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A B S T R A C T   

The bubbly flows have always been a key research object in the field of multiphase simulations. However, when 
the bubbly flows become violent to cause the large deformations of bubbles, complex interfaces may be 
generated and bring great challenges to the traditional mesh-based methods. To overcome this challenge, one of 
the most commonly used mesh-free particle methods - moving particles semi-implicit (MPS) method, is adopted 
in this paper for the numerical simulations of bubbly flows with complex interfaces. Firstly, a multiphase MPS 
method is developed by combining the single-phase improved MPS (IMPS) method proposed in our previous 
study with different multiphase models, including the improved density smoothing scheme, interparticle vis
cosity model, continuous acceleration model, surface tension model, incompressible-compressible model and 
multiphase collision model. Then, the deformations of 2D/3D square droplets are simulated to validate the 
surface tension model, and the multiphase MPS method is verified through the benchmark cases of 2D/3D single 
bubble rising with large density and viscosity ratios (up to 1000 and 100, respectively). Finally, a series of bubbly 
flows with increasing complexity are performed, including the bubble rising and breaking at a high Reynolds 
number, the co-axial coalescence of two bubbles with different radiuses, and the violent interactions between a 
set of bubbles. The MPS results keep fair agreements with other numerical and experimental results, through 
which the advantages of the present multiphase MPS method in bubbly flows with complex interfaces can be well 
demonstrated.   

1. Introduction 

The bubbly flows are not only a kind of complex flow phenomenon 
commonly found in nature, but also play important roles in various in
dustrial processes such as the oil production (Massoud et al., 2020; Chen 
et al., 2020), underwater explosion (Klaseboer et al., 2005; Yu et al., 
2021), ship wake (Zhang and Liu, 2020; Murai et al., 2020; Zhang et al., 
2021), etc. A better understanding of the dynamic characteristics of 
bubbly flows would be great help to the optimization of industrial 
processes and design of more efficient and economical equipment. 
During the past decades, bubbly flows have been widely investigated 
using advanced experimental facilities and measuring techniques. For 
example, Trevorrow et al. (1994) employed the acoustic experimental 
techniques for the bubble wake measurements behind three surface 
ships, and it is found that the wake bubbles last as strong acoustic 
scatterers for approximately 7.5 min with a maximum width of 60 m. 
The bubbles in a CBM wellbore annulus are detected by Wu et al. (2018) 
using a bubble probe designed based on the apparent difference in 

conductivity between two media. According to the results of bubble 
detection, the two-phase flow patterns can be well monitored and the 
mean density of the two-phase flow is obtained. Abbaszadeh et al. 
(2021) proposed a new bubbly flow measurement procedure based on 
the optical scattering behavior of a laser-beam passing through a bubbly 
flow, which can be successfully applied to capture the bubbly wake of 
ship models in the towing tank tests (Abbaszadeh et al., 2020). 

Given the complexity and high cost of experimental research, a va
riety of Computational Fluid Dynamics (CFD) methods, such as the 
Volume Of Fluid (VOF), Level Set (LS) and Front Tracking (FT), are 
introduced into the numerical simulations of bubbly flows and proven 
capable to obtain additional information and insight (Annaland et al., 
2005; Croce et al., 2010; Pan and Chen., 2014; Ma et al., 2020; Tian 
et al., 2021). However, an important common feature of the above CFD 
methods is that they all belong to mesh-based methods, in which the 
discretization of fluid domain is implemented in a Eulerian mesh system. 
To trace the phase interfaces in the mesh system, complex 
interface-capturing or front-tracking algorithms need to be executed at 
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each time step, which brings two main deficiencies. Firstly, the imple
mentation of these algorithms is in fact to reconstruct the interfaces, 
thus additional computational errors are inevitably produced during this 
process. Secondly, when the bubbly flows are violent to cause the large 
deformations of bubbles, complex interfaces may be generated and bring 
great challenges to the accuracy of these algorithms. 

In recent decades, the mesh-free methods, such as smoothed particle 
hydrodynamics (SPH) method (Gingold and Monaghan, 1977; Lucy, 

1977) and moving particle semi-implicit (MPS) method (Koshizuka and 
Oka, 1996; Koshizuka et al., 1998), have been proposed as the next 
generation of CFD methods. Different from the mesh-based methods, the 
discretization of fluid domain in mesh-free methods is carried out by the 
use of a set of interacting particles. The motions of particles follow the 
governing equations in Lagrangian description and there is no constant 
topology relationship existing between particles. From the distribution 
of particles, the interfaces can be directly obtained without special al
gorithms. Therefore, the mesh-free methods are particularly feasible in 
dealing with multiphase problems with complex interfaces. In the field 
of bubbly flows, an early research is conducted by Colagrossi and 
Landrini (2003), in which the rising and breaking of a single bubble are 
simulated by SPH method and the captured interface shows a good 
agreement with the results of Level Set. With an improved multi-fluid 
SPH formulation, Grenier et al. (2013) performed the simulations of 
various bubbly flows, including the evolution of an isolated bubble, the 
merging of two bubbles, and the oil/water separation process. In all 
cases, good agreements are achieved between SPH results and reference 
solutions. Moreover, the influence of Bond number on the evolutions of 
bubbly flows is well analyzed. Considering that most of existing re
searches focused on 2D simulations, Zhang et al. (2015) and Duan et al. 
(2017) investigated the dynamic behaviors of 3D bubbly flows with the 
multiphase SPH and MPS methods, respectively. 

In MPS method, a semi-implicit algorithm is adopted and the pres
sure field is calculated by solving the Poisson Pressure Equation (PPE), 
thus the incompressibility of fluids can be guaranteed and the simulation 
is more stable than SPH method, which adopts an explicit algorithm 
based on the Equation of State (EoS). Since it was originally proposed by 
Koshizuka and Oka (1996), the MPS method has been widely used in 
violent free surface flows (Khayyer and Gotoh, 2008; Zhang et al., 2014; 
Tang et al., 2016; Zhang and Wan, 2018). However, due to its short 

Fig. 1. Schematic sketch of the density smoothing scheme.  

Fig. 2. Schematic sketch illustrating the effect of continuous acceleration model.  

Fig. 3. Implementation of surface tension force in continuum surface force 
(CSF) method. 
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Fig. 4. Description of procedures to calculate interface curvature in CCFS model.  

Fig. 5. Flowchart of multiphase MPS method with GPU acceleration technique.  
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history, the development of multiphase methods in MPS is immature and 
the applications of MPS method in bubbly flows are far less extensive 
than that of the mesh-based method or SPH method. Moreover, the 
calculation efficiency of MPS method is greatly limited by the huge 
computational cost on neighbor particle searching and PPE solving, thus 
it is difficult to deal with the more complicated calculation process and 
the sharp increase of particle number when extended to multiphase 
flows. 

