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A B S T R A C T   

In the earlier stage of hull form optimization design, a series of design variables is usually needed to control the 
hull shape, so as to find optimal hull forms with better performance. In the surrogate-based hydrodynamic 
performance optimization for ships, with the increase of the dimensionality of design space, the number of new 
sample hulls to construct surrogate model needs to be larger, which will bring a large amount of calculation. 
Through reduced order method, the dimensionality of the optimization design space can be reduced while 
keeping the deformation range of the original design space to a great extent, for instance, using the linear 
combination of a smaller number of bases to represent the deformation range. In addition, in the later stage of 
hull form optimization design, flow field results of the new sample hulls can be fully utilized to do the dimen
sionality reduction multi-physics field learning. In this paper, the principle of the Proper Orthogonal Decom
position method is used and briefly introduced, the steps of dimensionality reduction of the design space are 
shown then, and some important problems for the design-space dimensionality reduction in the specific field of 
hull form optimization, such as retainability of fixed control points, irrelevance of the relative order of data to 
dimensionality reduction results, and decision of the new design space range after dimensionality reduction, are 
deep analyzed. Furthermore, taking the resistance optimization of the modified Wigley ship as an example, the 
specific application and error analysis of the dimensionality reduction method for design-space dimensionality 
reduction in the earlier stage of hull form optimization and the multi-physics field learning in the later stage of 
hull form optimization are given, and the applicability and reliability of the method are demonstrated by 
analyzing the influence of mode order and sample number on reconstruction effect of the hull shape or flow field, 
and the prediction effect of flow field for not-in-the-database new hull form in detail. Results show that the linear 
dimensionality reduction method can reduce samples needed for optimization, thus reduce the amount of 
calculation for the surrogate-based hull form optimization, and be used for quick prediction of multi-physics 
fields of any new form in the design space. Furthermore, it can not only be applied to the sensitivity analysis 
or a Pareto frontier selection in comprehensive performance optimization of hull form based on CFD, but also be 
implemented in the real-time forecast of the flow field and influence analysis of the ship performance when 
adjusting the hull form (or hull appendages).   

1. Introduction 

For the hull form optimization problem, if the number of design 
variables that control the hull form deformation is small, the hull shape 
change may be small in a certain design space, that is, the geometry 
variation is not enough. Therefore, the improvement of the performance 
index of the optimal hull is relatively limited. On the contrary, if there 

are more parameters controlling the change of hull shape, the possible 
changes of hull form will be more abundant, that is to say, in the high- 
dimensional design space, more diverse geometry variations will be 
generated, and the optimal hull with much better performance can be 
found theoretically. 

In order to avoid the difficulty of solving the optimization problems 
in the high-dimensional design space caused by the curse of 
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dimensionality, different kinds of dimensionality reduction technologies 
for the design space have been proposed and widely applied, including 
online dimensionality reduction technology and off-line dimensionality 
reduction technology. The so-called “dimensionality reduction” means 
to reduce the data dimension as far as possible on the premise that it 
basically includes all the information involved in the set of high- 
dimensional data vectors, that is, to basically represent all possible 
changes in the higher-dimensional design space using a lower- 
dimensional design space. Through the dimensionality reduction of 
the design space of hull form deformation parameters (design variables), 
a smaller number of design variables in the lower-dimensional design 
space can represent any possible hull shape change without losing much 
geometry variation information in original high-dimensional design 
space. Therefore, the design of experiment can be implemented in the 
new lower-dimensional design space, where the new design variables 
can basically represent all possible changes in the higher-dimensional 
design space. For the surrogate-based optimization, the number of 
new sample hulls needed to evaluate will be reduced due to the reduc
tion of design-space dimensionality, so the calculation cost will be 
reduced, and then the optimization efficiency will be improved. 

Online design space dimensionality reduction technology needs to 
evaluate the objective function (such as hydrodynamic performance 
index) or its gradient. Lukaczyk et al. (2014) proposed a search strategy 
for active dimensionality-reduction subspace. However, such methods 
could not evaluate and reduce dimensionality of the design space for 
various hull form deformation methods in advance, that is, they cannot 
consider the strong relationship that may exist in the hull shape changes 
controlled only by different design variables. 

Off-line design space dimensionality reduction technology mainly 
considers the variability of the design space, which does not need the 
evaluation of the objective functions, let alone the gradient information 
of them. 

