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A B S T R A C T   

For the simulation-based hull form optimization design, there are many methods to evaluate the hydrodynamic 
performance of the hull form. Although the high fidelity of the surrogate model can be guaranteed by evaluating 
a large number of new sample hulls based on viscous flow theory, the computational cost can be too high. 
Therefore, in order to release the burden of calculation, based on the traditional single-fidelity Kriging surrogate 
model, the multi-fidelity Co-Kriging surrogate model gives attention to both high accuracy and efficiency by 
combining the accuracy advantage of high-fidelity sample evaluation with the efficiency advantage of low- 
fidelity sample evaluation. This paper first introduces the construction process of the multi-fidelity Co-Kriging 
surrogate model, and then uses a series of numerical examples to illustrate the advantages of the multi-fidelity 
Co-Kriging surrogate model compared with the single-fidelity Kriging surrogate model in terms of fidelity and 
efficiency. Finally, a hull form optimization design for total drag of DTMB-5415 hull at the design speed is given 
in detail, where the viscous flow theory and potential flow theory are used for the hydrodynamic evaluations of 
the hull forms to obtain the high- and low-fidelity results respectively. Results show that the multi-fidelity Co- 
Kriging surrogate model can be established for hull form hydrodynamic performance optimization, which is 
superior to the single-fidelity Kriging surrogate model in accuracy, and the optimal hull obtained by Co-Kriging 
surrogate model has a better resistance optimization effect.   

1. Introduction 

For optimization problems in engineering fields, it is often difficult to 
find the accurate functional relationship between the objective function 
and the design variables. In order to seek the optimal solution through 
the optimization algorithm (especially intelligent optimization algo
rithm), it is theoretically necessary to evaluate each new sample 
generated in each iteration by model test or numerical simulation, so 
that the optimization algorithm, driven by the changing law of the 
objective function value, can gradually search for the optimal solution. 
However, for the hull form optimization design problems, numerical 
simulations or model tests requires high costs. Therefore, the total 
optimization period will be extremely long, resulting in a significant 
reduction in optimization efficiency. 

Surrogate model construction technology is a very effective way to 
solve the problem mentioned above. The so-called Surrogate Model 
(SM), or Approximate Model (AM), refers to the approximate functional 
relationship between dependent variable (objective function) and in
dependent variables (design variables). The surrogate-based 

optimization method is to use the surrogate model constructed by 
sample points generated by the design of experiment with their corre
sponding objective function values, which replaces the real but difficult- 
to-find expression of objective function on the design variables, to seek 
the optimal solution (set). 

The construction of the surrogate model is carried out after the 
sample points are determined in the design space by design of experi
ment and their performance are evaluated. At present, the mainstream 
surrogate models include Kriging (Krige, 1951), Response Surface Model 
(RSM) (Box and Wilson, 1951), Artificial Neural Network (ANN) (Smith, 
1993), Radial Basis Function (RBF) (Orr, 1995), and Support Vector 
Machine (SVM) (Smola and Schölkopf, 2004). 

Surrogate models have been widely used in many engineering opti
mization fields. Peri et al. (2001) introduced the surrogate models into 
the field of hull form optimization early, and compared the advantages 
and disadvantages of surrogate models such as RSM, Kriging, ANN, and 
RBF in detail. Since then, several studies have given examples of hull 
form optimization based on surrogate model. 

There is no doubt that the use of single-fidelity surrogate model 

* Corresponding author. 
E-mail addresses: liuxinwang@hrbeu.edu.cn (X. Liu), dcwan@sjtu.edu.cn (D. Wan).  

Contents lists available at ScienceDirect 

Ocean Engineering 

journal homepage: www.elsevier.com/locate/oceaneng 

https://doi.org/10.1016/j.oceaneng.2021.110239 
Received 7 May 2021; Received in revised form 17 October 2021; Accepted 19 November 2021   

mailto:liuxinwang@hrbeu.edu.cn
mailto:dcwan@sjtu.edu.cn
www.sciencedirect.com/science/journal/00298018
https://www.elsevier.com/locate/oceaneng
https://doi.org/10.1016/j.oceaneng.2021.110239
https://doi.org/10.1016/j.oceaneng.2021.110239
https://doi.org/10.1016/j.oceaneng.2021.110239
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2021.110239&domain=pdf


Ocean Engineering 243 (2022) 110239

2

makes the simulation-based hull form optimization design possible. 
Campana et al. (2006) used the SBD technique early to optimize the 
DTMB-5415 hull. Tahara et al. (2011) adopted the Kriging model when 
optimizing the Delft catamaran. Li et al. (2014) adopted the RSM when 
optimizing the total drag of a bulk carrier. Chen et al. (2015) used RBF to 
optimize Delft catamaran 372 model with considering the design-space 
reduction. Huang et al. (2015) used RBF when optimizing the resistance 
and seeping performance of Series 60 hull. Yang and Huang (2016) 
adopted RBF when optimizing Series 60 hull for reduced total resistance 
at two speeds. Hou (2017) used ANN for EEDI optimization of Wigley 
hull. Tezdogan et al. (2018) optimised the calm-water total drag of a 
fishing boat by using SBD technique. Diez et al. (2018) used RBF to 
optimize the resistance and seakeeping performances of Delft catamaran 
372 model considering stochastic conditions. Zong et al. (2018) used 
second-order RSM to optimize the total drag coefficient of a trimaran. 
Coppede et al. (2019) used the Kriging model to optimize the total drag 
of KCS ship. Zhang et al. (2018) used Elman Neural Network to optimize 
the total drag coefficients of DTMB-5512 and Wigley III hulls in calm 
water at design speed. Miao et al. (2020) optimized a S60 catamaran for 
resistance reduction by the change of the demihull shape and separation 
using Kriging model. Liu and Wan (2020) used Kriging model to opti
mize the wave-making drag coefficients of a luxury cruise ship under the 
design and maximum speeds. Serani et al. (2021) optimized DTMB-5415 
hull by using RBF to minimize the mean total resistance expected value 
and maximize the ship operability in a fully stochastic environment. 

Compared with several other common surrogate models, Kriging 
model can give the prediction error (variance) in probability at the same 
time while giving the prediction value at the predicted point. Therefore, 
in order to improve its prediction accuracy, the prediction error in 
probability given by the Kriging model can be used naturally and easily, 
such as the maximum Expectation Improvement (EI) criterion (Jones 
et al., 1998), the maximum mean Square Error (MSE) criterion (Sasena 
et al., 2002), and the maximum Probability Improvement (PI) criterion 
(Forrester and Keane, 2009). 

Even so, for the simulation-based hull form optimization design, if 
the performance evaluation of each new sample hull is done by the same 
solver, the surrogate model constructed from the evaluation results 
obtained can be called a single-fidelity surrogate model. On the con
trary, if the evaluation results of solvers with different fidelity are 
considered together, the final constructed surrogate model is generally 
called a multi-fidelity surrogate model. Under the premise that the 
number of samples is large enough, the conventional single-fidelity 
surrogate model will have relatively high accuracy, which can basi
cally represent the change rule of the objective function in the whole 
design space, and be used for optimization solution. For the actual hull 
form optimization problem, especially for the high-dimensional prob
lem, in order to ensure high accuracy of the surrogate model obtained, it 
is necessary to evaluate a large number of new sample hulls, which in 
fact will consume a lot of computing time and resources, and the opti
mization efficiency is limited to an extent. 

Multi-fidelity Kriging surrogate model based on Bayesian deviation 
was first proposed by Kennedy and O ’Hagan (2001), which requires 
prior information (Qian and Wu, 2008). Co-Kriging surrogate model 
(Sacks et al., 1989) provides the equivalent form of above 
Bayesian-based model, which does not require prior information and has 
good computational characteristics (Forrester et al., 2007; Kuya et al., 
2011). Multi-fidelity Co-Kriging surrogate model essentially uses a 
larger number of low-fidelity sample data to assist a smaller number of 
high-fidelity sample data for forecasting high-fidelity outputs(results), 
which can reduce the total calculation cost and make the surrogate 
model have relatively high accuracy (Kim et al., 2007; Ghoreyshi et al., 
2008; Roderick et al., 2014). 

For the simulation-based hull form optimization of comprehensive 
hydrodynamic performances, it is very necessary to establish a multi- 
fidelity surrogate model, since it can greatly reduce the burden of 
calculation by obtaining the sample hulls’ performance indexes with 

different fidelity in a faster time period before getting the optimal hull 
form. In fact, there are different levels of fidelity for the ship’s hydro
dynamic performance evaluation methods. That is to say, in order to 
obtain the hydrodynamic performance indexes of the new hull forms, 
methods with different physical models or numerical discrete scheme 
can be used. If the two methods are complementary to each other, it is 
possible to evaluate the performance of new sample hulls with high 
efficiency and build the surrogate model with high accuracy. 

Adaptive sampling technique can also be used in the construction of 
multi-fidelity surrogate model. Serani et al. (2019b) presented four 
adaptive sampling methods for multi-fidelity RBF surrogate model, and 
the stochastic RBF provides the surrogate model prediction and the 
associated uncertainty, which can be a guide to the new samples. On the 
one hand, the adaptive sampling can purposefully increase sample 
points, which may lead to a better performance of the surrogate model 
with smaller prediction error; on the other hand, the number of the 
initial points and the new points are hard to determine, and if the 
adaptive sampling is adding-one-point per cycle, the whole optimization 
process may take too long, but the one-shot sampling for the high- and 
low-fidelity samples may lead to their numerical evaluation being car
ried out almost simultaneously. 

