutation and combination of porous-effect parameter Gm: (a) M = 2, (b) M 
= 3, (c) M = 4, and (d) M = 5. 

{
A(1)

n Un
′

(kR1) − A(2)
n J ′

n(kR1) − B(2)
n H(1)

n

′

(kR1) = 0

iG1A(1)
n Un(kR1) + A(2)

n

[
J′

n(kR1) − iG1Jn(kR1)
]
+ B(2)

n

[
H(1)

n

′

(kR1) − iG1H(1)
n (kR1)

]
= 0

(22)   
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Fig. 8. Nondimensional wave forces on the solid interior cylinder for permutation and combination of porous-effect parameter Gm: (a) M = 2, (b) M = 3, (c) M = 4, 
(d) M = 5. 

Fig. 9. Variations of the dimensionless wave force and wave runup on the interior cylinder for various values of ΔR/R: (a) wave force, Gm = 1, M = 5; (b) wave run- 
up, Gm = 1, M = 5, χ = 1. 
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where A(2), A(3), …, A(M), B(2), B(3), …, and B(M) are temporary 
variables. Furthermore, 
{

P(m) = iGm
[
J ′

n(kRm)H(1)
n (kRm) − Jn(kRm)H(1)

n

′

(kRm)
]

Q(m) = iGm
[
Jn(kRm)H(1)

n

′

(kRm) − J
′

n(kRm)H(1)
n (kRm)

] (26) 

Based on this first-order approximation, the free-surface elevations 
in each region may be determined as follows: 

ηm = −
1
g

∂Φm

∂t
= Re(η̂m) for z = h, m = 1, 2, ..., M + 1 (27) 

After obtaining the analytical solutions for the velocity potential in 
the different regions, we can calculate the linear wave loads by directly 
integrating the hydrodynamic pressure over the impermeable cylinder 
and porous walls. The pressure on the surface of the walls and the 
interior cylinder is written as 

Pm = − ρ ∂Φm

∂t
= ​ Re(P̂m) for m = 1, 2, ...,M + 1 (28) 

The linear wave forces on the interior cylinder and porous walls 
along the incident wave direction are given by   

In practice, for shallow water waves, a simple linear relationship 
between the overturning moment and wave loads exists (i.e., the over-
turning moment acting on the structure is exactly half of the corre-
sponding force, indicating that they are experiencing similar changes). 
In addition, dimensionless factors ρgHRh and ρgHRmh are employed to 
determine the dimensionless hydrodynamic loads, and the maximum 
dimensionless hydrodynamic loads Fint and Fm on the impermeable 
cylinder and porous walls are defined as follows: 

Fint =

⃒
⃒Fint,x

⃒
⃒

ρgHRh
, Fm =

⃒
⃒Fm,x

⃒
⃒

ρgHRmh
(30) 

Similarly, the factor H was used to nondimensionalise the wave run- 
up, and the maximum dimensionless wave run-ups ηint and ηm on the 
impermeable cylinder and porous walls are defined as 

ηint =
|ηint|

H
, ηm =

|ηm|

H
(31)  

4. Results and discussion 

Based on the shallow water wave theory, the dimensionless wave 
parameter ς = H/k2h3 = 1/(k

̅̅̅̅̅̅̅̅̅̅̅
h3/H

√
)
2
= H/h × 1/(kh)2 (H = wave 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(2)
n = A(1)

n

{
U′

n(kR1)H(1)
n

′

(kR1) + iG1
[
U ′

n(kR1)H(1)
n (kR1) − Un(kR1)H(1)

n

′

(kR1)
]}
/P(1) = A(1)

n A(2)

B(2)
n = A(1)

n

{
U

′

n(kR1)J
′

n(kR1) + iG1
[
U

′

n(kR1)Jn(kR1) − Un(kR1)J
′

n(kR1)
]}
/Q(1) = A(1)

n B(2)

A(3)
n = A(1)

n

{
A(2)

[
H(1)

n

′

(kR2)J
′

n(kR2) + P(2)
]
+ B(2)

[
H(1)

n

′

(kR2)
]2}

/P(2) = A(1)
n A(3)