In terms of the decision of the new feature (independent variable) in 
the new dimensionality-reduced design space, the off-line dimension
ality reduction methods can be divided into feature selection and feature 
extraction methods. Feature selection is just a filtering of the original 
features, that is, a subset of independent variables in the original high- 
dimensional space is chosen, which usually have the greatest influence 
on the dependent variables. Feature extraction is to condense and 
construct a new set of features on the basis of original features, that is, it 
converts the old set of high-dimensional variables into a new set of low- 
dimensional variables by data analysis. In this paper, the dimensionality 
reduction method of feature extraction is further elaborated and studied. 

Proper Orthogonal Decomposition (POD), also known as Principal 
Component Analysis (PCA) or Karhunen-Loève Expansion (KLE) (Pear
son, 1901; Wold et al., 1987; Jollife, 1986; Diez et al., 2015) is one of the 
most classic, but still most widely used linear reduced order methods. 
The basic idea of this method is to construct a lower-dimensional linear 
space, making the projection of a certain number of high-dimensional 
data set on it as large as possible. In other words, mapping the 
high-dimensional data set into a low-dimensional data set by con
structing a transformation, while making the low-dimensional data set 
keep the change (variance) information of the original high-dimensional 
data set as much as possible. 

However, when there are complex nonlinear relationships between 
design variables, some linear dimensionality reduction methods may not 
work well. In order to reduce the dimensionality of the design space 
under the premise of capturing the nonlinear information in the original 
high-dimensional design space, the nonlinear dimensionality reduction 
methods were proposed and developed successively after the linear 
method, such as Local PCA (LPCA) (Lloyd, 1982; Kambhatla et al., 1997; 
Luxburg, 2004), Kernel PCA (KPCA) (Scholkopf, 1998), and Deep 
auto-encoder (DAE) (Hinton et al., 2006). 

Both linear and nonlinear dimensionality reduction methods have 
their advantages and disadvantages. The main advantage of the 
nonlinear method is that it can capture the nonlinear relationship 

between the original high-dimensional data while reducing the dimen
sionality. However, it may need some additional parameter settings and 
debugging in the calculation to ensure that the relative error before and 
after dimensionality reduction is small enough, so the calculation sta
bility is not as good as the linear method. In addition, the basis in the 
linear method usually has a clear physical concept, and the new samples 
can be reconstructed through its linear superposition conveniently, such 
as the changes of hull geometry, while the nonlinear mapping rela
tionship in the nonlinear method is only on the mathematical level, and 
its physical significance is not obvious. 

Furthermore, both linear and nonlinear dimensionality reduction 
methods have been widely used in image compression, signal process
ing, text classification and many other engineering fields. However, the 
application of dimensionality reduction technology in the field of hull 
form optimization is relatively rare. 

Chen et al. (2014) optimized the Delft catamaran calm-water drag 
under a certain speed. By using KLE method on two design spaces of 20 
Free Form Deformation (FFD) parameters, the dimensionalities of the 
new design spaces after dimensionality reduction become 4 and 6, 
respectively, and the optimal hulls in the two new design spaces have a 
9.63% and 6.89% reduction respectively. 

Diez et al. (2015) briefly gave the basic principle of design-space 
dimensionality reduction and an optimization application of 
calm-water drag for the high-speed catamaran. By using KLE method on 
the 20-dimensional design space, the dimensionalities of the new design 
spaces after dimensionality reduction are controlled no more than 4. 
Optimization results show that there are significantly positive correla
tions between the total drag reduction degree and dimensionality of the 
new design space. 

D’Agostino et al. (2020) used KLE method to optimize the 
calm-water drag of DTMB-5415 ship by reducing the dimensionality of 
the design spaces composed of design variables of FFD, Radial Basis 
Function (RBF) and Global Modification Function (GMF) methods. 
Under the precondition of keeping 95% geometric changes in the orig
inal design space, after dimensionality reduction, the final design space 
dimensionalities are reduced by 86%, 16% and 37%, respectively. 

As a matter of fact, the application of dimensionality reduction 
technology in hull form optimization is more than design-space 
dimensionality reduction of hull form deformation. 

Serani et al. (2016, 2018) gave examples of optimizing the 
calm-water drag of DTMB-5415 ship by using the potential flow theory 
for performance evaluation. Considering the change of the hull geom
etry and physics field, several reduced order methods such as KLE, LPCA, 
KPCA and DAE were used for multi-physics field learning, with the 
number of geometric and physical field information grid points 5101. 
Under the premise that the overall relative error is no more than 5%, the 
number of bases that contain the multi-physics field information are 18, 
14, 15, 15, respectively, by the four dimensionality reduction methods, 
indicating that there is a strong correlation in the geometrical-physical 
field. 