In this paper, a multiphase MPS method would be firstly developed 

by introducing a set of multiphase models into the single-phase 
improved MPS (IMPS) method proposed in our previous studies 
(Zhang and Wan, 2012, 2017). Specially, the improved density 
smoothing scheme and interparticle viscosity model (Shakibaeinia and 
Jin, 2012) are adopted to solve the instability and inaccuracy caused by 
abrupt drop of density and viscosity across the phase interface. Then, the 
continuous acceleration model (Duan et al., 2017) is applied to keep the 
continuity of acceleration field, which is important for multiphase 
problems with high density ratios. In order to reproduce the bubble 

Fig. 6. Schematic diagrams of computational domain for 2D/3D square droplet’s deformations.  

Fig. 7. The deformations of the 2D square droplet at different time.  

Fig. 8. The calculated pressure drop across the phase interface.  
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Fig. 9. Simulation results of 3D square droplet’s deformation.  

Fig. 10. Schematic diagram of 2D/3D single bubble rising.  
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deformation, surface tension effects are considered by the use of con
tinuum surface force (CSF) model (Brackbill et al., 1992). Moreover, an 
incompressible-compressible model (Khayyer and Gotoh, 2016) is 
employed to solve the liquid and bubble phases as incompressible and 
compressible, respectively. The multiphase collision model (Shakibaei
nia and Jin, 2012) is adopted to deal with possible particle collisions and 
keep the uniform particle distribution. Finally, the GPU (Graphics Pro
cessing Unit) acceleration technique (Chen and Wan, 2019) developed 
in our previous study for single-phase simulations is extended and 
applied, thus the present multiphase MPS method is capable to simulate 
large-scale 3D bubbly flows with more than two million particles. 

With the proposed multiphase MPS method, a series of bubbly flows 
with increasing complexity are simulated, with a wide range from 2D to 
3D, and from single bubble to multiple bubbles. Firstly, in consideration 
of its importance in bubbly flows, the surface tension model is validated 
through the simulations of deformations of 2D/3D square droplets. 
Then, the multiphase MPS method is applied to sumulate 2D/3D single 
bubble rising with large density and viscosity ratios (up to 1000 and 100, 
respectively), and the numerical results are compared with the 

benchmark results (Hysing et al., 2008; Alexander et al., 2014). Given 
that the Reynolds number in the benchmark study is relatively low (Re 
= 35), the bubble rising and breaking at a high Reynolds number (Re =
35843) is further studied. Afterwards, the bubbly flows with two or 
multiple bubbles are respectively simulated, in which the interfaces 
become more complex due to the violent interactions between bubbles. 
The expected advantage of multiphase MPS method in capturing com
plex interfaces is demonstrated by comparison with other numerical and 
experimental results. Moreover, the relationship between the interface 
evolution and the Bond number is investigated and the mechanism of 
dynamic behaviors of bubbly flows is analyzed in detail. 

2. Multiphase MPS method 

2.1. Governing equations 

In MPS method, the motion of particles is governed by the continuity 
and momentum equations in Lagrangian form (Koshizuka and Oka, 
1996), written as 

Fig. 11. Time evolution of bubble shape in 2D rising problem and comparisons between multiphase MPS results and benchmark results (Hysing et al., 2008).  
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Dρ
Dt

= − ρ(∇ ⋅ u) (1)  

ρ Du
Dt

= − ∇P ​ + ​ FV + FB + FS (2)  

where ρ, u, and P are the density, velocity and pressure, respectively. 
∇P, FV, FB and FS denote the pressure gradient, viscous force, body force, 
and surface tension force, which are the four main forces in the bubbly 
flows studied in this paper. In the present multiphase MPS method, the 
multiphase system is considered as a single-fluid system, thus the gov
erning equations for different phases are uniform and can be solved 
simultaneously. To deal with the abrupt drop of density and viscosity 
across the phase interface, the multi-density and multi-viscosity models 
are employed. 

In the multi-density model, an improved density smoothing scheme 
is proposed on the basis of the scheme of Shakibaeinia and Jin (2012), 
which realizes the smooth transition of density field by performing the 
spatial weighted averaging of density for particles near the phase 
interface, as shown in Fig. 1. With the improved scheme, the smoothed 
density field can be obtained by 

< ρ>i =

ρiWself +
∑

j∈I
ρjW

(
rij, re

)

Wself +
∑

j∈I
W
(
rij, re

) (3)  

where I includes the target particle i and all its neighboring particles. 
Wself is a weight function to amplify the effect of the target particle itself 
on the smoothed density, through which the sharpness of density 

variation across the phase interface can be better preserved. 
In the multi-viscosity model, the interparticle viscosity with a har

monic mean form (Shakibaeinia and Jin, 2012) is employed to substitute 
the real particle viscosity, so that the viscous force between particles of 
different phases can be accurately calculated. With the interparticle 
viscosity, the viscous force term in Eq. (2) can be calculated according to 
the following formation: 

FV = μ∇2u = ​
2D
n0λ
∑

j∕=i

2μiμj

μi + μj

(
uj − ui

)
⋅W
(
rij, re

)
(4)  

2.2. Particle interaction models 

Particle interaction models in MPS method are utilized to discretize 
the differential operators in governing equations, consisted of gradient 
model, divergence model and Laplacian models (Koshizuka and Oka, 
1996), which are respectively defined as 

<∇φ>i =
D
n0

∑

j∕=i

φj − φi
⃒
⃒rj − ri|

2

(

rj − ri

)

⋅ W

(

rij, re

)

(5)  

<∇ ⋅ Φ>i =
D
n0

∑

j∕=i

(
Φj − Φi

)

⃒
⃒rj − ri|

2

(
rj − ri

)
⋅ W

(

rij, re

)

(6)  

<∇2φ>i =
2D
n0λ

∑

j∕=i

(
φj − φi

)

⋅ W

(

rij, re

)

(7)  

where φ is an arbitrary scalar function, Ф is an arbitrary vector, D is the 
number of space dimensions, n0 is the particle number density at initial 
arrangement, λ is a parameter defined as 

λ=

∑

j∕=i
W
(

rij, re

)
⋅
⃒
⃒
⃒rj − ri|

2

∑

j∕=i
W
(
rij, re

) (8)  

which is applied to keep the variance increase equal to that of the 
analytical solution. The kernel function W(rij, re) used here is the non
singular one suggested by Zhang and Wan (2012): 

W
(
rij, re

)
=

⎧
⎨

⎩

re

0.85rij + 0.15re
​ − ​ 1 ​ ​ ​ ​ ​ ​ ​ ​ (0 ≤ r < re)

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 0 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​(re ≤ r)
(9)  

where r and re represent the particle distance and the largest radius of 
the particle interaction, respectively. When the particle distance is larger 
than a certain threshold, the kernel function becomes zero value and no 
interaction exists. The improved kernel function obtains a finite value 
when the particle distance is equal to zero, thus the singularity problem 
of the original kernel function (Koshizuka and Oka, 1996) can be 
avoided. 