B(3)
n = A(1)

n

{
A(2)

[
J
′

n(kR2)
]2

+ B(2)
[
J
′

n(kR2)H(1)
n

′

(kR2) + Q(2)
]}
/Q(2) = A(1)

n B(3)
⋅⋅⋅

A(m)
n = A(1)

n

{
A(m − 1)

[
H(1)

n

′

(kRm− 1)J
′

n(kRm− 1) + P(m − 1)
]
+ B(m − 1)

[
H(1)

n

′

(kRm− 1)
]2}

/P(m − 1)

= A(1)
n A(m)

B(3)
n = A(1)

n

{
A(m − 1)

[
J ′

n(kRm− 1)
]2

+ B(m − 1)
[
J ′

n(kRm− 1)H(1)
n

′

(kRm− 1) + Q(m − 1)
]}
/Q(m − 1)

= A(1)
n B(m)

(25)   

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FM
x = −

∫ h

0
dz
∫ 2π

0
[pM+1 − pM ]|r=RM

RM cos θdθ

= − ρgHRMh
∫ ∞

0
A(k)e− ikct

[
εnJ1(kRM) + B(M+1)

1 H(1)
1 (kRM) − A(M)

1 J1(kRM) − B(M)

1 H(1)
1 (kRM)

]
dk

Fm
x = −

∫ h

0
dz
∫ 2π

0
[pm+1 − pm]|r=Rm

Rm cos θdθ

= − ρgHRmh
∫ ∞

0
A(k)e− ikct

[(
A(m+1)

1 − A(m)

1

)
J1(kRm) +

(
B(m+1)

1 − B(m)

1

)
H(1)

1 (kRm)
]
dk

F1
x = −

∫ h

0
dz
∫ 2π

0
[p2 − p1]|r=R1

R1 cos θdθ

= − ρgHR1h
∫ ∞

0
A(k)e− ikct

[
A(2)

1 J1(kR1) + B(2)
1 H(1)

1 (kR1) − A(1)
1 U1(kR1)

]
dk

Fint,x = −

∫ h

0
dz
∫ 2π

0
p1|r=RR cos θdθ

= − ρgHRh
∫ ∞

0
A(k)e− ikctA(1)

1 U1(kR)dk

(29)   

Z. Zhai et al.                                                                                                                                                                                                                                     



Ocean Engineering 260 (2022) 111887

8

height, k = wave number, and h = water depth) combines the effects of 
relative variations in wave height, wave number and water depth. 
̅̅̅̅̅̅̅̅̅̅̅
H/h3

√
and k display a similar trend when ς is constant. Solitary wave is 

shallow water waves with infinitely long wavelengths. The wave num-
ber k is replaced by 

̅̅̅̅̅̅̅̅̅̅̅
H/h3

√
in the actual calculation. 

̅̅̅̅̅̅̅̅̅̅̅
h3/H

√
is the 

characteristic length of the solitary wave. As is established, the diffrac-
tion parameter ka represents the characteristic length of the wave and 

the relative variation in water depth for the plane wave theory. There-
fore, the corresponding diffraction parameter can be written as χ =
̅̅̅̅̅̅̅̅̅̅̅
H/h3

√
× R =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
HR2/h3

√
(R = the radius of the cylinder). As computa-

tional examples, the radius of the interior cylinder is R = 10 m, and the 
wave height is H = 1 m. 

4.1. Model validation 

Two classic solitary wave interactions with cylindrical structures can 
be used for testing the present theory: (1) When M = 0, the current 
structure transforms into an impermeable cylinder. The hydrodynamic 
loads on an impermeable cylinder obtained by the present study and the 
work of Isaacson (1983) are shown in Fig. 3a. The figure shows that the 
two results are consistent. (2) When G1 ∕= 0, R1 = 1 ​ m, R = 0,
​ and ​ M = 1, the current structure becomes a permeable cylinder. The 

wave forces on a permeable cylinder for the different wave-porous pa-
rameters obtained by the present study and the work of Basmat (2002) 
are shown in Fig. 3b. Note that the two results well agree. The above 
validation indicates that the proposed model is credible and can be used 
for further research. 