To sum up, in order to reduce the number of samples to evaluate, and 
improve the surrogate-based optimization efficiency, in the earlier stage 
of the hull form optimization, design-space dimensionality reduction 
can be implemented. After evaluations of the new sample hulls deter
mined by design of experiment, the geometrical-physical field database 
can be naturally formed and the flow-field dimensionality-reduction 
learning can be carried out further. Therefore, the application of 
reduced order method can run through from the earlier stage to the later 
stage of the hull form optimization process, but there are few relevant 
studies at present. This paper aims to give specific steps and quantitative 
error analysis of dimensionality reduction method used in the earlier 
stage of hull form optimization and the multi-physics field learning in 
the later stage of hull form optimization. Furthermore, deep discussions 
on some important problems, such as retainability of fixed control 
points, irrelevance of the relative order of data to dimensionality 
reduction results, and decision of the new design space range after 
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dimensionality reduction, in the specific field of hull form optimization, 
are given in detail. 

2. Basic principles of linear dimensionality reduction method 

In the process of hull form optimization, after determining the hull 
form deformation methods and their corresponding design space, a se
ries of new hull forms can be obtained based on the design of experiment 
results, that is, a hull form database is obtained. Consider each new hull 
form as a sample and arrange the three-dimensional grid point co
ordinates of each hull form in the same order, for example xT

i = (xi
1,yi

1,

zi
1,xi

2,yi
2,zi

2,⋯,xi
Np,yi

Np,zi
Np), where Np is the number of grid points on the 

hull surface, a series of column vectors can be got. In order to use a linear 
combination of very few basis vectors to characterize the change of the 
hull form to the initial hull in the design space, the most important thing 
is to determine the basis vectors and the number of basis. 

Obviously, for all samples in the database, we can obtain the average 
hull form (geometric field) x, and regard the geometric field of any 
sample hull form as a linear superposition of the average geometric field 
and an infinite number of unit orthogonal basis modes as follows, 

xi = x +
∑∞

j=1
aijuj (1)  

where 

aij =(xi − x)T uj,
(
ui, uj

)
= δij (2) 

If only M (finite) basis modes u1, u2,⋯, uM are selected, the recon
structed geometric field xrec

i can be expressed as 

xrec
i = x +

∑M

j=1
aijuj (3) 

Because of the truncation of the number of series items, a “cutoff 
error” is produced. Considering that the deviation between the real 
geometric field and the reconstructed geometric field of all samples in 
the database should be as small as possible, the total error EM(u1, u2,⋯,

uM) is measured by the square sum of the modulus length of the error 
vector in Euclidean space, namely 

EM(u1, u2,⋯, uM)=
∑N

i=1

⃦
⃦xi − xrec

i

⃦
⃦2 (4)  

and we can get 

EM(u1, u2,⋯, uM)=
∑N

i=1

⃦
⃦
⃦
⃦
⃦

xi − x −
∑M

j=1
aijuj

⃦
⃦
⃦
⃦
⃦

2

=
∑N

i=1
‖xi − x‖2

+
∑N

i=1

(
∑M

j=1
aijuj

)T(
∑M

j=1
aijuj

)

− 2
∑N

i=1
(xi − x)T

(
∑M

j=1
aijuj

)

(5) 

It can be seen from the above equation that the total error is divided 

into three parts: for a certain sample set, E1 is a constant. Consider the 
remaining two parts: 

E2 =
∑N

i=1

(
uT

1 aT
i1 + uT

2 aT
i2 +⋯+ uT

MaT
iM

)
(ai1u1 + ai2u2 +⋯+ aiMuM)

=
∑M

j=1
uT

j

(
∑N

i=1
aT

ij aij

)

uj

=
∑M

j=1
uT

j

[
∑N

i=1
uT

j (xi − x)(xi − x)T uj

]

uj

=
∑M

j=1

[
∑N

i=1
uT

j (xi − x)(xi − x)T uj

]

uT
j uj

=
∑M

j=1
uT

j

[
∑N

i=1
(xi − x)(xi − x)T

]

uj

(6)  

E3 = − 2
∑N

i=1
(xi − x)T

[
∑M

j=1
(xi − x)T uj

]

uj

= − 2
∑N

i=1

∑M

j=1
uT

j (xi − x)(xi − x)T uj

= − 2
∑M

j=1
uT

j

[
∑N

i=1
(xi − x)(xi − x)T

]

uj

(7) 