2.3. Semi-implicit algorithm 

In MPS method, a semi-implicit algorithm is utilized to keep the 
incompressibility of fluid, in which each time step is subdivided into two 
separate steps. In the first step (also called prediction step), the temporal 
velocity field is explicitly calculated according to viscosity, gravity, and 
surface tension forces. In the second step (also called correction step), 
the Poisson Pressure Equation (PPE) is solved to obtain the pressure 
field, with which the velocity and location of particles are finally 
updated to the next time step. In this paper, we employ the improved 
PPE with a mixed source term, which is firstly proposed by Tanaka and 
Masunaga (2010) and rewritten by Lee et al. (2011a): 

< ∇2Pn+1>i = (1 − γ)
ρ

Δt
∇⋅u*

i − γ
ρ

Δt2
< n*>i − n0

n0 (10) 

Fig. 12. Quantitative results obtained by multiphase MPS method in 2D bubble 
rising problem and comparisons with benchmark results (Hysing et al., 2008), 
SPH results (Sun et al., 2015), and MMPS-CA results (Duan et al., 2017). 
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where γ is a blending parameter less than 1. The source term on the 
right-hand of Eq. (10) represents a combination of the divergence-free 
incompressible condition and the particle number density incompress
ible condition, respectively, which proves to be effective to suppress the 
pressure oscillations in original MPS method. 

To consider the compressibility of bubble phase, an incompressible- 
compressible model is included in the present multiphase MPS method, 
by introducing a compressible term into the source term of PPE. Similar 
with the studies of Khayyer and Gotoh (2016) and Duan el al. (2017), the 
compressible term derived from Equation of State (EoS) is adopted, with 
which the formation of PPE turns into: 

〈∇2Pk+1〉i =(1 − γ)
ρ

Δt
∇ ⋅ u*

i − γ
ρ

Δt2
〈nk〉i − n0

n0 +
1

Δt2C2
s
Pi

n+1 (11)  

where CS is the speed of sound. Moreover, the compressible term could 
be moved to the left-hand side of PPE in the solution process, thus the 
diagonal elements of the PPE matrix become larger and the stability of 
pressure calculation can be improved (Tanaka and Masunaga, 2010). 

2.4. Continuous acceleration model 

For the bubbly flow with high density ratio, a huge discrepancy of 
acceleration may exist on two sides of the phase interface. According to 
the original pressure gradient model of Eq. (5), the pressure gradient 
forces between a pair of interacting particles have the same value. When 
the two particles belong to different phases, the acceleration of the 
lighter particle would be much larger than that of the heavier particle 
due to the high density ratio, generating a discontinuous acceleration 
field which may cause blow-up instability. 

In the present multiphase MPS method, the continuous acceleration 
model (Duan et al., 2017) is employed to improve the stability in sim
ulations of bubbly flows with high density ratios. The main ideal of this 
model is to introduce the concept of interparticle density into both the 
pressure gradient model and the PPE solving. Firstly, an improved 
pressure gradient model with the interparticle density should be adop
ted, written as: 

Fig. 13. Time evolution of bubble shape in 3D rising problem.  
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<
2

ρi + ρj
∇P>i =

D
n0

∑

j∕=i

2
(
Pj − Pi

)

ρi + ρj

(
rj − ri

)

⃒
⃒rj − ri|

2 ⋅ W

(

rij, re

)

+
D
n0

∑

j∕=i

(
Pi − P′

i,min
)

ρi

(
rj − ri

)

⃒
⃒rj − ri|

2 ⋅ W

(

rij, re

)

(12)  

where P′

i,min represents the minimal pressure among the same-phase 
neighboring particles of particle i. The first term on the right-hand of 
Eq. (12) is a modified form of the original pressure gradient model, in 
which the use of interparticle density guarantees an identical accelera
tion for the lighter and heavier particles. As shown in Fig. 2, when the 
density ratio is equal to 1:1000, the acceleration ratio calculated by 
original model is also 1:1000, while the improved model can obtain the 
same particle acceleration on two sides of interface and keep the con
tinuity of acceleration field. The second term on the right-hand of Eq. 
(12) can be regarded as a particle stabilizing term (PST) which exerts an 
artificial force on target particles with a direction from the dense particle 
region to the dilute region, thus the uniform distribution of particles can 
be better maintained. 

Moreover, in the transition region, the pressure field suffers from 
great changes due to the rapid variation of density field. Therefore, a 
large pressure gradient may be generated and causes the violent 
movement of particles, especially for the lighter particles. In order to 
keep the smoothness of pressure field, the PPE with inter-particle den
sity is adopted in the present multiphase MPS method, with which the 
left-hand side of PPE can be discretized as: 

<
2

ρi + ρj
∇2Pn+1>i =

2D
n0λ
∑

j∕=i

2
ρi + ρj

(
Pn+1

j − Pn+1
i

)
⋅W
(
rij, re

)
(13)  

2.5. Surface tension model 

Surface tension force has important influence on the deformation of 
bubble. In the present multiphase MPS method, the surface tension 
model follows the continuum surface force (CSF) model proposed by 
Brackbill et al. (1992), which is also one of the most widely used surface 
tension models in mesh-based or mesh-free methods. In CSF model, the 
surface tension force is converted into a kind of body force distributed in 
the transition region, as shown in Fig. 3. The value of surface tension 

Fig. 14. Shapes of 3D bubble simulated by different solvers (Adelsberger et al., 2014).  

Fig. 15. Quantitative results obtained by multiphase MPS method in 3D rising problem and comparisons with benchmark results (Adelsberger et al., 2014), 
MMPS-CA and MMPS-HD results (Duan et al., 2017). 
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force can be calculated with the following equation: 

FS = − σκ∇C (14)  

where σ is the surface tension coefficient, κ is the interface curvature, ∇C 
is the gradient of color function. 