Furthermore, derivative-enhanced multi-fidelity surrogate models 
are also constructed in order to improve the accuracy of the model. Han 
et al. (2013) developed a derivative-enhanced multi-fidelity Kriging 
surrogate model combined with a new Generalized Hybrid Bridge 
Function to improve the efficiency and accuracy. Yamazaki and Mav
riplis (2013) developed a derivative-enhanced multi-fidelity Kriging 
surrogate model based on a direct Kriging formulation, and combined 
the developed surrogate models with an efficient adjoint CFD gradient 
evaluation method respectively. Rumpfkeil and Beran (2017) adaptively 
select training points and use derivative information to enhance the fi
delity of the surrogate model. Furthermore, no more than 
three-dimensional analytic test functions are given to demonstrate their 
benefits. Zuhal et al. (2021) proposed derivative-enhanced multi-fidelity 
Kriging surrogate model with a polynomial of undetermined order as the 
deterministic (trend) function. The airfoil drag minimization problems 
were respectively given in the end. However, unlike mathematical 
function or aerodynamic performance optimization, for the hull form 
hydrodynamic performance optimization, since numerical uncertainty 
may exist, and the adjoint CFD gradient evaluation method considering 
free surface is hard to implement (for instance, the VOF method needs to 
solve the discontinuous phase fraction equation), finite difference 
method should be used to obtain the gradient information, which needs 
more additional points that are near the generated sample points. Un
fortunately, the stability of the derivative calculation cannot be ensured 
considering the difference spacing. Therefore, accurately calculate the 
gradient may occur high computational cost. 

More-than-two-fidelity surrogate model can also be established and 
the numerical noise can be considered in the multi-fidelity surrogate 
model construction. Serani et al. (2019a) presented the extension of a 
two-fidelity RBF surrogate model, which has been tested for an analyt
ical test problem, and the optimization of a NACA hydrofoil, and a 
RoPax ferry. Results showed that the use of three-fidelity RBF surrogate 
model achieved better results than one- or two-fidelity models. In fact, 
like multi-fidelity RBF model, multi-fidelity Co-Kriging model can also 
be extended to three-or-even-more-fidelity one. Wackers et al. (2020) 
assessed the performance of an adaptive multi-fidelity RBF and Kriging 
model based on noisy CFD data for design space exploration and design 
optimization. RANS-based CFD simulations have been performed and 
three fidelity levels have been used based on an adaptive grid refinement 
technique. Results showed that using more than one fidelity level re
duces the number of high-fidelity samples required for 
surrogate-based-optimization, while using intermediate fidelity levels 
has a beneficial effect when dealing with noisy data. Ficini et al. (2021) 
assessed the performance of an adaptive multi-fidelity surrogate model 
based on Kriging considering noisy function evaluation. Through five 
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mathematical test problems, surrogate model with three fidelity level 
has led to an improvement in comparison with that with one and two 
fidelities. However, the real noise amplitude is hard to know exactly, 
even the numerical (calculation) noise has high randomness. That is to 
say, if we know the noise distribution, we can simply do the compen
sation for errors, which is unrealistic. Of course, the overall fidelity 
affected by the noise should be considered and studied. 

To sum up, traditional optimization solution based on the single- 
fidelity Kriging surrogate model usually needs to evaluate a large 
number of sample points in order to make the surrogate model have high 
accuracy. In hull form optimization, to be specific, comprehensive hy
drodynamic performances of a series of new sample hulls need to be 
evaluated. Multi-fidelity Co-Kriging surrogate model can give attention 
to both high efficiency and high precision, where fewer samples are used 
for high-fidelity simulation and more samples for low-fidelity simula
tion, but it has not been widely used in the hull form hydrodynamic 
performance optimization yet. In this paper, two-fidelity Co-Kriging 
surrogate model is applied in the resistance performance of the DTMB- 
5415 hull, where the potential flow and viscous flow simulation re
sults are regarded as the low- and high-fidelity data. Before the appli
cation, several mathematical functions with different dimensions are 
tested, showing that the Co-Kriging model has some advantages 
compared with the single-fidelity Kriging model using static or even 
adaptive samples. The single-fidelity Kriging and multi-fidelity Co- 
Kinging model are constructed for the optimization of the DTMB-5415 
hull, and the optimization results show that the Co-Kriging model has 
relatively higher accuracy and costs less. Last but not the least, some 
recommendation for the decision of the number of the high-fidelity and 
low-fidelity samples are also given. 

2. Basic principles of Co-Kriging surrogate model construction 
method 

Co-Kriging surrogate model can be established by two sets of inde
pendent samples with high and low reliability (accuracy). The model 
can obtain more accurate prediction results by using fewer high-fidelity 
samples and more low-fidelity samples when the high-fidelity sample 
points are difficult to obtain or the calculation is expensive (Forrester 
et al., 2007; Gratiet and Garnier, 2014). 

Firstly, the sample data sets under two levels of fidelity are given, 
namely, the high-fidelity samples Xe = [x(1)

e , x(2)
e ,⋯, x(Ne)

e ] with a sample 
number of Ne, and the low-fidelity samples Xc = [x(1)

c , x(2)
c ,⋯, x(Nc)

c ] with 
a sample number of Nc. Like the Kriging surrogate model, the value of 
the function at a certain point in the space is regarded as a random 
process with certain expectation and variance. For Co-Kriging model, we 
have a set of sample function values 

Y =

[
Yc(Xc)

Ye(Xe)

]

=
[
Yc
(
x(1)c

)
,Yc

(
x(2)c

)
,⋯,Yc

(
x(Nc)

c

)
,Ye

(
x(1)e

)
,Ye

(
x(2)e

)
,⋯, Ye

(
x(Ne)

e

)]T

(1) 

Based on the auto-regressive model, it is assumed that cov[Ye(x(i)),

Yc(x(i))
⃒
⃒Ye(x(i))] = 0, that is, when the high-fidelity function value at x(i)

is known, the low-fidelity model at this point cannot provide any more 
information. 

Assume Gaussian processes Ze and Zc represent the approximation of 
high-fidelity and low-fidelity functions respectively. Based on auto- 
regressive model, the Gaussian processes Ze can be obtained by the 
sum of low-fidelity model multiplied by a constant scale factor ρ and the 
deviation function Zd, as shown in the following: 

Ze(x)= ρZc(x) + Zd(x) (2) 

We know that the covariance based on the Kriging surrogate model is 

cov
[
Y
(
x(i)

)
, Y

(
x(j)

)]
= σ2ψ

(
x(i), x(j)

)
(3)  

where σ2 is the variance, and the correlation matrix is determined by 
Spatial Correlation Function (SCF), one of whose common forms is the 
Gaussian SCF: 

ψ
(
x(i), x(j)

)
= e

−
∑ndv

k=1
θk|x

(i)
k − x(j)k |

pk

(4)  

where ndv is the number of design variables, and θk, pk are spatially 
related parameters. The covariance matrix based on Kriging model is 
then 

cov[Y(X),Y(X)]= σ2Ψ(X,X) (5) 

Similarly, several sub-blocks of the covariance matrix based on the 
Co-Kriging model can be given as follows: 

cov[Yc(Xc),Yc(Xc)]= cov[Zc(Xc), Zc(Xc)]

= σ2
cΨc(Xc,Xc)

(6)  

cov[Ye(Xe),Yc(Xc)]= cov[ρZc(Xe)+Zd(Xe),Zc(Xc)]

= ρσ2
cΨc(Xc,Xe)

(7)  

cov[Ye(Xe),Ye(Xe)]= cov[ρZc(Xe)+Zd(Xe), ρZc(Xe)+ Zd(Xe)]

= ρ2cov[Zc(Xe), Zc(Xe)] + cov[Zd(Xe),Zd(Xe)]

= ρ2σ2
cΨc(Xe,Xe)+ σ2

dΨd(Xe,Xe)

(8)  

where Ψc(Xc,Xe) represents the matrix constituted by the correlation 
coefficient of Xc and Xe in the low-fidelity Kriging model. Then, the 
overall covariance matrix of the Co-Kriging surrogate model is expressed 
as follows: 

C=

[
σ2

cΨc(Xc,Xc) ρσ2
cΨc(Xc,Xe)

ρσ2
cΨc(Xc,Xe) ρ2σ2

cΨc(Xe,Xe) + σ2
dΨd(Xe,Xe)

]

(9) 

According to the above formula, the Co-Kriging model has two SCFs, 
so it has more relevant parameters than the single-fidelity Kriging 
model, i.e., μc,σ2

c ,μd,σ2
d ,θc,θd,pc,pd,ρ, which need to be estimated. 

Since the low-fidelity sample data is independent from the high- 
fidelity sample data, the log-maximum likelihood function shown as 
Eq. (10) (ignoring the constant term) can be used to obtain the param
eters in low-fidelity Kriging model: 

MLEc = −
Nc

2
ln
(
σ2

c

)
−

1
2

ln|Ψc(Xc,Xc)| −
(yc − 1μc)

T Ψc(Xc,Xc)
− 1
(yc − 1μc)

2σ2
c

(10) 

Estimation of μc and σ2
c can be obtained by taking the derivatives of 

MLEc with respect to μc and σ2
c , and set the derivatives to 0, we have: 

μ̂c =
1T Ψc(Xc,Xc)

− 1yc

1T Ψc(Xc,Xc)
− 11

(11)  

σ̂2
c =

(yc − 1μ̂c)
T Ψc(Xc,Xc)

− 1
(yc − 1μ̂c)

Nc
(12) 

Substitute the above two expressions into the maximum likelihood 
function Eq. (10), and the following equation is obtained: 

MLEc = −
Nc

2
ln
(

σ̂2
c

)
−

1
2

ln|Ψc(Xc,Xc)| (13) 

At this point, since θc and pc cannot be obtained theoretically, they 
can only be got by numerical optimization (maximization) of the above 
likelihood function, single-objective Genetic Algorithm (GA) (Deb and 
Agrawal, 1995) is applied in this paper. 

The above steps are just the construction process of the single-fidelity 
Kriging surrogate model, which is used to build the approximation of Zc 
with the low-fidelity sample data in the Co-Kriging model. 

To estimate the rest parameters μd,σ2
d ,θd,pd,ρ, first define 

X. Liu et al.                                                                                                                                                                                                                                      



Ocean Engineering 243 (2022) 110239

4

d= ye − ρyc(Xe) (14) 

Here, the low-fidelity function values yc at high-fidelity sample 
points Xe are needed. If the high-fidelity sample set Xe is a subset of the 
low-fidelity sample set Xc, their yc(Xe) are the real values of the low- 
fidelity function. Otherwise, if some points in Xe are unavailable in Xc, 
their yc(Xe) have to be obtained by the prediction (interpolation) of the 
low-fidelity Kriging model, and additional interpolation errors may be 
introduced. 