Finally, we have 

EM = E1 + E2 + E3

=
∑N

i=1
‖xi − x‖2

−
∑M

j=1
uT

j

[
∑N

i=1
(xi − x)(xi − x)T

]

uj
(8) 

Denote the difference between the geometric field of each sample 
hull form xi and the average geometry x as x̃i = xi − x, and define the 
matrix X̃ = (x̃1, x̃2,⋯, x̃N), then 

X̃X̃
T
=

(

x̃1, x̃2,⋯, x̃N

)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x̃T
1

x̃T
2

⋮
x̃T

N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
∑N

i=1
x̃i x̃T

i =
∑N

i=1
(xi − x)(xi − x̃)T (9) 

Therefore, the total error can be denoted as 

EM =
∑N

i=1
‖xi − x‖2

−
∑M

j=1
uT

j X̃X̃
T
uj (10) 

Assuming that M is certain, the constrained optimization problem on 
the basis u1, u2,⋯, uM can be defined as follows: 

minEM(u1, u2,⋯, uM) =
∑N

i=1
‖xi − x‖2

−
∑M

j=1
uT

j X̃X̃
T
uj

s.t. uT
j uj = 1

(11) 

Using the Lagrange multiplier method, the Lagrange function cor
responding to the above objective function is defined as 

Fig. 1. Geometry model of Wigley.  

X. Liu et al.                                                                                                                                                                                                                                      



Ocean Engineering 237 (2021) 109680

4

L(u1, u2,⋯, uM ; λ1, λ2,⋯, λM)=EM −
∑M

j=1
λj

(
1 − uT

j uj

)
(12) 

Let the partial derivatives of Lagrange function with respect to each 
basis be 0, i.e. 

∂L
∂uj

= 0 (13) 

we have 

X̃X̃
T
uj = λjuj (14) 

In other words, the basis we’re looking for should be the eigenvectors 

corresponding to the eigenvalues of matrix S = X̃X̃
T
∈ ℝ3Np×3Np. 

Generally, there are two ways to determine λj. One is to directly calcu
late the eigenvalue of square matrix S, whose dimension is the number of 
grid point coordinates on the hull surface; the other is to solve the sin

gular value of matrix X̃ (or X̃
T
) according to the relation between the 

singular value of X̃ (or X̃
T
) and the eigenvalue of S. From the perspective 

of improving the efficiency of numerical calculation, since the number of 
grid point coordinates stored in geometric field is generally greater 
(even far greater) than the number of samples in the database, in order 
to calculate the eigenvalue of matrix S, we can solve the singular value 
decomposition of matrix X̃ instead, namely: 

X̃ =UDVT = σ1u1vT
1 + σ2u2vT

2 + ⋯ + σrurvT
r (15)  

where σ1 ≥ σ2 ≥ ⋯ ≥ σr > 0, then we have 

X̃X̃
T
uj =

(
UDVT VDT UT)uj

=
(
UD2UT)uj

= Udiag
(
σ2

1, σ2
2,⋯, σ2

r , 0,⋯, 0
)
UT uj

= σ2
j uj

(16)  

where the basis uj happens to be the j-th column of the matrix U obtained 
by singular value decomposition of X̃. 

Next, the number of intercepted basis modes M should be deter
mined. From the perspective of capturing the total energy (information) 
of the geometric field, the energy contained in the basis uj can be defined 
as the sum of squares of the uj-direction projection of the geometric field 
vector corresponding to each sample: 

∑N

i=1

⃦
⃦
⃦
⃦

(

x̃i, uk

)⃦
⃦
⃦
⃦

2

=
∑N

i=1

⃦
⃦
⃦
⃦
⃦

(
∑∞

j=1
aijuj, uk

)⃦
⃦
⃦
⃦
⃦

2

=
∑N

i=1
a2

ik

=
∑N

i=1

(

x̃T
i uk

)T(

x̃T
i uk

)

= uT
k X̃X̃

T
uk

= σ2
j

(17) 

According to the above formula, we can see that the energy con
tained in the basis uj is exactly the eigenvalue corresponding to the basis 
uj as the eigenvector of matrix S. Therefore, define the percentage of 
energy truncation can be defined as 

En=

∑M

j=1
σ2

j

∑3Np

j=1
σ2

j

× 100% (18)  

where M can be regarded as the smallest positive integer that meets the 
inequality En > 95%. At this point, we believe that the eigenvectors 
corresponding to the first M maximum eigenvalues of matrix S contain 
95% of the geometric field information in the whole database. 