4.2. Effect of the number walls M 

Fig. 4 demonstrates the force and run-up on the interior cylinder for 
different numbers of porous walls M:(a) wave force, ΔR/R = 1, Gm = 1; 
(b) wave run-up, ΔR/R = 1 Gm = 1, χ = 1.0.Note that the parameter Δ 
R/R = 1 represents the ratio of the spacing between adjacent walls to the 
radius of the interior cylinder, and the ratio of the spacing of the first 
layer of wall to the interior cylinder to the radius of the interior cylinder 
are equal to 1, e.g., R = 10 m, R1 = 20 m, R2 = 30 m, R3 = 40m, R4 = 50 
m, R5 = 60 m for M = 5, so the ΔR = 10 m; Gm = 1 represents the 
permeability coefficient of each permeable wall layer is equal to 1, e.g., 

Fig. 11. Nondimensional wave forces on the structure with respect to the ratio λ for different values of χ: (a) F2, (b) F1, (c) Fint.  

Fig. 10. Definition sketch for a vertical cylinder with two concentric 
porous walls. 
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G1 = G2 = G3 = G4 = G5 = 1 for M = 5. As shown in Fig. 4a, the wave 
forces on the interior cylinder exhibit a similar trend for various values 
of M, i.e., first increase monotonically, attain their peak values at 
approximately χ = 1, and then keep remain constant. As anticipated, 
the forces acting on the interior cylinder decrease gradually as M in-
creases. The peak value of the wave force attains 2.77, 1.84, 1.23, 0.82, 
0.55, and 0.37 for M of 0 − 5, respectively. Compared with that for the 
peak value of wave force on the isolated cylinder (M = 0), the reduction 
is approximately 34%, 56%, 70%, 80%, and 87% in the amplitude of the 
wave force for M of 1–5, respectively, which implies that the interior 
cylinder obtains sufficient protection when M = 2 or 3. However, M = 3 
may be the best option considering the construction cost. As shown in 
Fig. 4b, on the windward side, the wave run-up decreases gradually as M 
increases. Meanwhile, on the leeward side, the wave run-up decreases 
mildly except for M = 1. It should be noted that θ/π = 0 represents the 
leeward side of the structure, and θ/π = 1 represents the windward side 
of the structure. θ/π = 1→0 means the intersection of the structure with 
the negative x− axis is rotated counterclockwise to the positive x− axis. 
When M ≥ 2, the wave run-ups display a similar trend, i.e., the wave 
run-up decline marginally for 0 ≤ θ/π ≤ 0.3 and remain steady for 0.3 ≤

θ/π ≤ 1. When M = 1, on the leeward side, the wave run-up on the 
interior cylinder is higher than the isolated cylinder (M = 0). This is 
because of the reflection of waves by the porous exterior wall. 

Fig. 5 demonstrates the forces and run-up on the porous walls:(a) 
wave force ΔR/R = 1, Gm = 1, M = 5; (b) wave run-up, ΔR/ R = 1, Gm 
= 1, M = 5, χ = 1.0. As shown in Fig. 5a, the wave forces acting on the 
five porous walls exhibit a similar trend, i.e., a dramatic increase at 
smaller values of χ until it approaches a maximum value in the neigh-
bourhood of χ = 0.4, followed by a monotonous decrease towards its 

asymptotic values. Owing to the protective effect of the exterior porous 
wall on the interior structure including the interior porous walls and 
impermeable cylinder, the closer the porous wall is to the impermeable 
interior cylinder, the lower is the wave load that it is subjected to. As 
shown in Fig. 5b, on the windward side, the wave run-up decreases 
gradually as the porous wall approaches the interior cylinder. However, 
on the windward side, due to the complex reflection of waves between 
the porous walls, the change rule of wave run-up is not obvious. 