At this point, the log-maximum likelihood function of the approxi
mate function for high-fidelity samples is: 

MLEe = −
Ne

2
ln
(
σ2

d

)
−

1
2

ln|Ψc(Xc,Xc)| −
(d − 1μd)

T Ψd(Xe,Xe)
− 1
(d − 1μd)

2σ2
d

(15) 

The estimation of the μd and σ2
d can be obtained by taking the de

rivatives of MLEe with respect to μd and σ2
d , and set the derivatives to 0: 

μ̂d =
1T Ψd(Xe,Xe)

− 1d
1T Ψd(Xe,Xe)

− 11
(16)  

σ̂2
c =

(yc − 1μ̂c)
T Ψc(Xc,Xc)

− 1
(yc − 1μ̂c)

Nc
(17) 

Substitute the above two expressions into the maximum likelihood 
function Eq. (15), and the following equation is obtained: 

MLEc = −
Nc

2
ln
(

σ̂2
c

)
−

1
2

ln|Ψc(Xc,Xc)| (18) 

Likewise, estimation of θd, pd, and ρ can also be obtained by single- 
objective Genetic Algorithm (GA) in this paper. 

In order to get the prediction value of the multi-fidelity Co-Kriging 
surrogate model, we adopt a method similar to the single-fidelity Kriging 
model. Therefore, we use the new sample point to be predicted and the 
existing sample data to seek the most likely value of the function at the 
to-be-predicted point from the perspective of probability, that is, to 
maximum the likelihood function MLE ŷe(x), by keeping the existing 
estimation surrogate model parameters unchanged. At this time, new 
sample set is X = [XT

c ,X
T
e , xT]

T, the function value set is y =

[yT
c , yT

e , ŷT
e (x)]

T
, and the spatial correlation matrix of the sample set C̃ can 

be written as 

C̃=

⎡

⎢
⎢
⎣

σ̂2
cΨc(Xc,Xc) ρσ̂2

cΨc(Xc,Xe) ρσ̂2
cΨc(Xc,x)

ρσ̂2
cΨc(Xc,Xe) ρ2 σ̂2

cΨc(Xe,Xe)+ σ̂2
dΨd(Xe,Xe)

(
ρ2 σ̂2

c + σ̂2
d

)
Ψd(Xe,x)

ρσ̂2
cΨc(Xc,x)T (

ρ2 σ̂2
c + σ̂2

d

)
Ψd(Xe,x)T ρ2 σ̂2

c + σ̂2
d

⎤

⎥
⎥
⎦

(19) 

Define vector c to be the covariance of X and x, then the correlation 
matrix C̃ can be rewritten as 

C̃=

[
C c
cT ρ2 σ̂2

c + σ̂2
d

]

(20) 

Similar to the single-fidelity Kriging surrogate model, in order to 
maximize the maximum likelihood function MLE ŷe(x), the following 
item needs to be maximized: 

max f = −
1
2
(ỹ − 1μ)T C̃

− 1
(ỹ − 1μ) (21) 

Substitute Eq. (20) into Eq. (21), we have 

max f = −
1
2

(
y − 1μ̂
ŷe(x) − μ̂

)T
[

C c
cT ρ2 σ̂2

c + σ̂2
d

]− 1(
y − 1μ̂
ŷe(x) − μ̂

)

(22) 

According to the matrix theory, the inverse of the correlation matrix 
C̃ can be obtained, i.e.   

In fact, when substituting Eq. (23) into Eq. (22), one term of f has 
nothing to do with ŷe(x) : − 1

2(y − 1μ̂)T
[C− 1 +

C− 1c(ρ2 σ̂2
c + σ̂2

d − cTC− 1c)
− 1

cTC− 1](y − 1μ̂). Therefore, if we take the 
derivative of f with respect to ŷe(x), this term can be ignored. Set the 
derivative to 0, we have 

− 1
ρ2 σ̂2

c + σ̂2
d − cT C− 1c

(ŷe(x) − μ̂)+ cT C̃
− 1
(y − 1μ̂)

ρ2 σ̂2
c + σ̂2

d − cT C− 1c
= 0 (24) 

The best predicted value ŷe(x) of the to-be-predicted sample point, 
which is just an arbitrary point in the variables space, is given below: 

ŷe(x)= μ̂ + cT C− 1(y − 1μ̂) (25) 

It can be proved that, similar to the single-fidelity Kriging surrogate 
model, the above Co-Kriging surrogate model is an interpolation of the 
existing high-fidelity sample data. However, it will make regression to 
the low-fidelity samples without high-fidelity function values in a sense, 
that is, make regression to the low-fidelity sample data Xc except for Xe. 

Similar to the single-fidelity Kriging surrogate model, the estimation 
error in probability of multi-fidelity Co-Kriging model is approximately 

ŝ2
(x)≈ ρ2 σ̂2

c + σ̂2
d − cT C− 1c +

1 − 1T C− 1c
1T C− 11

(26)  

3. Numerical validations of multi-fidelity Co-Kriging surrogate 
model 

In order to show the high efficiency and high fidelity of the Co- 
Kriging surrogate model used in this paper in representing complex 
functions, 4 numerical tests are carried out on typical mathematical 
functions of different types. Before the surrogate-based-optimization, 
the surrogate model should be constructed with high accuracy. In fact, 
if the true function or the high-fidelity surrogate model is given, GA can 
have good performance in finding global minimum.  

1) Case-1 

Firstly, a one-variable function with only one global minimum is 
given (Forrester and Keane, 2009). Its high-fidelity and low-fidelity 
functions are shown below respectively 

fe(x)= (6x − 2)2 sin(6x − 2)2 (27)  

fc(x)=
1
2
(6x − 2)2 sin(6x − 2)2

+ 10(x − 1) (28) 

C̃
− 1

=

⎡

⎣
C− 1 + C− 1c

(
ρ2 σ̂2

c + σ̂2
d − cT C− 1c

)− 1
cT C− 1 − C− 1c

(
ρ2 σ̂2

c + σ̂2
d − cT C− 1c

)− 1

−
(
ρ2 σ̂2

c + σ̂2
d − cT C− 1c

)− 1
cT C− 1 (

ρ2 σ̂2
c + σ̂2

d − cT C− 1c
)− 1

⎤

⎦ (23)   
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Fig. 1. Influence of different high-fidelity sample numbers on the errors of two surrogate models.  

X. Liu et al.                                                                                                                                                                                                                                      



Ocean Engineering 243 (2022) 110239

6

It can be seen that the low-fidelity function is the sum of the com
pressed high-fidelity function and a linear function, which can actually 
be analogous to the random error of numerical simulation results. 

Through the Sobol (1979) sampling method, 11 points are selected in 
the range of [0, 1], and their low-fidelity function values are calculated. 
At the same time, 3, 4, 5 and 6 points are selected from the 11 points 
according to the maximum-minimum distance criterion, and their 
high-fidelity function values are calculated. Single-fidelity Kriging sur
rogate model by 3, 4, 5 and 6 high-fidelity samples, and multi-fidelity 
Co-Kriging surrogate model by 3, 4, 5 and 6 high-fidelity samples 
together with 11 low-fidelity function samples are constructed respec
tively. The approximation results of the surrogate models to 
high-fidelity real function are shown in Fig. 1 below. Among them, the 
blue dotted line represents the surrogate models, the black solid line 
represents the high-fidelity function, the green dotted line represents the 
low-fidelity function, and the half height of the yellow region at each 
point represents the root mean square error of the surrogate model in 
probability. 

Seen from Fig. 1, in the case of 11 low-fidelity samples, when there 
are 3 high-fidelity samples, due to the limited high-fidelity function 
information, the Co-Kriging model basically depends on the low-fidelity 
samples. Specifically, except that the prediction value of the Co-Kriging 
surrogate model at the high-fidelity sample points is completely 
consistent with the real high-fidelity function value, the rest of the Co- 
Kriging model has a trend towards low-fidelity function. Furthermore, 
the Kriging model also has a big error compared with high-fidelity 
function at this time. However, when the sample number of the high- 
fidelity function is 4, the Co-Kriging model is already very close to the 
high-fidelity function, but there is a small error. At this time, the overall 
error of the Kriging model is reduced, but the fidelity of Kriging model is 
still very poor compared with the Co-Kriging model. When the sample 
number of the high-fidelity function is 5, the error between the Co- 
Kriging model and the high-fidelity function is quite small, so it can 
be considered that the co-Kriging model can forecast the real high- 
fidelity function very well. When the number of high-fidelity function 
samples is larger, the overall error of Kriging model becomes smaller and 
smaller. Finally, when the sample number of the high-fidelity function is 
11, both the Kriging and Co-Kriging models are nearly consistent with 
the high-fidelity function. However, if the Co-Kriging model is con
structed by 11 high- and low-fidelity samples, the high efficiency of Co- 
Kriging model cannot be reflected. Considering the high-fidelity sample 
actually represents CFD-based numerical simulation result with expen
sive costs, in order to reduce the computational costs, for the purpose of 
this example, 5 samples with high fidelity is enough, together with 11 
low-fidelity samples, to get high-fidelity Co-Kriging surrogate model. 

It can be predicted that for a large number of low-fidelity samples, a 
certain number of high-fidelity samples are required to make the Co- 
Kriging surrogate model have a high fidelity. However, too many 
high-fidelity samples will reduce the computational efficiency, which 
will weaken the advantages of Co-Kriging model compared with Kriging 
model.  

2) Case-2 

Slight difference from the previous case is that, although the high- 
fidelity function in this case is also a function of one variable with 
only one global minimum, there are many local minimum values, which 
can be regarded as a “multimodal” function (De et al., 2015). The 
high-fidelity and low-fidelity functions are shown below respectively 

fe(x)= 3+ cos
(
5x2)+ 0.2 sin(40x) (29)  

fc(x)= 0.5+ cos
(
5x2)+ 0.2 sin(40x) + 1.5 sin(3x) (30) 

It can be seen that the low-fidelity function is the sum of shifted high- 
fidelity function, and a sinusoidal perturbation, which makes the mode 

of the low-fidelity function more complex. 
For this case, similar to the above process, after determining the 

sample number of low-fidelity function, the sample number of high- 
fidelity function is gradually increased to compare the accuracy of the 
obtained Co-Kriging surrogate model and the conventional Kriging 
surrogate model. As the high-fidelity function in this case is more 
complex, the sample number of the low-fidelity function selected by the 
uniform design method is increased, that is to say, 17 points are selected 
in the range of [0,1]. Considering accuracy and efficiency, the Co- 
Kriging model is constructed by using 6 high-fidelity function samples 
and 17 low-fidelity function samples. The comparison of the approxi
mate function obtained by the two surrogate models and the real high- 
fidelity function is shown in Fig. 2 below. 