So far, we almost get the reconstructed geometric field after 
dimensionality reduction. In fact, the derivation of KLE given by Diez 
et al. (2015) is based on setting up the energy integral as a functional, 
and uses variational method to obtain the conditions that the basis mode 
vectors should satisfy. In this paper, the so-called POD or PCA method is 
used directly to minimize the overall reconstruction error of the hull 
geometry database, and an optimization problem with constraints can 
be established, and conditions that the basis mode vectors should meet 
can be got finally. It turns out that they are essentially the same. 
Therefore, we can say KLE, PCA, and POD are just called differently in 
different fields, but essentially the same method. 

3. Further discussion on dimensionality reduction of hull form 
optimization design space 

In the following, several important problems arising from the 
dimensionality reduction of hull form optimization design space in the 
early stage are further discussed. 

3.1. Retainability of fixed control points 

When the hull is deformed, it is often required that the grid points at 
some positions cannot be moved, such as the design waterline, middle 
longitudinal section and some transverse sections. Such special positions 
can be limited by using the traditional hull form deformation methods to 
ensure that the grid points do not move at these positions. However, 
after the dimensionality reduction of the design space, if the new hull 
form controlled by the new design variables has some slight deviation in 
the grid points’ coordinates of special positions, it will make the 
deformed hull do not meet the design requirements. 

If the coordinate in a certain direction of one grid point needs to 
remain unchanged, the coordinate of this position (such as the k-th co
ordinate, 1 ≤ k ≤ 3Np) in each sample hull form vector xi obtained by 
the original hull form deformation methods remains unchanged, then 
the coordinate of this position in the average new hull form vector x is 
also the original value, and the columns of the matrix X̃ = (x̃1, x̃2,⋯, x̃N)

are defined by x̃i = xi − x. 
So, we have 

X̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x11 x12 ⋯ x1,N
x21 x22 ⋯ x2,N
⋮ ⋮ ⋮ ⋮
xk,1 xk,2 ⋯ xk,N
⋮ ⋮ ⋮ ⋮
x3Np,1 x3Np,2 ⋯ x3Np,N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x11 x12 ⋯ x1,N
x21 x22 ⋯ x2,N
⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮
x3Np,1 x3Np,2 ⋯ x3Np,N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(19)  

then 

X̃X̃
T
=

⎡

⎣
* * * *
0 0 ⋯ 0
* * * *

⎤

⎦

⎡

⎢
⎢
⎣

* 0 *
* 0 *
* ⋮ *
* 0 *

⎤

⎥
⎥
⎦ (20) 

Assume α be the eigenvector of the matrix X̃X̃
T 

with respect to 
eigenvalue λ, then 

⎡

⎣
* * * *
0 0 ⋯ 0
* * * *

⎤

⎦

⎡

⎢
⎢
⎣

* 0 *
* 0 *
* ⋮ *
* 0 *

⎤

⎥
⎥
⎦

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

α1
α2
⋮
αk
⋮
α3Np

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= λ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

α1
α2
⋮
αk
⋮
α3Np

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(21) 

Considering that the eigenvalues corresponding to each basis mode 
obtained by dimensionality reduction are all positive real numbers, it is 
only necessary to consider λ > 0, then 
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

*
*
⋮
0
⋮
*

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= λ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

α1
α2
⋮
αk
⋮
α3Np

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(22) 

Therefore, we get 

αk = 0 (23) 

That is, the k-th coordinate of the corresponding basis vector is 0. For 
arbitrary reconstructed new hull form xrec

i after dimensionality reduc
tion, according to Eq. (2), it is easy to know that the k-th coordinate is 
still the original value. Therefore, for any reconstructed new hull form, 
the fixed points for the primitive hull form deformation methods keep 
unchanged after dimensionality reduction. 

3.2. Irrelevance of the relative order of data to dimensionality reduction 
results 

When the hull is deformed, the coordinates of the grid points on the 
hull surface will change to some extent, but the topological relationship 
among the grid points will not change. However, in actual dimension
ality reduction operation, there is no clear rule for the sequence of each 
new hull form in the database when the coordinates are written into 
column vector, and there is also no clear rule for the arrangement of 
different new hull forms, that is, the column vectors. As a result, it is 
necessary to discuss whether the uncertainty of relative position will 
have an impact on the new reconstructed hull forms obtained by 
dimensionality reduction of the design space. 