In this paper, the density-weighted color function (Zhang et al., 
2015) is employed to keep the continuity of surface tension force, which 
is defined as 

Cij=

⎧
⎪⎨

⎪⎩

​ ​ ​ ​ ​ 0 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ if ​ particle ​ i ​ and ​ j ​ belong ​ to ​ the ​ same ​ phase

​ 2ρi

ρi+ρj
​ ​ ​ ​ ​ ​ ​ ​ ​ if ​ particle ​ i ​ and ​ j ​ belong ​ to ​ different ​ phase

(15) 

As to the calculation of interface curvature κ, the analytical method 
proposed in the contoured continuum surface force (CCSF) model (Duan 
et al., 2015) is applied. The main ideal of this method is to approximate 
phase interfaces by the contours of smoothed color function (Fig. 4). In 
the first step, the smoothed color function f at an arbitrary location (x, y) 
can be obtained by performing a spatial weighted averaging of the above 
color function: 

f (x, y)=
∑

jCjG
(
rij, rs

)

∑
jG
(
rij, rs

) , G
(
rij, rs

)
=

9
πr2

s
exp
(

−
9rij

2

rs
2

)

(16)  

with the smoothed color function known, the local contour passing 
through particle i can be obtained through a Taylor series expansion: 

fx,i(x − xi)+ fy,i(y − yi)+
1
2
fxx,i(x − xi)

2 ​ + ​ fxy,i(x − xi)(y − yi)+
1
2
fyy,i(y − yi)

2
=0

(17)  

where the subscripts x and y represent the partial derivatives with 
respect to x and y, respectively. 

Finally, the interface curvature at particle i can be analytically 
calculated as 

κi =
y′′

(1 + y′

i)
3/2 =

2fx,ify,ifxy,i − f 2
x,ifyy,i − f 2

y,ifxx,i
(

f 2
x,i + f 2

y,i

)3/2 (18) 

Moreover, the above derivation is also be applicable for 3D model. 
The only difference is that the derivatives of smoothed color function 
with respect to variable z should be considered. Therefore, the mean 
curvature in 3D model can be calculated as   

2.6. Multiphase collision model 

When particle distance becomes too small, the uniform distribution 
of particles is no longer satisfied and unphysical penetrations between 
different phases are likely to occur. In the present method, the multi
phase collision model (Shakibaeinia and Jin, 2012) is employed to exert 
an additional repulsive force when particle distance is below a certain 
threshold. This model considers the collision of particles as the collision 
of two spheres with different masses. Initially, different particles are 
uniformly distributed with an constant distance l0. If the distance be
tween any two particles becomes smaller than α times of l0 during the 
simulation, the particle collision is assumed to happen and the velocities 
of particles are corrected based on the following equations: 

u
′

i = ui −
1
ρi
(1+ ε)

ρiρj

ρi + ρj
un

ij (20)  

u′

j = uj +
1
ρj
(1+ ε)

ρiρj

ρi + ρj
un

ij (21)  

where u′

i is the velocity vector of particles after collision, un
ij is the normal 

relative velocity of particles i and j, and ε is the collision ratio. 

2.7. Boundary conditions 

The wall boundary conditions in MPS include the free-slip and no- 
slip wall conditions. To impose the boundary conditions, the concept 
of mirror particle (Lee et al., 2011b) is introduced to replace the wall and 
dummy particles in the calculation of viscous force. The positions of 
mirror particles are symmetrical to corresponding fluid particles about 
the wall, and the velocities of mirror particles are calculated with the 
follow equations:  

(1) free-slip condition 

umirror ⋅ t = ui⋅t, umirror⋅n = (2uw − ui)⋅n (22)    

(2) no-slip condition 

umirror ⋅ t = (2uw − ui)⋅t, umirror⋅n = (2uw − ui)⋅n (23)  

where n and t are the normal and tangential vectors to the wall, 
Fig. 16. Schematic sketch of bubble rising and breaking with high Rey
nolds number. 

κi =
fxx,i

(
f 2
y,i + f 2

z,i

)
+ fyy,i

(
f 2
x,i + f 2

z,i

)
+ fzz,i

(
f 2
x,i + f 2

y,i

)
− 2
(
fx,ify,ifxy,i + fx,ifz,ifxz,i + fy,ifz,ifyz,i

)

(
f 2
x,i + f 2

y,i + f 2
z,i

)3/2 (19)   
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respectively. The subscripts mirror, w and i represent the mirror, wall 
and corresponding fluid particles, respectively. 

2.8. GPU acceleration technique 

Due to its multi-core architecture, GPU (Graphics Processing Unit) is 
quite suitable for large-scale parallel computing, and has been widely 
applied in high-performance computing (Crespo et al., 2011; Zhao et al., 
2017; Chow et al., 2018). For MPS method, the GPU acceleration 
technique has been successfully applied in the simulations of 
single-phase flows (Hori et al., 2011; Zhu et al., 2011; Xie et al., 2020) 

However, up to now, there have been few studies on the applications of 
GPU in the multiphase MPS simulations. 

In this paper, the GPU acceleration technique developed based on the 
IMPS method (Chen and Wan, 2019a, 2019b, 2019b) is further extended 
into the present multiphase MPS method. Fig. 5 shows the flowchart of 
multiphase MPS method with GPU acceleration technique. As it can be 
seen, both CPU and GPU are utilized but with different tasks. The CPU 
works as a host part to deal with logical works, environment configu
ration, instructions for setting parallelism and communicating data be
tween CPU and GPU. The GPU works as a device part, which is 
responsible for all the parallel computing. Benefiting from simultaneous 

Fig. 17. MPS snapshots of bubble shapes at some typical time instants (upper); The experimental snapshots in study of Walters and Davidson (1962) (lower).  
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solution of different phase in this paper, the calculation processes of 
single-phase and multiphase MPS method are basically consistent except 
for the insertion of above multi-phase models, thus the speedup of GPU 
in multiphase simulation can be considered as the same as that in 
single-phase simulation. 

3. Numerical simulations 

3.1. Deformations of 2D/3D square droplets 

The surface tension model is critical to simulate bubbly flows with 
deformed interfaces. To validate the surface tension model in the present 
multiphase MPS method, deformations of 2D/3D square droplets are 
simulated in this section. The initial conditions for 2D/3D cases are 
shown in Fig. 6(a) and Fig. 6(b), respectively. In 2D case, an initial 
square droplet with a length of 0.4 m on each side is arranged in the 
middle of the calculation domain with a size of 1 m × 1 m. The densities 
of droplet and surrounding fluids are both 1 kg/m3 and the dynamic 
viscosities are both 0.2 m2/s. The surface tension coefficient is σ = 1 N/ 
m, and the gravitational force is ignored. All boundary conditions are set 
as no-slip wall. The initial condition in 3D case is similar with the 2D 
case, but the droplet and calculation domain are expanded into 3D. In 
both cases, the fluid pressures along the horizontal ordinate are 
measured and recorded. 

The deformations of 2D square droplet simulated by multiphase MPS 
method are presented in Fig. 7. As it can be seen, due to the relatively 
larger interface curvature, four corners of the square droplet are firstly 

drove by surface tension force at t = 0.07 s, and the four edges move 
away from the center of droplet. Then, the droplet continues to deform 
and gradually turns into an almost perfect circle at t = 1 s. 