It is obviously that, the Kriging model with only 6 high-fidelity 
function samples has a relatively big error compared with the real 
high-fidelity function, and there are great differences in the capture of 
functional modes, making it difficult to globally capture the change 
trend of this function. Therefore, for similar functions, the constructed 
Kriging surrogate model with limited sample data may skip some of the 
local and global minima of the real high-fidelity function. However, the 
Co-Kriging surrogate model can capture the full information of the high- 
fidelity function much better without using too many samples. 

As mentioned above, it is well known that EI is commonly used in the 
adaptive sampling. On the one hand, the adaptive sampling can pur
posefully increase sample points, which may lead to a better perfor
mance of the surrogate model with smaller prediction error; on the other 
hand, the number of the initial points and the new points are hard to 
determine, and the whole optimization process may take longer, but the 
one-shot sampling for the high- and low-fidelity samples may lead to 
their numerical evaluation being carried out almost simultaneously, 
especially when the high-fidelity data is obtained by CFD evaluations on 
HPC system, which has been widely used for the CFD-based hull form 
optimization, compared with the adding-one-point adaptive sampling 
method like EI. Certainly, if multiple samples are added per cycle (Diez 
et al., 2019), the whole optimization procedure can be shortened. 

Take this case as an example. If we use EI to add additional points to 

Fig. 2. Comparison of the errors of two surrogate models.  
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Fig. 3. Updating iterations of the Kriging surrogate model with EI-based adaptive sampling.  
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the single-high-fidelity Kriging model of the fe(x), the updating itera
tions are shown in Fig. 3. It can be seen that if EI is applied to add 
additional high-fidelity sample points, more high-fidelity data should be 
obtained, which is less efficient than the Co-Kriging model presented in 
this paper. It should be noted that, although after 4 iterations the global 
optimum can be already reached shown from Fig. 3, the overall 
changing trend of the Kriging model compared with the real function 
still has a significant difference. Therefore, the EI loop lasts 18 iterations. 
Therefore, for functions with higher dimension, if we cannot clearly see 
the changing trend like this case, we may only judge by the EI loop 
criterion, which may take a relatively long period of time to obtain a 
high-fidelity surrogate or a reliable optimum.  

3) Case-3 

The function of this case contains two independent variables (Cai 
et al., 2017), and the high-fidelity and low-fidelity functions are given 
respectively 

fe( x→)= 4(4x1 − 2)2
−

11
5
(4x1 − 2)4

+
1
3
(4x1 − 2)6

+(4x1 − 2)(4x2 − 2)

− 4(4x2 − 2)2
+ 4(4x2 − 2)4

(31)  

fc( x→)= fe(0.7 x→)+ x1x2 − 65 (32) 

It can be seen that the low-fidelity function amplifies the high- 
fidelity function in the two directions of the independent variables, 
making some information of the high-fidelity function missing to some 
extent, and adds certain disturbance and overall shifting. 

As the high-fidelity function in this case is a two-variable function, 
the sample number of the low-fidelity function selected by the Sobol 
sampling method is increased to be 60. Taking accuracy and efficiency 
into consideration, the Co-Kriging model is constructed by using 30 
high-fidelity function samples and 60 low-fidelity function samples. The 
comparison of the approximate function obtained by the two surrogate 
models and the real high-fidelity function is shown in Fig. 4 below. 

It can be seen that the Kriging surrogate model using only 30 func
tion samples of high fidelity still has some errors compared with real 
high-fidelity function, especially in the “middle” region of the two- 
dimensional space with small function values. However, after adding 
60 samples of low-fidelity function, the Co-Kriging model can capture 
almost all the information of real high-fidelity function well. It can be 
predicted that if only 30 samples of high-fidelity function are used, it is 
far from enough from the perspective of the surrogate model accuracy, 
but the continuous addition of high-fidelity sample points will increase a 
lot of calculation amount. 

Fig. 4. Comparison between different surrogate models and real function.  
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4) Case-4 

The function of this case contains five independent variables (Cai 
et al., 2017), and the high-fidelity and low-fidelity functions are given 
respectively 

fe( x→)=
∑4

i=1

{[
(6xi+1 − 3)2

− (6xi − 3)
]2
+(6xi − 4)2

}
(33)  

fc( x→)=
∑4

i=1

[
0.9(6xi+1 − 3)4

+ 2.2(6xi − 3)2
− 1.8(6xi − 3)(6xi+1 − 3)2

+ 0.5
]

(34) 

As the high-fidelity function in this case is a five-variable function, 
the sample number of the low-fidelity function selected by the Sobol 
sampling method is increased to be 100. Taking accuracy and efficiency 
into consideration, the Co-Kriging model is constructed by using 50 
high-fidelity function samples and 100 low-fidelity function samples. 
After the surrogate models are constructed, for display convenience, let 

x2 = 1, x3 = 1, x5 = 0.5. The comparison of the approximate function 
obtained by the two surrogate models and the real high-fidelity function 
is shown in Fig. 5. 

It can be seen that the Kriging surrogate model using only 50 high- 

Fig. 5. Comparison between different surrogate models and real function.  

Table 1 
Summary of the optimal results for four test cases.  

/ Real (High-fidelity) 
function 

Kriging model Co-Kriging model 

xopt fmin xopt fmin xopt fmin 

Case 
1 

0.757 − 6.021 0.750 − 5.993 0.757 − 6.017 

Case 
2 

0.753 1.854 0.752 1.856 0.753 1.855 

Case 
3 

[0.522, 
0.322] 

− 1.032 [0, 0.705] − 1.276 [0.523, 
0.322] 

− 1.031 

Case 
4 

[0.667, 
0.667, 
0.667, 
0.667, 
0.333] 

0 [0.447, 
0.577, 
0.547, 
0.458, 
0.573] 

− 35.824 [0.667, 
0.667, 
0.666, 
0.663, 
0.335] 

0.002  
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fidelity samples has some errors compared with real high-fidelity func
tion. However, after adding 100 low-fidelity samples, the Co-Kriging 
model can capture almost all the information of real high-fidelity 
function well. However, the addition of a series of low-fidelity sample 
points is acceptable if the calculation cost of low-fidelity samples can be 
relatively small. 

From Table 1, we can see that, based on Co-Kriging model, the op
timum point and value is much closer to the real optimum in the four 
cases, especially for the high-dimensional cases such as Case 3 and Case 
4. However, since the Kriging model has a relatively large error by using 
a relatively small number of samples, the real optimum is hard to find. 

4. Total drag optimization case of DTMB-5415 hull 

4.1. Basic information of the mother ship 

DTMB-5415 ship was originally designed for a warship by David 
Taylor Model Basin in the 1980s. With a sonar dome on the bow and a 
transom stern, DTMB-5415 has become an internationally recognized 
standard ship model, and abundant model test results (Olivieri et al., 
2001) can be used for the verification of numerical calculation. The ship 
model being optimized in this paper has the INSEAN model scale of 5.72 
m long, and the full scale model of it has 142 m long. This ship belongs to 
medium- or high-speed ships. Its three-dimensional model is shown in 
Fig. 6, and main parameters in model scale are shown in Table 2. 

Due to the relatively high ship speed and thin overall shape, the free 
surface wave elevation in calm water is relatively obvious, and the 
breaking bow wave can even appear at a high speed, in other words, the 
ratio of wave-making drag to total drag is relatively high. Therefore, it is 
very important to reduce the wave height of the free surface. On the one 
hand, it can reduce the wave-making drag; on the other hand, free 
surface wave can bring about hydrodynamic noise and long wake after 
the ship stern, so reduce the free surface wave can also enhance its 
stealth. In order to reduce the bow and stern waves as much as possible, 
we consider local deformations of the bow part and the global defor
mation of the entire hull of DTMB-5415 ship to optimize its total calm- 
water drag at the design speed of Froude number 0.28. 

4.2. Definition of optimization problem and hydrodynamic evaluation 
methods 

For the numerical simulation of calm-water drag, in general, there 
are efficient prediction methods based on potential flow theory, such as 
in-house solver NMShip-SJTU (Liu et al., 2019) based on the 
Neumann-Michell (NM) theory (Noblesse et al., 2013), to calculate 
wave-making drag quickly, and high-fidelity prediction methods based 
on viscous flow theory, such as in-house solver naoe-FOAM-SJTU (Shen 
et al., 2015) based on RANS equations. 

For the resistance performance evaluation of DTMB-5415 ship, the 
wave-making drag coefficient can be obtained by NM theory, and 1957 
ITTC plate frictional drag coefficient formula can be used to approxi
mate the frictional drag coefficient of the hull, and the total drag based 
on potential flow theory of the ship model can be obtained according to 

the ship length, namely 

Rt,PF =
(
Cf +Cw

) 1
2

ρU2S (35) 

If the viscous-flow-based solver naoe-FOAM-SJTU is used, the pres
sure drag Rp and frictional drag Rf are obtained by integrating the dy
namic pressure distribution on the hull surface, and the sum of the two 
drag components is regarded as the total drag of the ship model based on 
the viscous flow theory, namely 

Rt,VF =Rp + Rf (36) 

The above two methods have their own advantages, and Co-Kriging 
surrogate model can combine the advantages of the two methods. Spe
cifically, more potential flow solution results are regarded as low- 
fidelity sample data, which can be used to capture the overall relation
ship between the total drag and the hull form optimization design var
iables, and fewer viscous flow solution results as high-fidelity sample 
data. Firstly, two solvers are used to evaluate the calm-water total drag 
of the initial DTMB-5415 ship hull to analyze and compare the simi
larities and differences between the calculation results, and the feasi
bility of using two fidelity results to establish Co-Kriging model. For the 
potential flow solver, the hull is fixed at the waterline with 0 sinkage and 
trim, while for the viscous flow solver, the hull has 2 DoF (sinkage and 
trim). 