Of course, the first thing we must ensure is that the orders of each 
new coordinate point for each new hull form and original hull form are 
exactly the same. Under this premise, the so-called “uncertainty of 
relative position” is actually the uncertainty of the relative position of 
the rows or columns in the matrix X̃ = (x̃1, x̃2,⋯, x̃N). 

Without loss of generality, the following analysis will only take the 
uncertainty of the relative position of the rows as an example. 

Assuming that the deviation matrices obtained are X̃ and X̃
′

respec
tively before and after exchanging the locations of the coordinates of 

each new hull form, then it’s obviously that X̃
′

is the row transformation 
of X̃, which is the result of several elementary row transformations that 
only exchange certain two rows, and it can be expressed in matrix form 
as 

X̃
′

=HnHn− 1⋯H2H1X̃ = HX̃ (24)  

where H− 1
k = HT

k ,k = 1, 2,⋯,n. 
Then we have 

H− 1 =HT (25) 

Let S′

= X̃
′

X̃
′ T

, then 

S′

= X̃
′

X̃
′ T

= HX̃X̃
T
HT

= HX̃X̃
T
H− 1

= HSH− 1

(26) 

Therefore S′

∼ S, and the eigenvalues of the two matrices are the 
same. Assume α be the eigenvector of the matrix S with respect to 
eigenvalue λ, i.e. 

Sα= λα (27)  

then 

S′Hα=HSα = λHα (28) 

That is to say, Hα is the eigenvector of the matrix S′ with respect to 
eigenvalue λ, and Hα is just the basis mode after exchanging locations of 
the coordinates of α. Therefore, we can know that after exchanging the 
locations of the coordinates of each new hull form, the order of recon
structed hull form vector by design-space dimensionality reduction has 
the same change, but they essentially both represent the same new hull 
form. Consequently, the relative order of data is irrelative to the 
dimensionality reduction results. 

Admittedly, the dimensionality reduction process cannot be directly 
guided by the proof given above. If not given, however, we can’t ensure 
theoretically that different researchers use the same database (such as 
the new samples ship hulls and the corresponding geometrical fields) to 
do the dimensionality reduction operation and have the same dimen
sionality reduction results under different data arrangements. This proof 
demonstrates the irrelevance of data order, allowing researchers to set 
the order of data arbitrarily. 

3.3. Decision of the new design space range after dimensionality reduction 

After dimensionality reduction of the design space, the dimension
ality of the design space reduces, and the design variables are changed 
from the original hull form deformation parameters to the coefficients of 
the basis modes. In order to ensure that the deformation in the new 
design space after dimensionality reduction does not exceed the defor
mation range controlled by the original design space, the ranges of new 
design variables after dimensionality reduction need to be further 
determined. Otherwise, it is very likely to produce unreasonable (un
real) new hull forms. 

According to Eqs. (2) and (3), it is easy to know that the approximate 
range of the basis coefficient is 

aj ∈

[

min
xi∈X

(xi − x)T uj,max
xi∈X

(xi − x)T uj

]

, i= 1, 2,⋯,N (29) 

That is, the value range of each basis coefficient can be estimated 
through N new sample ship hull forms. In order to ensure the accuracy of 
range estimation, N new samples in the database should cover the 
original design space as much as possible. Therefore, the “dense sam
pling” strategy is adopted in this paper, for example N = 5000, and the 
basis coefficients obtained from 5000 new sample hulls are projected in 
two dimensions to obtain the spatial distribution of the basis co
efficients, and value ranges of the new design variables in the 
dimensionality-reduction design space can be determined. As a matter of 
fact, there may be additional constraints on the design variables. 
Therefore, the new design space may no longer be a regular hypercube 
design space. If one ignores this, the new design space (hypercube) may 
include some “new” ship forms, which may be beyond the possible hull 
deformations controlled by the original design space and may not satisfy 
some geometric constraints of hull deformation controlled by the orig
inal design space, such as the relative change of wet surface area and 
other constraints, or may not be like practical hull forms, such as having 
strange bulbous bow shape. 

Therefore, a practical method of two-dimensional projections be
tween the new design variables will be proposed in this paper to keep the 
hull deformation in the new design space within the limits of the original 
design space as much as possible. Later, in the new design variable with 
constraints, in order to ensure no computational costs waste, the method 
of Sequential Constrained Monte-Carlo (Golchi et al., 2016) is used to do 
the design of experiment in the constrained design space. 