According to the Laplace-law, the pressure inside the droplet is ex
pected to be higher than that of the surrounding fluid after the fluid field 
becomes stable. For 2D droplet, the pressure drop can be estimated as: 

ΔP=Pa − Pb =
σ
R
=

σ
̅̅̅
π

√

L
(24)  

where R is the final radius of the droplet. According to Eq. (24), the 
theoretical value of pressure drop in this case is equal to 4.431 Pa. In 
Fig. 8, the pressure distribution and pressure drop predicted by multi
phase MPS method are presented and compared with the theoretical 
results. From the pressure distribution in Fig. 8(a), obvious pressure 
drop can be observed between the droplet and surrounding fluid, and in 
Fig. 8(b), a good agreement is achieved between the calculated pressure 
profiles with the theoretical value from Laplace-law. 

The simulation results of 3D square droplet’s deformation are shown 
in Fig. 9. From the droplet deformations presented in Fig. 9(a–c), similar 
trend with the 2D case can be observed. At t = 0.12 s, the eight corners of 
the 3D droplet are firstly drove by surface tension force and six faces 
move away from the center of droplet. At t = 1 s, the droplet becomes an 
almost perfect sphere droplet. Fig. 9(d) compares the calculated pressure 
profiles with the theoretical value. Noted that in 3D case, the formula
tion used to calculate the pressure drop becomes 

ΔP=Pa − Pb =
2σ
R

=
2σ ×

̅̅̅̅̅̅̅̅̅̅
4π/33

√

L
(25) 

Therefore, the theoretical value of pressure drop in 3D case is equal 
to 8.056 Pa. Again, the calculated pressure profiles show a good 
agreement with the theoretical value, validating the accuracy of surface 
tension model in the present multiphase MPS method. 

3.2. Benchmark tests of 2D/3D single bubble rising 

The single bubble rising is the simplest but also the most common 
bubbly flow in nature. In this section, the simulations of 2D/3D single 

Fig. 18. Quantitative results obtained by multiphase MPS method in the high 
Reynolds number problem and comparisons with experimental results (Walters 
and Davidson, 1962) and SPH results (Sun et al., 2015). 

Fig. 19. Initial configuration of co-axial coalescence of two bubbles with 
different radiuses. 
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bubble rising are carried out and the performance of multiphase MPS 
method is investigated. The initial configurations are set to be identical 
with the 2D benchmark study by Hysing et al. (2008) and the 3D 
benchmark study by Adelsberger et al. (2014), as shown in Fig. 10. In 2D 
case, a circular bubble with the diameter d = 0.5 m is initially centered 
at (0.5, 0.5) in a 1 × 2 rectangular container. The no-slip boundary 
condition is imposed on the top and bottom walls, while the free-slip 

boundary condition is imposed on the vertical sidewalls. In 3D case, a 
sphere bubble with the diameter d = 0.5 m is initially centered at (0.5, 
0.5, 0.5) in the 1 × 1 × 2 cuboid container and all boundaries are set as 
no-slip wall. The gravity acceleration is g = 0.98 m/s2 and points 
downwards. The physical properties of fluids keep the same as the “case 
2” of the benchmark study, in which the density ratio (1000:1) and 
viscosity ratio (100:1) are relatively higher and the phase interface is 
more complex. In both 2D and 3D cases, the two main non-dimensional 
numbers in bubble dynamics, including the Reynolds number (Re) and 
Bond number (Bo, also known as Eotvos number, Eo), are equal to 35 
and 125, respectively. For bubbly flows, the Reynolds number repre
senting the ratio of inertial to viscous effects and the Bond number 
which gives the ratio of gravitational forces to surface tension effects are 
defined as 

Re=
ρ1

̅̅̅̅̅̅̅
gd3

√

μ1
, Bo =

ρ1gd2

σ (26) 

From the above definition, it can be seen that with the increase of 
Reynolds number, the inertial force becomes more dominant than the 
viscous force, which means that the movement of bubble would be more 
violent; With the increase of Bond number, the inertial force become 
more dominant than the surface tension force, thus more severe defor
mation would occur during the bubble rising. Considering that the 
advantage of multiphase MPS method is more significant in the violent 
flows with complex interfaces, the bubble rising at high Reynolds 
number will be further studied in Section 3.3, and the bubbly flow with 

Fig. 20. Co-axial coalescence of two bubbles simulated by multiphase MPS method and comparisons with Level Set and SPH results (Grenier et al., 2013).  

Fig. 21. Time history of velocities of bubbles during the rising and coales
cence process. 
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increasing Bond number will be studied in Section 3.4 and Section 3.5. 
Time evolution of bubble shape in 2D rising problem is presented in 

Fig. 11. Due to the large Bond number, surface tension effects are weak 
in this case and the bubble experiences strong deformations during the 
rising process, especially in the later stage, where the breakup of bubble 
is observed and two tiny bubbles are separated from the skirt part of the 
main bubble. The interface captured by multiphase MPS method is 
compared with benchmark results and a good agreement can be 
observed. 

Fig. 12 plots the quantitative results calculated by different methods, 
including the center of mass and rise velocity of bubble. Compared with 
SPH (Sun et al., 2015) and MMPS-CA (Duan et al., 2017) methods, the 
multiphase MPS method gives more consistent results with benchmark 
results. Besides, the severe oscillations of rise velocity observed in other 
mesh-free methods are not found in the multiphase MPS results, vali
dating the stability of present method. 

Fig. 13 shows the time evolution of bubble shape in 3D rising 
problem. Similarly, the 3D bubble experiences a large deformation due 
to the relatively high Bond number and weak surface tension effects. 
However, the breakup of bubble observed in previous 2D case does not 
occur in present 3D simulation, which shows a good agreement with the 
3D benchmark results (Adelsberger et al., 2014). In the early stage of its 
buoyant motion, the 3D bubble deforms fast and turns into a dimpled 
cap at t = 1 s. Afterwards, the diameter of bubble in the vertical direction 
gradually decreases while the diameter in the horizontal direction in
creases. Finally, the shape of bubble is located in the dimpled 
ellipsoidal-cap regime at t = 3.5 s, being same as the benchmark results. 

In Fig. 14, the shapes of 3D bubble simulated by multiphase MPS 
method at several typical time instants are compared with the bench
mark results, which is obtained by three different solvers, including 
DROPS, NaSt3D and OpenFOAM (Adelsberger et al., 2014). In general, 
the result of multiphase MPS method show a better agreement with the 
results of DROPS and OpenFOAM. The main difference is observed on 
the bottom edge of bubble, where the interface curvature is large. The 
center of mass and rise velocity are presented and compared in Fig. 15. 
The center of mass calculated by multiphase MPS method agrees well 
with benchmark result, and more accurate rise velocity can be predicted, 
compared with MMPS-CA and MMPS-HD methods (Duan et al., 2017). 