4.3. Effect of porous parameter 

In this section, the real physical meaning of the porous-effect 
parameter is visually described to improve reader understanding. The 
porous-effect parameter is related to the density and radii of thin-walled 
holes, indicating that more densely packed holes and larger hole radii 
increase the radial flow velocity when the wave passes through the 
porous region of a structure.Fig. 6 demonstrates the force and run-up on 
the interior cylinder:(a) wave force, ΔR/R = 1, χ = 1; (b) wave run-up, 
ΔR/R = 1, χ = 1.0, M = 5. Equation (13) shows that both sides of the 
wall have equal radial velocity and that the difference in pressure be-
tween these is proportional. It is important to note that Gm is related to 
the density and radii of the thin-walled holes. This implies that for a 
larger Gm, more densely packed holes and larger hole radii cause a 
higher radial flow velocity when the wave passes through the porous 
region of the structure. A bigger Gm implies that more waves can pass 
through the porous structure. Evidently, the wave force acting on the 
interior cylinder decreases gradually as M increases. From Fig. 6a, the 
wave force on the interior impermeable cylinder increases mono-
tonically towards its asymptotic value (M = 0) as Gm increases, and the 

Fig. 12. Nondimensional wave run-up on the structure with respect to the ratio λ for different values of χ: (a) η2, (b) η1, (c) ηint.  
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Fig. 14. Nondimensional wave run-up on the structure for different values of χ: (a) η2, (b) η1, (c) ηint.  

Fig. 13. Nondimensional wave forces on the structure with respect to the ratio Gm for different values of χ: (a) F2, (b) F1, (c) Fint.  
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rate of convergence to an asymptotic value becomes more gradual as M 
increases. As indicated in Fig. 6b, on the windward and leeward sides, 
the wave run-up increases monotonously as Gm increases, which is 
owing to the reduced wave protection provided by the permeable walls. 
Moreover, the difference in the amplitude of wave run-up on the 
windward and leeward sides of the interior cylinder increases as Gm 
increases, and the wave run-up around the interior cylinder become 
closer and closer to the isolated cylinder. 

Fig. 7 demonstrates the forces Fint caused by a solitary wave on the 
impermeable cylinder with respect to χ when ΔR/R = 1. As shown in 
Fig. 7a − 7d, for the different values of M, the permutations of the 
selected porous-effect parameters have negligible effect on the wave 
force. For example, there are six combinations for M = 3 when each wall 
has a different porous parameter: G1 = 1, G2 = 2, G3 = 3; G1 = 1, G2 = 3, 
G3 = 2; G1 = 2, G2 = 1, G3 = 3; G1 = 2, G2 = 3, G3 = 1; G1 = 3, G2 = 2, G3 
= 1; and G1 = 3, G2 = 1, G3 = 2. It is noteworthy that the force almost 
equal for the six cases. Similarly, there are 24 and 120 combinations of 
porous-effect parameters for M = 4 and 5, respectively, and the force is 
also maintained constant (for convenience, only a few of the results are 
shown in Fig. 7c and d. This may indicate that the arrangement of the 
porous-effect parameter has no effect on the safety of the interior 
structure. Mathematically, the permutation of the permeability co-
efficients does not affect the value of the unknown coefficient A(1)

n and 
therefore it does not change the wave load acting on the interior 
cylinder. 

Fig. 8 demonstrates the maximum dimensionless wave run-up ηint 
around the impermeable interior cylinder for permutation and 

combination of Gm when ΔR/R = 1 and χ = 0.8. As is evident from 
Fig. 8(a) − 8(d), on the windward side, the permutation and combina-
tion of Gm has negligible effect on the wave run-up around the interior 
cylinder. The peak value of the wave run-up is observed when the co-
efficient of the porous walls increases from the outside to the inside. 
Conversely, the trough values of the wave run-up can be observed as the 
coefficient of the porous walls decreases. Figs. 7 and 8 together indicate 
that porous walls wherein the coefficient of porosity decreases from the 
outside to the inside may be highly effective for concentric structures 
with multiple walls. 