4. Application in design-space dimensionality reduction in 
earlier stage of hull form optimization 

In the following, we give an example of using the linear dimen
sionality reduction method to reduce the dimensionality of the hull form 
optimization design space to illustrate its applicability in earlier stage of 
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hull form optimization. 

4.1. Basic information of the mother ship 

Wigley ship is a kind of parabolic mathematical hull form commonly 
used in the field of ship research, which is regarded as the initial 
(mother) ship in this paper. The hull is slender, which conforms to the 
small perturbation assumption of linear potential theory, and has 
abundant experimental test results to refer. The ship has no specific 
design speed and can be numerically simulated over a wide range of 
speed and compared with the experimental results. Its three- 
dimensional model is shown in Fig. 1, and the main particulars are 
shown in Table 1. 

Since it conforms to small disturbance assumption of the linear 
theory, when it sails in calm water under high speed, its free surface 
wave elevation is obvious. At this time, the wave-making drag accoun
ted for the proportion of the total drag is relatively big, and the 
potential-flow theory, such as Neumann-Michell (NM) potential flow 
theory (Noblesse et al., 2013), can be used for rapid prediction of 
wave-making drag. Furthermore, the 1957 ITTC plate frictional drag 
coefficient formula can be used to get the approximate frictional drag, 
and the total drag of the ship hull based on the potential flow theory can 
be got finally, which is the sum of the wave-making drag and the fric
tional drag. 

4.2. Definition of optimization problem 

In this section, after generating a basic bulbous bow on the basis of 
the original Wigley ship (Liu et al., 2019), the total drag of a modified 
Wigley ship can be further optimized under the speed Froude number 
0.3. The Radial Basis Function (RBF) method is used to carry out the hull 
form deformation at the bulbous bow, and the shifting method is used to 
adjust the Section Area Curve (SAC) of the whole ship, where the 
cross-section of the front and aft halves can be independently translated 
along the direction of the ship length, as shown in Fig. 2. 

The Sobol (1979) sampling method is adopted to sample in the 
7-dimensional design space. The ranges of design variables are shown in 
Table 2. All the range values of variables are dimensionless values with 
respect to the ship model waterline length. Wherein, x corresponds to 
the coordinate of point P1 in the direction of the ship length, z corre
sponds to the coordinate of point P1 in the direction of ship draught, and 
y corresponds to the coordinate of point P2 in the direction of the ship 
width in Fig. 2. It should be noted that the moveable control points along 
the ship width are moved symmetrically about the central sheer plane of 
the hull. Using the RBF deformation method, these deformation pa
rameters control the length, height and width of the bulbous bow 
respectively. 

For the shifting method (Yang et al., 2016), modified function g is 
introduced to modify the SAC of ship hull and new hull forms can be 
obtained by shifting hull lines of each station along the x direction: 

g=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1

[

0.5
(

1 − cos 2 π x − α2

α2 − x1

)]0.5

, x1 ≤ x < α2

− α1

[

0.5
(

1 − cos 2 π x − α2

α2 − x2

)]0.5

, α2 ≤ x ≤ x2

0 , elsewhere

(30)  

where x1, x2 represents the start and end points of the shifting range in x 
direction, α1 represents the amplitude of the modified function, and α2 
represents the fixed point (section) in the shifting range. The SAC of the 
initial hull and the deformed hull is shown by the black dot line and 
green solid line in Fig. 3. 

For the optimization problem here, there exist two shifting regions, 
namely fore part (region 1) and aft part (region 2). In shifting region 1, 
according to Eq. (30), the modified function g1 can be written by setting 
x1 = 0, x2 = 0.5. Likewise, in shifting region 2, according to Eq. (30), 
the modified function g2 can be written by setting x1 = − 0.5,x2 = 0. 

Here, α1 and α3 represent the amplitudes of the modification 

Table 1 
Main particulars of Wigley.  

Parameter Symbol and unit Value 

waterline length Lwl (m) 4 
breadth B (m) 0.4 
draught T (m) 0.25 
molded depth D (m) 0.41 
drainage volume ∇(m3)  0.177 
wet surface area S (m2) 2.379  

Fig. 2. Deformation of a modified Wigley based on RBF and shifting methods.  

Table 2 
Design variables and their ranges.  