In summary, the multiphase MPS method proposed in this paper can 
be well validated through the above simulations of 2D and 3D single 
bubble rising. There are some slight differences between MPS results and 
benchmark results, such as the profile of bubble edge and the evolution 
of tiny bubbles formed after bubble breaking. However, considering that 
these local deformations bring great challenges to numerical methods 

and even the three mesh-based methods used in benchmark study ob
tained different results, the results in present work are regarded as 
acceptable. 

3.3. Bubble rising and breaking with high Reynolds number 

It should be noted that in the simulations of section 3.2, the viscos
ities of fluids are large and the gravity is small, resulting in low Reynolds 
number. In order to further examine the capacity of multiphase MPS 
method in more violent bubbly flows with high Reynolds number, the 
rising and breaking of a single bubble in the low-viscosity liquid, which 
corresponds to the experimental study of Walters and Davidson (1962), 
are simulated and analyzed in this section. The initial configuration is 
presented in Fig. 16, where the bubble with a radius R = 0.0254 m is 
located in the middle of the container with a width of 10R and a height 
of 12R. The distance from the center of bubble to the container bottom is 
4 R. The fluids inside and outside of the bubble are water and air, 
respectively. The density and viscosity of water phase are 1000 kg/m3 

and 0.001 Pa s, while the density and viscosity of the air bubble are 1 
kg/m3 and 1.77 × 10− 5 Pa s. Therefore, the density and viscosity ratios 
in this case reach up to 1000 and 56.5. The surface tension coefficient is 
0.0728 N/m and the gravity acceleration is g = 9.8 m/s2. According to 
the parameters and fluid properties, the Reynolds number in this case is 
up to 35843. 

The MPS snapshots of bubble shapes at some typical time instants are 
presented in Fig. 17 and compared with experimental snapshots pro
vided in the study of Walters and Davidson (1962). Due to the extremely 
high Reynolds number, the deformation of bubble observed in present 
case are more violent than the above benchmark tests. In its rising 
process, the bubble firstly deforms into a horseshoe shape due to the 
upwelling water motion below the bubble (t = 0.1375 s). Subsequently, 
the cavity gradually grows, and the bubble was continuously elongated. 
At t = 0.2375 s, the breakup of bubble occurs and two small bubbles are 
separated from the main bubble. Besides, some satellite droplets are 
formed during the bubble breaking process. After that, the bottom edge 
of bubble shrink upward rapidly due to the large interface curvature, 
and the bubble turns into a cap shape finally. From the comparison 
between numerical and experimental results, a good agreement can be 
observed, proving that the complex interfaces in bubbly flows can still 
be accurately captured by multiphase MPS method even if the Reynolds 
number is high. 

Fig. 18 shows the quantitative results obtained by multiphase MPS 
method in the high Reynolds number problem and the comparison with 
SPH (Sun et al., 2015) and experimental results (Walters and Davidson, 

Fig. 22. Velocity field and streamlines around bubbles.  
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1962). The quantitative results include the position of the top of bubble 
and the thickness at the axis of symmetry of bubble, which represent the 
characteristics of bubble motion and deformation, respectively. From 
the comparisons, it can be seen that both multiphase MPS method and 
SPH method are able to accurately predict the bubble characteristics, 
and the numerical results are in good agreement with experimental data. 

3.4. Co-axial coalescence of two bubbles with different radiuses 

When the bubbly flow contains more than one bubble, the 

interaction between different bubbles may lead to larger bubble defor
mation and more complex evolution of interfaces. In this section, the co- 
axial coalescence of two bubbles with different radiuses are simulated by 
multiphase MPS method and the bubble interaction is investigated. The 
initial configuration is displayed in Fig. 19, which is also used in the 
studies of Grenier et al. (2013) and Duan et al. (2017). Two close bubbles 
are located on the same vertical line inside a 1.0 m × 1.5 m rectangular 
container filled with pure water. The radiuses of lower and upper bub
bles are R = 0.1 m and 1.5R = 0.15 m, respectively. The densities of 
liquid and bubble phases are 1000 kg/m3 and 100 kg/m3, thus the 

Fig. 23. MPS snapshots of co-axial coalescence of two bubbles at different Bond numbers.  
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density ratio is equal to 10 in this case. The viscosities of liquid and 
bubble phases are 0.156 kg/(m.s) and 0.078 kg/(m.s), respectively. 
Three cases with different surface tension coefficients are considered, 
including 49 N/m, 4.9 N/m and 1.96 N/m, corresponding to the Bond 
number of 8, 80 and 200, respectively. 

Fig. 20 shows the buoyant motion and coalescence process of two 
bubbles at Bo = 80, and the comparison with other numerical results in 
the open literature. As it can be observed, the characteristics of bubbly 
flow and complex interfaces captured by multiphase MPS method ach
ieve a good agreement with the results of Level Set and SPH (Grenier 
et al., 2013). Initially, the smaller bubble in the lower location moves 
with a significantly faster velocity than that of the larger bubble in the 
upper region. The deformation of the smaller bubbles is more violent 
and the breakup of bubble is observed at the moment of t(g/R)1/2 = 2.53, 
with two separated tiny bubbles formed. After the smaller bubble 
catches up with the larger one, it is gradually sucked into the cavity 
below the larger bubble. The liquid film between two bubbles becomes 
thinner and thinner, leading to the coalescence of bubbles finally. 

In Fig. 21, time history of velocities of bubbles during the rising and 
coalescence process is plotted. In general, the trend of rise velocity keeps 
consistent with the observations in Fig. 20. At the beginning, the rise 
velocities of both two bubbles increase rapidly, especially the smaller 
bubble. The rise velocity of the leading bubble reaches its peak soon and 
starts to decrease, while the smaller bubble keeps being accelerated until 
it catches up with the larger one at t(g/R)1/2 = 2.3. Afterwards, the 
velocity of the smaller bubble drops quickly due to the blocking effect of 
the larger one. At the same time, some upward momentum is transferred 
from the smaller bubble to the larger bubble, inducing another increase 
of the large bubble’s rise velocity. Finally, the coalescence of bubbles 
occurs and average velocity of the merged bubble tends to be steady. 

To explore the mechanism of bubble interaction in present case, the 
velocity field and streamlines around these two bubbles are displayed in 
Fig. 22. It can be observed that two strong vortex structures are formed 
on two sides of the larger bubble and stably exists during the bubble 
rising process. Due to its small size and short distance to the larger 
bubble, the smaller bubble is completely exposed to influence of the 
vortex structure. From the distribution of streamlines, it can be found 
that the smaller bubble is located in the region where the wake flows are 
moving upward, thus the buoyant motion of the smaller bubble is 
greatly speeded up. 