4.4. Effect of annual spacing 

Fig. 9 demonstrates the force and wave runup on the interior cylinder 
for various values of ΔR/R: (a) wave force, Gm = 1, M = 5; (b) wave run- 
up, Gm = 1, M = 5, χ = 1. From Fig. 9a, the forces on the cylinder 
decrease monotonically as ΔR/R increases, and the amplitude of the 
reduction in wave force becomes negligible with a further increase in 
ΔR/R. Therefore, when ΔR/R > 0.8, the reduction of the force on the 
impermeable cylinder by increasing the annular spacing further a high- 
cost-low-benefit option in engineering. As shown in Fig. 9b, the change 
rule of wave run-up on the interior cylinder is very similar to the wave 
force as ΔR/R increases. Moreover, when ΔR/R > 0.8, the amplitude of 
the wave run-up on the interior cylinder no longer varies significantly. 
Overall, the better ΔR/R value is around 0.8. Thus, the Value of ΔR/R is 
set to 1 for the convenience of calculation in this article. 

Fig. 15. The relative wave height in the vicinity of a concentric structure for different values of λ: (a) λ = 0.2, (b) λ = 0.4, (c) λ = 0.6, (d) λ = 0.8.  
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4.5. Special case: solid cylinder with two concentric porous walls 

The concentric three-cylinder system is a structure with high appli-
cation potential (see, Fig. 10) and has been numerically studied by Liu 
et al. (2012) for short-crested interaction with a concentric cylindrical 
structure with double-layered perforated walls. Considering the poten-
tial value of the model for practical use in marine engineering, a separate 
discussion is necessary. In conjunction with the study of multi-layer 
structures, here, we select certain effective parameters to carry out the 
investigation of the hydrodynamic performance of concentric 
three-cylinder structures subjected to solitary waves. Here, the radius 
ratio of exterior wall to interior cylinder is set as R2/R = 2, and the 
radius of the interior cylinder is R = 10m. For presentation convenience, 
a new variable of the distance ratio λ = (R1 − R)/(R2 − R) is introduced. 

It is important to study the effect of variation in the location of the 
middle porous wall on the dimensionless wave loads acting on the 
concentric structure. Fig. 11 demonstrates the wave forces(F2, F1, Fint) 
acting on the exterior wall, middle wall, and interior cylinder relative to 
the ratio λ = (R1 − R)/(R2 − R) for various values of χ when R2/ R = 2, 
and G1 = G2 = 1. The exterior wall and interior cylinder experience 
decreasing wave loads as the middle wall gradually moves closer to the 
exterior wall from the interior cylinder, whereas the middle wall expe-
riences increasing forces. In practical engineering, we are concerned 
with the forces on the interior cylinder, and the safety of the two porous 
walls. Therefore, it is likely to be an effective option when the middle 

wall is positioned in the middle, i.e., λ = 0.5, wherein the wave load 
acting on the interior cylinder is near its minimum value and the middle 
wall is less expensive to construct. Moreover, the change of the location 
of the middle wall has the greatest effect on the wave force on the 
interior cylinder, which is related to the fact that the interior cylinder is 
a solid structure. Fig. 12 demonstrates the maximum dimensionless 
wave run-ups (η2, η1, ηint) acting on the concentric structure for different 
λ when R2/R = 2, G1 = G2 = 1, and χ = 0.8 With respect to the 
exterior wall and interior cylinder, the wave run-up in the leeward side 
decrease as λ increases, whereas a converse trend can be observed for the 
wave run-up in the leeward side of the middle wall. As indicated in 
Fig. 12c, λ has a higher influence on the wave run up on the leeward side 
than on the exterior or middle wall. This is similar to the results in 
Fig. 11. 