When NMShip-SJTU is used to calculate the total drag, only the mesh 
of hull surface and free surface are needed. As shown in Fig. 7 and Fig. 8, 
the calculation mesh of the hull surface and the free surface around the 
DTMB-5415 hull are given respectively. 

Fig. 9 shows the calculation region size of naoe-FOAM-SJTU when 
evaluating the calm-water drag, and the summary of the boundary 
conditions is given in Table 3. For the calm-water total drag evaluation 
by naoe-FOAM-SJTU solver, the RANS equations are used to address the 
incompressible viscous flow, and k-ω SST turbulence model is applied. 
The free surface is captured by Volume of fluid (VOF) method with 
artificial bounded compression techniques. The RANS and VOF trans
port equations are discretized by finite volume method (FVM). The 
PIMPLE algorithm is used to solve the coupled equation of velocity and 
pressure. The convection terms are approximated by a second-order 
TVD limited linear scheme, and the diffusion terms are approximated 
by a second-order central difference scheme. The unstructured meshes 
are generated by snappyHexMesh, an automatic mesh-generation utility 
provided by OpenFOAM. This utility generates mesh on an original 
Cartesian background mesh, splitting hexahedral cells into split-hex 

Fig. 6. Geometry model of DTMB-5415.  

Table 2 
Main particulars of DTMB-5415.  

Parameter Symbol and unit Value 

length between perpendiculars Lpp (m) 5.72 
Breadth B (m) 0.768 
Draught T (m) 0.248 
molded depth D (m) 0.772 
drainage volume ∇ (m3)  0.552 
wet surface area S (m2) 4.861  
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cells. Most of these cells distribute around the free surface and the hull 
after mesh refinement. Near-wall grid spacing is designed to meet the 
requirement of turbulence model using wall functions, where the y+ is 
around 30. Furthermore, the number of the boundary layers is 5. The 
global refinement is shown in Fig. 10, and the local refinement near the 
hull is shown in Fig. 11. 

It can be seen from Fig. 12 that locations (phases) of wave systems 
(including bow wave, shoulder wave and stern wave) obtained by the 
two solvers are basically the same, but to be honest, specific values of 
wave peak and trough are different to some extent. For the bow wave 
and shoulder wave, they are underestimated by potential flow theory 
compared with the viscous flow theory, which may be due to the fact 
that the hull has a certain positive trim at the ship bow. Therefore, the 
bow wave is larger and the wet surface area of the hull is no longer the 

static wet surface area, resulting in a certain nonlinearity which cannot 
be considered in the linear potential flow theory. For the stern wave, the 
damping is very slow in the potential flow theory because the viscosity is 
not considered, while relatively fast in the viscous flow theory because 
of the viscosity and numerical dissipation, so it can be seen that the wave 
elevation behind the hull stern by potential flow solver is larger than 
that of the viscous flow solver. 

According to the NM theory, the non-dimensional wave height along 
the hull with respect to the non-dimensional ship length comparison 
results are shown in Fig. 13, showing a similar trend by the two solvers. 

It is obvious from Fig. 14 that, for the underwater part of the ship 
hull, the location and size of high- and low-pressure regions are similar, 
showing that the pressure distribution and integration has a similar 
trend. Meanwhile, since only the hull surface under the design waterline 
is calculated, the dynamic pressure distribution above the design 
waterline is not presented by potential flow solver, some difference truly 
occurs near the free surface. 

With a mesh configuration similar to the above, the total calm-water 
drag coefficients for a series of Froude numbers of the ship model can be 
calculated and compared with the model test results, which are shown in 
Fig. 15 below. It can be seen that the total drag coefficients evaluated 

Fig. 7. Mesh of hull surface.  

Fig. 8. Free-surface mesh around the hull.  

Fig. 9. The size and boundaries of the computational domain.  

Table 3 
Summary of boundary conditions.  

Boundary name Boundary condition 

Inlet velocity inlet 
Atmosphere no-slip condition 
Hull no-slip wall condition 
Symmetry no-slip condition 
Outlet pressure outlet  
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based on the viscous flow theory at several typical speeds are basically 
consistent with the experimental values within small errors. In addition, 
the variation rule of total drag coefficient with Fr evaluated based on 
potential flow theory and the real variation rule by model test of total 
drag coefficient with Fr are basically consistent on the whole, and there 
is small deviation between the two especially around Fr = 0.28. 

Last but not the least, the V&V of the naoe-FOAM-SJTU are con
ducted, and the detailed equations in the verification and validation 
procedure can be seen in Wilson et al. (2001), and the results of the 
verification and validation parameters are shown in Table 4. Three grid 
sets distributed around the hull are shown in Fig. 16. The convergence 
histories of the three grid sets are given in Fig. 17, showing that through 
resistance evaluation, the mean calm-water total drag can be obtained. 

From Table 4, we can obtain that the calculation is monotonic 
convergent for three grids since the convergence rate RG is between 
0 and 1, and the numerical (grid) uncertainty is 2.50%. Furthermore, 
since |E| < Uv, the combinations of all errors are less than Uv, and the 
validation is achieved at the level Uv. 

4.3. Definition of the design variables 

In this paper, the total calm-water total drag of the DTMB-5415 ship 
at the design speed Fr = 0.28 is optimized. Free Form Deformation (FFD) 
method (Sederberg and Parry, 1986) is used to carry out the hull form 
deformation of the ship bow part, and the shifting method (Kim et al., 
2011) is used to adjust the Section Area Curve (SAC) of the whole ship, 
that is, the cross-sections of the front and the aft halves are indepen
dently translated along the direction of ship length. The Sobol method is 
applied to do the design of experiment in the five-dimensional design 
space. The ranges of design variables are shown in Table 5. It should be 
noted that all the range values of variables are dimensionless values of 

the ship model waterline length. Wherein, x1 corresponds to the 
movable amount of the red dot along the ship length in Fig. 18 (a), y1 to 
the movable amount of the red dot along the ship breadth in Fig. 18 (b), 
and z1 to the movable amount of the red dot along the draught in Fig. 18 
(c). It should be also noted that the movable control points along the ship 
breadth are moved symmetrically about the central sheer plane of the 
hull. These deformation parameters control the length, width and height 
of the bow sonar dome respectively. In addition, α1f and α1a represent 
the amplitudes of the modification function of the SAC of the front and 
aft halves respectively in the shifting method. According to the Sobol 
method, 50 new sample hulls are generated, and hydrodynamic evalu
ations are carried out respectively using the two solvers. The computa
tional grid is basically consistent with the grid given above to ensure 
that the surface grid or body grid in the computational domain corre
sponding to each new sample hull form is almost the same to reduce 
model error. 

The objective function of this optimization is the calm-water total 
drag at the sailing Froude number Fr = 0.28, as shown below. 

min ​ fobj =Rt (37)  

4.4. Construction of the surrogate models 

In order to build the Kriging model or Co-Kriging surrogate model 
that meets the demand of practical engineering, the maximum high- 
fidelity sample size is chosen to be 50, and the low-fidelity sample size 
is also 50, where the high-fidelity sample data is obtained by the viscous 
flow calculation results, while the low-fidelity sample data is obtained 
by the potential flow calculation results. 

After evaluations of the sample hulls, the single-fidelity Kriging 
surrogate model and the multi-fidelity Co-Kriging surrogate model of the 
total drag on the design variables of hull form deformation can be 

Fig. 10. The refinement settings of the computational domain.  

Fig. 11. Local views of meshes around the hull.  

Fig. 12. Comparison of free surface elevation.  
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constructed respectively. 
For the single-fidelity Kriging surrogate model using 50 high-fidelity 

samples, different Spatial Correlation Function (SCF) and deterministic 
polynomials are used to combine. Gaussian (Laurenceau and Sagaut, 
2008) or cubic spline (Yamazaki et al., 2010) functions are the most 
common forms for SCF, where the hyper-parameter expresses the dis
tance weight for both spatial correlation functions. Furthermore, the 
deterministic polynomials used in this paper are polynomials of degree 
0, 1, and 2. Three main error indexes of each surrogate model can be 
determined through leave-one-out cross validation, namely the Average 
Absolute Error (AAE), Maximum Absolute Error (MAE), and Root Mean 
Square Error (RMSE): 

AAE=
1
N

∑N

i=1
|ŷi − yi| (38)  

MAE= max
1≤i≤N

|ŷi − yi| (39)  

RMSE =
1
N

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1
(ŷi − yi)

2

√
√
√
√ (40)  

where N represents the sample number, ̂yi represents the predicted value 
through leave-one-out surrogate model, and yi represents the real value 
of the leave-one-out sample point. 

Three main error indexes for the six constructed Kriging models are 
listed in Table 6 respectively. All things considered, Gaussian spatial 
correlation function and 2-degree deterministic polynomial are applied 
to construct the Kriging model with 50 high-fidelity data. 

For Co-Kriging surrogate model, in order to facilitate further dis
cussion, the SCF and deterministic regression part (polynomial function) 
in the Co-Kriging model are Gaussian correlation function and zero 
polynomial respectively (i.e., corrgauss-regpoly0). Under the premise of 
determining the sample size of low fidelity 50, the influence of the 
different high-fidelity sample number for constructing the Co-Kriging 

Fig. 13. Comparison of the wave height around hull.  

Fig. 14. Comparison of pressure distribution on hull surface 
(upper: viscous flow; lower: potential flow). 

Fig. 15. Comparisons of drag coefficients at different Fr  

Table 4 
Verification and validation parameters for naoe-FOAM-SJTU calculation.  

Grid 3 2 1 

Background grid dimensions (Nx 

× Ny × Nz) 
70 × 14 ×
42 

100 × 20 ×
60 

140 × 28 ×
84 

Total grid number 510,947 1,974,584 4,664,930 
SG (Ct) 3.76 × 10− 3 4.05 × 10− 3 4.18 × 10− 3 

ԑG21 − 1.30 × 10− 4 

ԑG32 − 2.90 × 10− 4 

RG 0.448 
PG 2.315 
δ*G − 1.06 × 10− 4 

CG 1.231 
UG 1.06 × 10− 4 

D 4.23 × 10− 3 

UG/D 2.50% 
E 5.22 × 10− 5 

E/D 1.23% 
UV/D 3.53%  
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model on the main error indexes are listed in Table 7. When the high- 
fidelity data set is a subset of the low-fidelity data set, the generation 
of some additional prediction errors can be reduced, and the high- 

fidelity sample data can be fully utilized to correct the low-fidelity 
sample data. For instance, Fig. 19 shows the 30 high-fidelity samples 
(red dots) and 50 low-fidelity samples (green squares) distribution in 3- 
dimensional design space for design variables x1, y1, z1. 