The surface tension effects on the bubble coalescence are further 
investigated by performing the simulations with different Bond 
numbers, as shown in Fig. 23. In the case of Bo = 8, the larger surface 
tension force could inhibit the deformations of bubbles and the lower 
bubble is less influenced by the wake flows. Therefore, the bubble 
coalescence is not observed during the simulation. As the Bond number 
increases to 80 and 200, the surface tension effects are greatly reduced 
and the bubbles suffer from much larger deformations. In these two 
cases, the deformation and coalescence of two bubbles are very similar 
due to the negligible surface tension effect, but it can still be observed 
that at t(g/R)1/2 = 2.53 and 3.16, the complex interfaces caused by 
bubble coalescence is more complex at Bo = 200. 

3.5. Violent interactions between a set of bubbles 

In practical industrial process, the bubbly flows are more compli
cated and difficult to be simulated, because the bubbles usually appear 
in groups rather than in the form of single or a pair. In this section, the 
multiphase MPS method is applied to model the rising of a set of bub
bles, as well as the chasing, breaking, coalescence and other violent 
interactions. The initial configuration and bubbles distribution are dis
played in Fig. 24, which is similar with the model used in the SPH 
research of Grenier et al. (2013). A set of 36 bubbles are initially spread 
on a 6 × 6 lattice, with an average radius R = 1 mm. To consider the 
complexity of practical problems, these bubbles are randomly shifted 
within ±50% of the initial inter-bubble distance, and the radiuses of 
bubbles are randomly changed within ±50% of the initial value as well. 
The main calculation domain is set to be 26.6R × 26.6R, and a layer of 
the lighter fluid with a height of 8.5R is arranged above the heavier fluid 
at the initial moment. The free-slip boundary condition is imposed to all 
the tank walls. The density and viscosity of the heavier fluid are 1000 
kg/m3 and 0.007 Pa s, and those of the bubbles and the lighter fluid are 
800 kg/m3 and 0.0065 Pa s. Three different cases with the surface ten
sion coefficient σ ranging from 7.85 × 10− 5 N/m to 7.85 × 10− 3 N/m are 
studied, corresponding to the Bond numbers ranging from 125 to 1.25 
which is calculated based on the minimal bubble radius. The mean 
Reynolds number is equal to 40 in all cases. 

Time evolution of the bubbly flow at Bo = 12.5 is presented in 
Fig. 25. Because the container is sufficiently narrow and the distribution 
of bubbles is compact, the interactions between bubbles can be 
frequently observed and are quite violent in the present case. The 
breaking and coalescence of different bubbles occur continuously, 
resulting in very complex interfaces. Moreover, when the bubbles rise 
and pass through the phase interface, some of the heavier fluids are 
attached on the bubbles and also enter into the upper layer, which then 
turn into a mass of droplets and make the interface between the upper 
and lower layers more complex. As time goes on, the heavier and lighter 
fluids are gradually separated under the influence of gravity, and finally 
reach to a relatively steady state. Fig. 26 shows the distribution of fluid 
density along the vertical direction. It can be seen that the sharpness of 
spatial density variations becomes clear at t = 2 s. 

Fig. 27 shows the velocity distribution of the bubbly flow involving a 
set of bubbles at Bo = 12.5. From the figures, it can be seen that due to 
the influence of bubble rising motion, the velocities of bubbles as well as 
surrounding fluid increase rapidly after the beginning of simulation. At 
the same time, the fluid near two sidewalls moves downward to sup
plement the space originally occupied by bubbles, which also causes an 
obvious increase in the velocity field. During the bubble rising process, a 
massive of bubbles are accelerated by wake flows of the upper bubbles, 
similar with the interaction between two bubbles observed in the pre
vious section. Especially, in the region where the bubbles are densely 
distributed at the initial moment, a significantly larger velocity field can 
be observed in the vertical direction due to the chasing of bubbles. 
Therefor, the movement of bubbles become more violent in this region, 
resulting in the large bubble deformations and complex interfaces. 

For validation purpose, the MPS snapshots of bubbly flows at Bo =

Fig. 24. Initial configuration for simulations of violent interactions between a 
set of bubbles. 
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Fig. 25. Time evolution of bubbly flow involving a set of bubbles, Bo = 12.5.  
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12.5 are compared with the results of SPH (Grenier et al., 2013) in 
Fig. 28. However, it should be noted that the initial distribution and 
initial size of bubbles are set to be with some randomness, thus the 
numerical models adopted by the two methods are not completely 
consistent. In general, the evolutions of bubbly flows predicted by 
different methods show a good agreement due to the same Bo number. 
Although the interaction between bubbles is more frequent in this paper 
due to the larger initial particle size and smaller particle distance, the 
large bubble deformations and complex phases interfaces can still be 
accurately captured by the present multiphase MPS method. 

Fig. 29 and Fig. 30 show the time evolutions of the bubbly flows at 
Bo = 1.25 and Bo = 125, respectively. Combining the result of Bo = 12.5 
in Fig. 29, it can be observed that the overall trend with the change of 
Bond number keeps consistent with the two bubbles problem studied in 
section 3.4. With the increase of Bond number, the interactions between 
a set of bubbles become more violent and the bubbles experience larger 
deformations. In the case of Bo = 1.25, the surface tension effects are 
strong enough to keep the shapes of most bubbles to be nearly circular 
during the rising process, thus the interaction between bubbles is not 
significant. At t = 0.8 s, the bubbly flow comes to an end and different 
fluids are completely separated. 

In contrast, due to the weak surface tension effects at Bo = 125, a 
mass of bubbles would be stretched along different directions, causing 
frequent occurrences of breakup and coalescence phenomena. 
Compared with the case of Bo = 12.5, the bubbles become fragmented 
and it seems to be not possible for the complete separation of fluids. 
Again, good agreements are observed between the MPS and SPH (Gre
nier et al., 2013) in different cases. Besides, the simulation results also 
indicate that in some separation equipment, such as the oil/water 
separator, the appropriate addition of surfactant would be beneficial for 
the improvement of separation efficiency. 