Fig. 13 demonstrates the wave forces (F2, F1, Fint) acting on the 
exterior wall, middle wall, and interior cylinder relative to Gm (G1 =

G2) for various values of χ when R2/R = 2, and λ = 0.5. As shown in 
Fig. 13a and c, wave loads acting on the exterior wall are affected 
modestly by variations in χ, whereas the force on the interior cylinder is 
impacted significantly by χ. For a marginal Gm, the wave force acting on 
the middle wall increases gradually to a peak (Fig. 13b). Fig. 14 dem-
onstrates the maximum dimensionless wave run-ups (η2, η1, ηint) acting 
on the three cylinders for different χ when R2/R = 2, G1 = G2 = 1, and 
λ = 0.5. When θ/π < 0.4, on the leeward side, the wave run-ups around 
the three structures decrease gradually as χ increases. It is noteworthy 

Fig. 16. The relative wave height in the vicinity of a concentric structure for different M: (a) M = 0, (b) M = 1, (c) M = 2.  
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that the minimum wave run-ups around the exterior wall, middle wall 
and interior cylinder occur at approximately θ/π = 0.18, θ/π = 0.2, and 
θ/π = 0.22, i.e., a gradual left shift, which may be owing to the phase 
shift of the wave. 

Fig. 15 shows the relative wave height variation near a concentric 
structure for varying λ = (R1 − R)/(R2 − R) at G1 = G2 = 1, R2/ R = 2, 
and χ = 1.5. It is evident that the variation in the location of the middle 
porous wall affected the surface elevation in the vicinity of the structure. 
Owing to the reflection effect of the middle wall, the surface elevation on 
the windward side of the exterior porous wall increased marginally 
when the middle porous wall was close to the exterior porous wall, 
whereas the surface elevation on the leeward side of the exterior porous 
wall decreased marginally. When the intermediate wall is approached 
the exterior wall, the concentric double porous walls provide better 
protection to the interior cylinder, i.e., the sheltering area increases. 
However, the sheltering area of the interior cylinder was not increased 
significantly when λ > 0.4, which implies that the radius of the middle 
wall does not need to be excessive. 

Fig. 16 presents the relative wave height for three configurations at 
χ = 1.5, R2/R = 2, G1 = G2 = 1, and λ = 0.5. In Fig. 16a, the wave 
elevations at the free surface of a solid cylinder are determined, and 
these are relatively high. However, as shown in Fig. 16(b) and (c), 
concentric porous walls reduce the elevation near the impermeable 
cylinder surface. The concentric three-cylinder is significantly more 
complex than concentric two-cylinder structures in terms of elevations. 
On the windward side, the wave height is significantly lower near the 
interior cylinder than it would have been near one protected only by a 
porous wall, which owing to the secondary protection offered by the 
double walls. Meanwhile, on the leeward side, the wave height near the 
interior cylinder is marginally higher than it would have been near one 
protected only by a porous wall, which is because of the reflection effect 
of the middle wall. Overall, compared with the double-cylinder struc-
ture, the triple-cylinder structure is more reliable for protecting the 
interior cylinder against the more complex marine environment. 

5. Conclusions 

This paper presents an analytical investigation of solitary waves 
interaction with a concentric system having multiple porous outer walls. 
An analytical solution was obtained by using eigenfunction expression 
matching approach and separation-of-variable technique. The correct-
ness of the analytical solution proposed in this paper is verified by 
comparing its values with the results of existing studies. The main 
conclusions obtained are as follows: 

(1) The reduction in the amplitude of the wave force on the imper-
meable cylinder compared with that on an isolated cylinder (M =
0) is approximately 34%, 56%, 70%, 80%, and 87% for M of 1–5, 
respectively, which implies that sufficient protection can be 
achieved for the interior cylinder when M = 2 or 3. However, M 
= 2 may be the best option considering the construction cost.  

(2) For multiple walls with different porous-effect parameters, the 
permutations of the selected porous-effect parameters have 
negligible effect on the wave force on the interior cylinder. 
However, the minimum wave run-up around it is observed when 
the coefficient of the porous walls increases from the outside to 
the inside. This indicate that porous walls wherein the coefficient 
of porosity decreases from the outside to the inside may be highly 
effective for concentric structures with multiple walls.  

(3) A vertical impermeable cylinder with two concentric porous 
walls was also investigated considering its larger application 
prospects. The concentric three-cylinder is significantly more 
complex than concentric two-cylinder structures in terms of ele-
vations. Owing to the secondary protection offered by the double 
walls, on the windward side, the wave height is significantly 

smaller near the interior cylinder than it would be near one 
protected only by a porous wall. 
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