According to the error statistics, with the increase of high-fidelity 
sample number, main error indicators generally decrease first and 
then increase. This is mainly because, when high-fidelity sample number 
is small, the correction of high-fidelity samples to the low-fidelity sur
rogate model is insufficient, leading to the dominant position of the low- 
fidelity surrogate model. However, when the high-fidelity sample 
number increases, high- and low-fidelity samples cooperate with each 

Fig. 16. Three grids for convergence study.  

Fig. 17. Convergence histories for total drag of three grid sets.  

Table 5 
Design variables and their ranges.  

Design 
variable 

Lower 
bound 

Upper 
bound 

Note 

x1 − 0.012 0.012 movable amount in x direction 
z1 − 0.006 0.006 movable amount in z direction 
y1 − 0.015 0.015 movable amount in y direction 
α1f − 0.015 0.015 Amplitude of the modification function for 

the fore half body in shifting method 
α1a − 0.015 0.015 Amplitude of the modification function for 

the aft half body in shifting method  
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other, and accuracy of the surrogate model becomes higher. When the 
high-fidelity sample number increases further, high-fidelity surrogate 
model leads the dominant position, making the low-fidelity samples 
difficult to play their role. Therefore, it tends to be the single-fidelity 
Kriging surrogate model constructed by pure high-fidelity samples. In 
other words, when the total amount of low-fidelity samples is deter
mined, the number of high-fidelity samples has a small range that makes 
the multi-fidelity Co-Kriging surrogate model have a relatively high 
accuracy. Seen from this example, when the low-fidelity sample number 
is 50, considering the calculation efficiency of hydrodynamic evaluation 
and the accuracy of the surrogate model constructed, the high-fidelity 
sample number can be chosen as 30. 

4.5. Setting of optimization algorithm 

According to the Kriging model and Co-Kriging model determined 
above, the single-objective Genetic Algorithm (GA) is applied to itera
tively solve the optimal hull with minimum total drag. The main 

optimization parameters are shown in Table 8. Furthermore, the GA 
used in this paper has already been validated for a lot of standard 
optimization problem tests and hull form optimization problems (Wu 
et al., 2017; Liu et al., 2021a; Liu et al., 2021b), showing that the GA can 
capture the global minimum of the mathematical functions well. 

Fig. 18. Bow deformation of DTMB-5415 based on FFD method.  

Table 6 
Error analysis of Kriging surrogate model.   

regpoly0 regpoly1 regpoly2  

corrgauss 0.3381 0.2866 0.2602 AAE 
2.4490 0.9711 1.0823 MAE 
0.5282 0.3608 0.3358 RMSE 

corrspline 0.4021 0.3130 0.2689 AAE 
2.0568 1.1434 1.0896 MAE 
0.5638 0.4173 0.3445 RMSE  

Table 7 
Error analysis of Co-Kriging surrogate model.  

High-fidelity sample number Ne  

20 25 30 35 40 50  

0.6420 0.4299 0.2251 0.2725 0.2628 0.2867 AAE 
1.1991 1.3323 0.6524 1.0578 0.8646 1.9322 MAE 
0.7401 0.5869 0.3023 0.3684 0.3538 0.4544 RMSE  

Fig. 19. High-fidelity samples and low-fidelity samples distribution.  

Table 8 
Single-objective optimization parameters setup of 
DTMB-5415 ship.  

Parameter Value 

Population 50 
maximum iteration 300 
crossover rate 0.8 
mutation rate 0.2  
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4.6. Optimization results and analysis 

Based on Kriging and Co-Kriging surrogate models, the optimal so
lutions of this optimization problem can be finally obtained according to 
GA with the termination criterion that the termination tolerances on 
fitness function value and constraints are both less than 10− 6, respec
tively. Herein, the optimal hull “Opt-K” is obtained based on Kriging 
model, while the optimal hull “Opt-CoK” is obtained based on Co- 
Kriging model. Comparison of transverse hull lines between the two 
optimal and the initial hulls is shown in Fig. 20. 

It can be seen that for “Opt-K′′ hull, the volume of sonar dome de
creases and the sonar dome moves up as a whole. In addition, the cross 
section of the front half of the “Opt-K′′ hull has a large shifting range, and 
the cross section of the front quarter of the ship length has a large for
ward movement, while the rest cross section of 1/4 ship length has a 
small backward movement. Similarly, the cross section of the aft quarter 
of the ship length has a large backward movement, while the rest cross 
section of 1/4 ship length has a small forward movement. 

In comparison, the change of “Opt-CoK” hull is small. Specifically, 
the volume of the sonar dome changes little, but it also moves up as a 
whole. In addition, the cross section of the front half of “Opt-CoK” hull 
has a small shifting range, and the cross section of the front quarter of 
the ship length has a small forward movement, while the rest cross 
section of 1/4 ship length almost has no movement. The aft part of “Opt- 
CoK” hull is almost unchanged from the initial hull. The detailed design 
variables of the two optimal hulls are shown in Table 9. 

To be trust, since the GA is stochastic, 100 repetitions of the opti
mization by GA have been done under the construction of Kriging or Co- 
Kriging surrogate model, and the minimum of the 100 optimal hulls is 
chosen as the final optimal hull called “Opt-K′′ or “Opt-CoK”. The 
convergence of GA using Kriging model is shown in Fig. 21, indicating 
that the GA can give steady optimal solution by iterations (generations) 
less than 300, and the trend is consistent for Co-Kriging model. For the 
objective function, the expected value of the “Opt-K′′ and “Opt-CoK” are 
39.500 and 41.020 respectively, and standard deviation of the “Opt-K′′

and “Opt-CoK” are 2.595 × 10− 6 and 7.430 × 10− 8 respectively. It can 
be seen that the obtained optimal solutions are steady. 

For each optimal hull, in order to ensure the optimization effect and 
further analyze the optimization results, the naoe-FOAM-SJTU solver is 
used to carry out the viscous flow calculation verification, and the 
calculation mesh and related configuration parameters are almost 
consistent with those of the initial hull. 

Although Table 9 shows that the single-fidelity Kriging provides a 
better optimal hull with a drag of 39.500 N than the multi-fidelity Co- 
Kriging optimal hull with a drag of 41.020 N, after further validation 
through CFD, the real drags of the two are 42.011 N and 41.001 N 
respectively, which indicates that the surrogate models have some 

prediction error. Particularly, at the point (0.015,0.015,0.012,0.006,- 
0.015), the relatively error of Kriging model is (39.500–42.011)/ 
42.011≈− 5.98%, while at the point (0.008,0.001,0.005,0.006,0.004), 
the relatively error of Co-Kriging model is (41.020–41.001)/41.001 ≈
0.05%. Therefore, we can say that the Co-Kriging model has relatively 
high fidelity and can obtain a really better optimum than Kriging model, 
and the optimization effect for “Opt-CoK” is better, reaching 5%. On the 
contrary, the Kriging surrogate model prediction for “Opt-K′′ hull is not 
so accurate compared with the CFD result, and the optimization effect is 
poorer, not reaching 3%. 

Fig. 22 and Fig. 23 show the comparison of the free surface wave 
elevations of the two optimal hulls and the initial hull at the design 
speed respectively. On the whole, the wave amplitudes of the two 
optimal hulls are both reduced at the design speed, but there are some 
differences. 

For the “Opt-K′′ hull shown in Fig. 22, due to the change of sonar 
dome’s location and size, along with the change of SAC, the phases of the 
wave systems are changed, that is, the whole bow wave system moves 
backward, and the amplitudes of the peak and trough near midship is 
reduced (region 1). In addition, the peak range of stern wave is also 
reduced (region 2). 

For the “Opt-CoK” hull shown in Fig. 23, because of the limited in
fluence of the shifting method, namely the hull form has nearly no 
change by the shifting method, the bow wave system hardly has any 
phase shift, but the diverging wave amplitudes of peaks and troughs are 
significantly lower (region 3). Predictably, the wave-making drag will 
have a larger decline, so the total drag optimization effect is more 
obvious. 

Fig. 24 shows the comparison of dynamic pressure distribution on 
the hull surface of two optimal and initial hulls. On the whole, the dy
namic pressure distribution on the hull surface of the two optimal hulls 
are both improved at the design speed, but the effect is also different. 

Shown in Fig. 24, for “Opt-K′′ hull, the volume of sonar dome de
creases, so that the high- and low-pressure regions at the bow part of 
ship are obviously smaller (region 4). However, due to the effect of the 
shifting method, the shoulder wave of the ship comes into being, and a 
low-pressure region of certain amplitude is formed near the midship 
(region 6). In addition, higher- and lower-pressure regions appear at the 
ship stern respectively, so that the longitudinal pressure gradient is 
raised. 

For “Opt-CoK” hull, although the high- and low-pressure area at the 
bow part of the ship do not significantly decrease (region 4), the high- 
pressure area near the free surface decreases to some extent (region 
5), compared with “Opt-K′′ hull. Furthermore, the longitudinal pressure 
gradient around the midship is small enough (region 6) which can be 
seen form the contour line, and there is no such obvious high- and low- 
pressure region of the certain amplitude at ship stern like “Opt-K′′ hull. 

Fig. 20. Comparison of the transverse hull lines of initial and the optimal hulls.  
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To sum up, the multi-fidelity Co-Kriging surrogate model can be 
established through evaluation methods based on the viscous flow and 
potential flow theory respectively, which is superior to the single- 
fidelity Kriging surrogate model in accuracy, and the optimal hull ob
tained by Co-Kriging surrogate model has a better resistance optimiza
tion effect. 