For a better illustration of the influence of Bond number, the energy 
dissipation rates in bubbly flows with different Bond numbers are 
plotted and compared in Fig. 31. Here, the energy dissipation rate is 
defined as 

RED =(EM − E0)/(E0 − Elowest)% (27)  

where EM represents the mechanical energy at a given moment, E0 
represents the mechanical energy at initial moment, Elowest represents 
the lowest mechanical energy of the bubbly flow system, which can be 
reached when the two fluid is completely separated and static, with all of 
the lighter fluid laying above the heavier fluid. As it can be seen from the 

Fig. 26. Distribution of average density as a function of height. Red line: multiphase MPS results; black dot line: density distribution at final state (two fluids are 
perfectly separated, with the lighter fluid laying above the heavier fluid). (For interpretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 
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Fig. 27. Velocity distribution of the bubbly flow involving a set of bubbles, Bo = 12.5.  
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Fig. 28. Time evolutions of the bubbly flows involving a set of bubbles at Bo = 12.5, and comparison between multiphase MPS results (top) and SPH results (Grenier 
et al., 2013) (bottom). 
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Fig. 29. Time evolutions of the bubbly flows involving a set of bubbles at Bo = 1.25, and comparison between multiphase MPS results (top) and SPH results (Grenier 
et al., 2013) (bottom). 

Fig. 30. Time evolutions of the bubbly flows involving a set of bubbles at Bo = 125, and comparison between multiphase MPS results (top) and SPH results (Grenier 
et al., 2013) (bottom). 
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figure, the energy dissipation rate increases with the decrease of Bond 
number, which means that the bubbly flow with low Bond number could 
develops to its final separation state faster. This trend keeps consistent 
with the observation from the time evolutions of bubbly flows presented 
in Figs. 28–30. 

The reason for the difference of energy dissipation rates can be 
further explained by the vorticity fields displayed in Fig. 32. An obvious 
increase in the vorticity fields can be observed as the Bond number 
decreases. In the case of Bo = 1.25, the bubbly flow is not violent, and 
therefore stable vortex structures can be formed on both sides of each 
bubble, which are an important cause of the energy dissipation. How
ever, when the bubby flows become violent with larger Bond numbers, 
the vortex structures are easy to be disturbed by the complicated bubble 
interactions, thus the stable and strong vortex structures are not able to 
be generated and the energy dissipation rate is reduced. 

Benefiting from the improvement brought by GPU acceleration 
technology, the above 2D simulations are further extended to 3D with 
the present multiphase MPS method. The fluid domain is set to be 19.2R 
× 19.2R × 45R, where R = 1.5 mm, and a total of 27 bubbles are initially 
spread on a 3 × 3 × 3 lattice, thus a total of more than two million 
particles are used in the 3D simulations. In order to save the 

computation cost, there is no lighter fluid arranged above the heavier 
fluid in the 3D model. The fluid parameters keep consistent with that in 
the 2D simulations. Therefore, the Reynolds number is 40 and Bond 
number is 12.5, respectively. 

Time evolutions of the 3D bubbly flows with different Bond numbers 
are presented in Figs. 33–35. As shown in Fig. 33, the simulation results 
at Bo = 1.25 are most similar with practical bubbly flows. The reason is 
that the bubble size in real environment is usually small, thus both the 
interface curvature and the surface tension force are relatively large, 
resulting in low Bond number. From Fig. 34, it can be observed that the 
bubbles severely break up at Bo = 12.5, with plenty number of tiny 
bubbles generated, which can be accurately detected by the present 
multiphase MPS method. In Fig. 35, the surface tension force is too small 
to maintain a fixed shape for bubbles, thus the particles consisted of 
bubbles are rapidly dispersed during the rising process. Compared with 
2D results, bubble interactions in the 3D simulations become more vi
olent and the more complex interfaces are captured by multiphase MPS 
method, especially in the cases with large Bond number. 

4. Conclusions 

In this study, an advanced multiphase MPS method is developed for 
2D/3D bubbly flows with complex interfaces, by combining the single- 
phase Improved MPS(IMPS) method proposed in our previous study 
with different multiphase models. The main achievement is to be able to 
expand the application of MPS method in bubbly flows, especially for 
the cases with high Reynolds number and high Bond number. Detailed 
analysis is carried out for a series of bubbly flows with increasing 
complexity, and the following conclusions can be obtained:  

(1) In consideration of its great significance in bubbly flows, the 
surface tension model is firstly validated through the simulations 
of 2D/3D square droplets’ deformation. Then, overall perfor
mance of multiphase MPS method is estimated by benchmark 
study of 2D/3D single bubble rising with high Bond number. 
Good agreements between MPS results and published data are 
achieved. 

Fig. 31. Comparison of enegy dissipation rates at different Bond numbers.  

Fig. 32. Vorticity fields of bubbly flows at different Bond numbers.  
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Fig. 33. Time evolution of the 3D bubbly flow involving a set of bubbles, Bo = 1.25.  
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Fig. 34. Time evolution of the 3D bubbly flow involving a set of bubbles, Bo = 12.5.  
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Fig. 35. Time evolution of the 3D bubbly flow involving a set of bubbles, Bo = 125.  
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(2) The single bubble rising with high Reynolds number is further 
simulated. Due to the much stronger inertia force compared with 
surface tension force, the large deformation and violent breaking 
of bubble are observed, which can still be accurately captured by 
multiphase MPS method. Besides, convergence is obtained to the 
experimental and SPH results.  

(3) The co-axial coalescence of two bubbles is studied and it is found 
that the buoyant motion of the lower bubble would be speeded up 
by the wake flows, resulting in the collision and coalescence of 
bubbles. The interfaces captured by multiphase MPS method 
show a good agreement with the results of Level Set and SPH. 
According to the simulation results with different Bond numbers, 
it can be concluded that the interaction of bubbles is intensified 
with the increase of Bond number.  

(4) The violent interactions between a set of bubbles are studied, in 
which frequent breaking and coalescence of bubbles are 
observed. Benefiting from its Lagrangian characteristic, the 
multiphase MPS method is able to reproduce the complicated 
phenomena in bubbly flows and achieve a good agreement with 
SPH results. As the Bond number increases, the bubbles experi
ence larger deformations, and the energy dissipation rate is 
slowed down due to the less formations of vortex structures on 
both sides of each bubble. Finally, the large-scale 3D simulations 
with more than two million particles are performed for this case, 
which are close to the practical bubbly flows. 

In summary, the multiphase MPS method developed in this paper 
shows high stability and accuracy for bubbly flows with complex in
terfaces. However, it has not yet reached the standard for the real bubbly 
flows in industrial process and future work is necessary focusing on 
further improvement of computational efficiency. Meanwhile, it is 
important to develop and introduce the phase change model into the 
multiphase MPS method, to solve its weakness in the modeling of air 
diffusion phenomena. We should also note that the MPS particles are 
equidistantly distributed at the initial moment, causing slight sawtooth 
shape of the bubble. In consideration of some level of sensitivity to the 
initial particle distribution, more advanced pre-processing techniques 
are required in the future. 
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