Last but not least, it should be noted that the Kriging model adopts 50 
high-fidelity samples, while the Co-Kriging model adopts 50 low-fidelity 
samples and 30 high-fidelity samples in this optimization design. In 
terms of surrogate model accuracy, it is suggested that the number of 
low-fidelity samples adopted by the multi-fidelity Co-Kriging model 

should not be less than 10 times the number of design variables, and the 
number of high-fidelity samples should not be less than 5 times the 
number of design variables. In addition, within the range of 5–7 times 
the number of design variables, higher accuracy of the multi-fidelity Co- 
Kriging model can be achieved, the calculation cost is relatively small at 
the same time. 

In terms of computational efficiency, in the hull form optimization 
design given above, it is vital to discuss the CPU times needed to obtain 
the wave-making drag coefficient by NMShip-SJTU solver and total drag 
coefficient by naoe-FOAM-SJTU. 

The NMShip-SJTU solver is run on PC, and the calculation infor
mation for a single hull is listed:  

(i) CPU information: Intel(R) i7-4790 K @ 2.00 GHz;  
(ii) grid number: hull panel about 9700; free-surface panel 296,400;  

(iii) iteration: approximately 50 CPU seconds by 1 processor per hull 
panel velocity potential iteration;  

(iv) free-surface calculation: approximately 400 CPU seconds;  
(v) total CPU time: approximately 900 CPU seconds; 

The naoe-FOAM-SJTU solver is implemented on High Performance 
Computing (HPC) cluster. For the calm-water total drag calculation of a 
single hull, the calculation information is listed:  

(i) CPU information: Intel(R) Xeon Gold 5120 @ 2.20 GHz;  
(ii) grid number: about 1,975,000;  

(iii) iteration: approximately 6 CPU seconds by 40 processors per time 
step △t = 0.001 s;  

(iv) total CPU time: approximately 195,000 CPU seconds. 

For the calm-water drag evaluation of one ship hull, according to the 
grid quantity and calculation time given above, it is not difficult to see 
that the time needed to solve the wave drag coefficient by using NM 
theory (900 s) is only 1/216 of that needed to solve the total drag 

Table 9 
Summary of the optimal results, including design variables and objective functions.  

/ Design variable value Rt 

α1f α1a x1 z1 y1 Model prediction (N) CFD calculation (N) Reduction ratio 

Initial 0 0 0 0 0 / 43.220 / 
Opt-K 0.015 0.015 0.012 0.006 − 0.015 39.500 42.011 2.80% 
Opt-CoK 0.008 0.001 0.005 0.006 0.004 41.020 41.001 5.13%  

Fig. 21. Convergence of GA using Kriging model.  

Fig. 22. The wave elevation comparison of the Opt-K and Initial hulls.  
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coefficient by using the viscous flow solver (195,000 s). It is enough to 
prove that the use of multi-fidelity Co-Kriging model has superiority for 
the resistance performance optimization of hull form. 

5. Conclusions and future work 

For the hull form optimization design based on numerical 

simulation, the hydrodynamic performance evaluation results of 
different fidelity can be used to construct surrogate models. For 
example, the result obtained by potential flow theory can be regarded as 
a low-fidelity solution, while the result obtained by viscous flow theory 
can be regarded as a high-fidelity solution. Traditionally, based on the 
single-fidelity Kriging surrogate model, in order to ensure its high ac
curacy, a large number of sample points are needed to evaluate, that is, 

Fig. 23. The wave elevation comparison of the Opt-CoK and Initial hulls.  

Fig. 24. The hull pressure distribution comparison of the Opt-K, Opt-CoK, and Initial hulls.  
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to do the numerical simulations of a series of new hull forms. Multi- 
fidelity Co-Kriging surrogate model, on the contrary, can give atten
tion to both high efficiency and high fidelity. To be specific, fewer 
samples of high fidelity, together with more samples of low fidelity are 
used to construct the surrogate model, making the total computational 
cost less or even far less than that of more samples of high fidelity only, 
and the constructed model can have higher fidelity, which can be used 
for optimization solution, and the final optimization results can be 
guaranteed. 

In this paper, the basic principle of the multi-fidelity Co-Kriging 
surrogate model is first introduced, and then a series of numerical ex
amples are given to illustrate the advantages of the multi-fidelity Co- 
Kriging surrogate model compared with the single-fidelity Kriging sur
rogate model in terms of efficiency and accuracy. Furthermore, an 
example of total drag single-objective optimization design of DTMB- 
5415 hull under the design speed Fr = 0.28 is given, in which the 
low-fidelity total drag results are obtained by using NMShip-SJTU solver 
based on the NM potential flow theory, and the high-fidelity total drag 
results are obtained by using naoe-FOAM-SJTU solver based on the 
RANS equations. The optimal hull obtained by Co-Kriging surrogate 
model has a better resistance optimization effect than that of the optimal 
one by Kriging surrogate model, indicating the superiority of Co-Kriging 
surrogate model in terms of computational efficiency and fidelity 
compared with the Kriging surrogate model in the hull form optimiza
tion field. 

In terms of accuracy, it is recommended that the Co-Kriging surro
gate model uses the low fidelity sample with the size of not less than 10 
times the number of design variables, and high fidelity sample size with 
the size of not less than 5–7 times the number of design variables. If the 
relationship between the objective function and the design variables are 
more complex, the sample sizes can be increased according to actual 
demand. It should be noted that Fernández-Godino et al. (2019) 
reviewed the papers that used multi-fidelity surrogates in the fields of 
fluid and solid mechanics. As a matter of fact, the authors came to the 
conclusion that it is hard to get an idea, in terms of cost savings, of when 
it is useful to invest the additional effort of creating and using 
multi-fidelity surrogate models, which should be considered in the 
future work. In addition, due to the limited computational resources, the 
selection of the numbers of the low- and high-fidelity sample points is 
not deep discussed in this paper. A parallel research is conducted to 
study the influence of sample numbers of different levels of fidelity on 
the accuracy of the Co-Kriging surrogate model constructed by changing 
the numbers of both the low- and high-fidelity sample points based on 
numerical cases and actual comprehensive performance optimization 
designs for the hull form. 

Although this paper presents the application of multi-fidelity Co- 
Kriging surrogate model in hull form optimization, in order to further 
utilize the high efficiency obtained from lower-fidelity data, multi- 
fidelity Co-Kriging surrogate model construction technique under 
more than two accuracy levels of sample data in the field of hull form 
optimization can be included in the future work. In this paper, since the 
high-fidelity and low-fidelity data is from viscous and potential flow 
solver, the intermediate fidelity level is hard to determine. In contrast, 
three viscous flow solution sets with different grid sizes or time steps can 
be used as data with three fidelity levels. 

Furthermore, the numerical (calculation) noise is not considered as 
an external influence or even new “design variable”, that is, regarded the 
low-fidelity and high-fidelity data as a steady result without noise in this 
paper. In the future, the noise can be considered as an external influence 
or even new “design variable” to analyze the stability and robustness of 
the multi-fidelity Co-Kriging surrogate model. Furthermore, the 
regressive formulation, instead an interpolating one, will be constructed 
and compared with the interpolating formulations, such as the Co- 
Kriging model. 
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Forrester, A.I.J., Sóbester, A., Keane, A.J., 2007. Multi-fidelity optimization via surrogate 
modeling. Proceedings of the royal society A: mathematical. Phy. Eng. Sci. 463, 
3251–3269. 

Forrester, A.I.J., Keane, A.J., 2009. Recent advances in surrogate-based optimization. 
Prog. Aero. Sci. 45 (1), 50–79. 

Ghoreyshi, M., Badcock, K., Woodgate, M., 2008. Integration of multi-fidelity methods 
for generating an aerodynamic model for flight simulation. In: Proceedings of 46th 
AIAA Aerospace Sciences Meeting and Exhibit, 197. 

Gratiet, L.L., Garnier, J., 2014. Recursive co-kriging model for design of computer 
experiments with multiple levels of fidelity. Int. J. Uncertain. Quantification 4 (5), 
365–386. 

Han, Z.H., Goertz, S., Zimmermann, R., 2013. Improving variable-fidelity surrogate 
modeling via gradient-enhanced kriging and a generalized hybrid bridge function. 
Aero. Sci. Technol. 25 (1), 177–189. 

Hou, Y.H., 2017. Hull form uncertainty optimization design for minimum EEOI with 
influence of different speed perturbation types. Ocean Eng. 140 (1), 66–72. 

Huang, F.X., Wang, L.J., Yang, C., 2015. Hull form optimization for reduced drag and 
improved seakeeping using a surrogate-based method. Proc. 25th Int. Ocean Polar 
Eng. 

Jones, D.R., Schonlau, M., Welch, W.J., 1998. Efficient global optimization of expensive 
black-box functions. J. Global Optim. 13 (4), 455–492. 

Kennedy, M.C., O’Hagan, A., 2001. Bayesian calibration of computer models. J. Roy. 
Stat. Soc. B 63 (3), 425–464. 

Kim, H., Yang, C., Jeong, S., Noblesse, F., 2011. Hull form design exploration based on 
response surface method. Proc. 21st Int. Ocean Polar Eng. 816–827. 

X. Liu et al.                                                                                                                                                                                                                                      

http://refhub.elsevier.com/S0029-8018(21)01552-3/sref1
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref1
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref2
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref2
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref2
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref3
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref3
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref3
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref4
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref4
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref4
http://refhub.elsevier.com/S0029-8018(21)01552-3/optT7qyFRpFyk
http://refhub.elsevier.com/S0029-8018(21)01552-3/optT7qyFRpFyk
http://refhub.elsevier.com/S0029-8018(21)01552-3/optT7qyFRpFyk
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref5
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref5
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref6
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref6
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref7
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref7
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref7
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref8
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref8
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref8
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref8
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref8
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref9
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref9
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref10
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref10
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref10
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref11
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref11
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref11
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref12
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref12
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref13
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref13
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref13
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref14
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref14
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref14
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref15
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref15
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref15
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref16
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref16
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref17
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref17
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref17
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref18
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref18
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref19
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref19
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref20
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref20


Ocean Engineering 243 (2022) 110239

20

Kim, H.S., Koc, M., Ni, J., 2007. A hybrid multi-fidelity approach to the optimal design of 
warm forming processes using a knowledge-based artificial neural network. Int. J. 
Mach. Tool Manufact. 47 (2), 211–222. 

Krige, D.G., 1951. A statistical approach to some basic mine valuation problems on the 
Witwatersrand. Journal of the Chemical,. Metall. Min. Eng. Soc. South Africa 52 (6), 
119–139. 

Kuya, Y., Takeda, K., Zhang, X., Forrester, A.I.J., 2011. Multifidelity surrogate modeling 
of experimental and computational aerodynamic data sets. AIAA J. 49 (2), 289–298. 

Laurenceau, J., Sagaut, P., 2008. Building efficient response surfaces of aerodynamic 
functions with Kriging and Co-kriging. AIAA J. 46 (2), 498–507. 

Li, S.Z., Zhao, F., Ni, Q.J., 2014. Bow and stern shape integrated optimization for a full 
ship by a simulation-based design technique. J. Ship Res. 58 (2), 83–96. 

Liu, X.W., Wan, D.C., 2020. Hull form optimization of wave-making resistance in 
different speeds for a luxury cruise ship. Chin. J. Ship Res. 15 (5), 1–10, 40.  

Liu, X.W., Wan, D.C., Chen, G., Hu, C.H., 2019. Wigley hull form optimization with or 
without bulbous bow. In: Proceedings of the 29th International Ocean and Polar 
Engineering Conference, pp. 4486–4493. 

Liu, X.W., Zhao, W.W., Wan, D.C., 2021a. Linear reduced order method for design-space 
dimensionality reduction and flow-field leraning in hull form optimization. Ocean 
Eng. 237, 109680. 

Liu, X.W., Zhao, W.W., Wan, D.C., 2021b. Hull form optimization based on calm-water 
wave drag with or without generating bulbous bow. Appl. Ocean Res. 116, 102861. 

Miao, A.Q., Zhao, M., Wan, D.C., 2020. CFD-based multi-objective optimisation of S60 
catamaran considering demihull shape and separation. Appl. Ocean Res. 97, 102071. 

Noblesse, F., Huang, F.X., Yang, C., 2013. The Neumann-Michell theory of ship waves. 
J. Eng. Math. 79 (1), 51–71. 

Olivieri, A., Pistani, F., Avanzini, A., Stern, F., Penna, R., 2001. Towing Tank 
Experiments of Resistance, Sinkage and Trim, Boundary Layer, Wake, and Free 
Surface Flow Around a Naval Combatant INSEAN 2340 Model. The University of 
Iowa, College of Engineering. Report No. IIHR-TR-421.  

Orr, M., 1995. Regularisation in the selection of RBF centers. Neural Comput. 7 (3), 
606–623. 

Peri, D., Rossetti, M., Campana, E.F., 2001. Design optimization of ship hulls via CFD 
techniques. J. Ship Res. 45 (2), 140–149. 

Qian, P., Wu, C., 2008. Bayesian hierarchical modeling for integrating low-accuracy and 
high-accuracy experiments. Technometrics 50 (2), 192–204. 

Roderick, O., Anitescu, M., Peet, Y., 2014. Proper orthogonal decompositions in 
multifidelity uncertainty quantification of complex simulation models. Int. J. 
Comput. Math. 91 (4), 748–769. 

Rumpfkeil, M.P., Beran, P., 2017. Construction of dynamic multifidelity locally 
optimized surrogate models. AIAA J. 55 (6), 1–11. 

Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P., 1989. Design and analysis of computer 
experiments. Stat. Sci. 4 (4), 409–423. 

Sasena, M.J., Papalambros, P., Goovaerts, P., 2002. Exploration of metamodeling 
sampling criteria for constrained global optimization. Eng. Optim. 34 (3), 263–278. 

Sederberg, T.W., Parry, S.R., 1986. Free-form deformation of solid geometric primitives. 
Comput. Graph. 20 (4), 151–160. 

Serani, A., Pellegrini, R., Broglia, R., Wackers, J., Visonneau, M., Diez, M., 2019a. An 
adaptive N-fidelity metamodel for design and operational-uncertainty space 
exploration of complex industrial problems. In: Proceedings of VIII International 
Conference on Computational Methods in Marine Engineering MARINE. 

Serani, A., Pellegrini, R., Wackers, J., Jeanson, C.E., Queutey, P., Visonneau, M., 
Diez, M., 2019b. Adaptive multi-fidelity sampling for CFD based optimisation via 
radial basis function metamodels. Int. J. Comput. Fluid Dynam. 33 (6–7), 237–255. 

Serani, A., Stern, F., Campana, E.F., Diez, M., 2021. Hull-form stochastic optimization via 
computational-cost reduction methods. Eng. Comput. 2, 1–25. 

Shen, Z.R., Wan, D.C., Carrica, P.M., 2015. Dynamic overset grids in OpenFOAM with 
application to KCS self-propulsion and maneuvering. Ocean Eng. 108, 287–306. 

Smith, M., 1993. Neural Networks for Statistical Modeling. Von Nostrand Reinhold, New 
York.  

Smola, A.J., Schölkopf, B., 2004. A tutorial on support vector regression. Stat. Comput. 
14, 199–222. 

Sobol, I., 1979. On the systematic search in a hypercube. SIAM J. Numer. Anal. 16 (5), 
790–793. 

Tahara, Y., Campana, E.F., Peri, D., Stern, F., 2011. Single and multiobjective design 
optimization of a fast multihull ship: numerical and experimental results. J. Mar. Sci. 
Technol. 16 (4), 412–433. 

Tezdogan, T., Zhang, S.L., Demirel, Y.K., Liu, W.D., Xu, L.P., Lai, Y.Y., Rafet, E.K., Eko, B. 
D., Incecik, A., 2018. An investigation into fishing boat optimisation using a hybrid 
algorithm. Ocean Eng. 167, 204–220. 

Wackers, J., Visonneau, M., Ficini, S., Pellegrini, R., Serani, A., Diez, M., 2020. Adaptive 
n-fidelity metamodels for noisy cfd data. Proceedings of AIAA AVIATION Forum. 

Wilson, R.V., Stern, F., Coleman, H.W., Paterson, E.G., 2001. Comprehensive approach to 
verification and validation of CFD Simulations-Part 2: application for rans simulation 
of a cargo/container ship. J. Fluid Eng. 123 (4), 803–810. 

Wu, J.W., Liu, X.Y., Zhao, M., Wan, D.C., 2017. Neumann-Michell theory-based multi- 
objective optimization of hull form for a naval surface combatant. Appl. Ocean Res. 
63, 129–141. 

Yamazaki, W., Mavriplis, D.J., 2013. Derivative-enhanced variable fidelity surrogate 
modeling for aerodynamic functions. AIAA J. 51 (1), 126–137. 

Yamazaki, W., Rumpfkeil, M.P., Mavriplis, D.J., 2010. Design optimization utilizing 
Gradient/Hessian enhanced surrogate model. In: Proceedings of 28th AIAA Applied 
Aerodynamics Conference, pp. 2010–4363. No.  

Yang, C., Huang, F.X., 2016. An overview of simulation-based hydrodynamic design of 
ship hull forms. J. Hydrodyn. 28 (6), 947–960. 

Zhang, S., Zhang, B.J., Tezdogan, T., Xu, L.P., Lai, Y.Y., 2018. Computational fluid 
dynamics-based hull form optimization using approximation method. Eng Appl 
Comput Fluid Mech 12 (1), 74–88. 

Zong, Z., Hong, Z., Wang, Y., Hefazi, H., 2018. Hull form optimization of trimaran using 
self-blending method. Appl. Ocean Res. 80, 240–247. 

Zuhal, L.R., Zakaria, K., Palar, P.S., Shimoyama, K., Liem, R.P., 2021. Polynomial- 
chaos–kriging with gradient information for surrogate modeling in aerodynamic 
design. AIAA J. 59 (8), 2950–2967. 

X. Liu et al.                                                                                                                                                                                                                                      

http://refhub.elsevier.com/S0029-8018(21)01552-3/sref21
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref21
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref21
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref22
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref22
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref22
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref23
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref23
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref24
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref24
http://refhub.elsevier.com/S0029-8018(21)01552-3/optiHwLedSFDN
http://refhub.elsevier.com/S0029-8018(21)01552-3/optiHwLedSFDN
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref25
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref25
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref26
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref26
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref26
http://refhub.elsevier.com/S0029-8018(21)01552-3/optTlb1ZHvkVB
http://refhub.elsevier.com/S0029-8018(21)01552-3/optTlb1ZHvkVB
http://refhub.elsevier.com/S0029-8018(21)01552-3/optTlb1ZHvkVB
http://refhub.elsevier.com/S0029-8018(21)01552-3/optHUd80F2Qt7
http://refhub.elsevier.com/S0029-8018(21)01552-3/optHUd80F2Qt7
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref27
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref27
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref28
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref28
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref29
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref29
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref29
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref29
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref30
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref30
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref31
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref31
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref32
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref32
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref33
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref33
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref33
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref34
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref34
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref35
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref35
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref36
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref36
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref37
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref37
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref38
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref38
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref38
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref38
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref39
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref39
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref39
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref40
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref40
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref41
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref41
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref42
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref42
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref43
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref43
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref44
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref44
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref45
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref45
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref45
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref46
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref46
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref46
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref47
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref47
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref48
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref48
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref48
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref49
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref49
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref49
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref50
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref50
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref51
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref51
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref51
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref52
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref52
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref53
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref53
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref53
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref54
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref54
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref55
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref55
http://refhub.elsevier.com/S0029-8018(21)01552-3/sref55

	Multi-fidelity Co-Kriging surrogate model for ship hull form optimization
	1 Introduction
	2 Basic principles of Co-Kriging surrogate model construction method
	3 Numerical validations of multi-fidelity Co-Kriging surrogate model
	4 Total drag optimization case of DTMB-5415 hull
	4.1 Basic information of the mother ship
	4.2 Definition of optimization problem and hydrodynamic evaluation methods
	4.3 Definition of the design variables
	4.4 Construction of the surrogate models
	4.5 Setting of optimization algorithm
	4.6 Optimization results and analysis

	5 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