Design 
variable 

Lower 
bound 

Upper 
bound 

Note 

x 0.515 0.545 Coordinate of P1 in x direction 
z − 0.049 − 0.0344 Coordinate of P1 in z direction 
y 0.005 0.021 Coordinate of P2 in y direction 
α1 − 0.02 0.02 Amplitude of the modification function 

for the fore half body 
α2 0.2 0.3 Location of fixed cross section for the 

fore half body 
α3 − 0.02 0.02 Amplitude of the modification function 

for the aft half body 
α4 − 0.3 − 0.2 Location of fixed cross section for the 

aft half body  

Fig. 3. SAC comparison of the original and deformed hulls.  
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functions for SAC of the fore and aft halves in the shifting method, while 
α2 and α4 represent the locations of the fixed cross sections for the fore 
and aft halves in shifting method. 

The objective function of this optimization problem is the calm- 
water total drag Rt at the sailing Froude number 0.3, as shown below: 

min fobj =Rt (31)  

4.3. Optimization results and analysis with design-space dimensionality 
reduction 

According to the deformation methods and the design variables, the 
original design space is determined, and dense samplings by Sobol 
method can be got, then a large number of new hull forms can be further 
obtained according to the design variable values of the sample points 
within the design space, which can build a geometry field database in 
order to use in the design-space dimensionality reduction process. 

Firstly, the influence of different dense sampling numbers on 
dimensionality reduction of design space should be discussed. 

Set N = 1250, 2500, 5000, 10000 respectively. After dimensionality 
reduction by these numbers of new sample hulls, and combining with 

Fig. 4. The variation of En with M with different sample numbers N.  

Fig. 5. Basis of each mode obtained by different sample hulls’ sum N.  
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Eq. (18), the variation of En with the number of bases M and different 
sample numbers N can be obtained, as shown in Fig. 4. 

As can be seen from Fig. 4, for a large sample number N, selecting 
M = 5 can satisfy the energy truncation percentage greater than 95%. 
That is to say, we can think that the eigenvectors corresponding to the 
first five maximum eigenvalues of matrix S contain 95% of the infor
mation of all possible changes of hull forms in the original design space. 

The basis vectors (modes) obtained by dimensionality reduction 
using the database constructed by different sample points N are shown 
in Fig. 5. For convenience of display, the components of three directions 
in the spatial Cartesian coordinate system are given on each grid point of 
the original modified Wigley ship hull. Since the length (Euclid-norm) of 
each basis vector is limited to 1, when reflected on the hull surface, the 
absolute coordinates of each grid point values are quite small. Therefore, 
according to the maximum of each basis coefficient, each basis vector 
times the maximum of the corresponding basis coefficient, which can 
also show the distribution law of the grid point coordinates change (i.e. 
the hull geometric deformation) corresponding to different basis modes. 
It is not difficult to find that when N is greater than 2500, the pictures 
tend to be consistent, indicating that the number of dense sampling N is 
sufficient. 

We select N = 5000 as the sample number of the database, and the 
obtained basis modes are used for further study. Table 3 below gives the 
approximate value ranges of design variables corresponding to the new 
design space after dimensionality reduction obtained from Eq. (29). 

Taking a deformed hull form in the database as an example, the in
fluence of different mode number M on the hull form reconstructed error 
is analyzed. As shown in Fig. 6, the solid black line represents an initially 
modified Wigley ship hull, and the dotted red line represents a deformed 
ship hull in the database, which is controlled by a total of 7 design 
variables of RBF and shifting methods. 

Since K = 1, 2, 3, 4, 5 can be chosen, the contribution of each basis 
mode to the final reconstruction of the hull form is analyzed below. Set 
K = 1, 2, 3, 4, 5 respectively, and the reconstructed hull form can be 

obtained by the following equation: 

xrec(K)= x +
∑K

j=1
ajuj (32) 

As shown in Fig. 7, the body line comparison and absolute error of 
the grid point coordinates in three directions (reconstructed deformed 
hull in red minus target deformed hull in black) of the two hulls are 
given. Due to the fact that before and after deformation of a hull, the 
topological relationship of the grid points between the two hulls remains 
the same, for display convenience, the absolute error of the grid point 
coordinates in three directions of the two hulls is shown on the grid 
points of the preliminary modified Wigley hull (with an initially- 
generated bulbous bow). It can be seen that with the increase of the 
number of selected basis modes, the absolute error between the real and 
reconstructed deformed hull decreases gradually. 

Table 3 
New design variables and their ranges after dimensionality reduction.  

Design variable Lower bound Upper bound Note 

a1 − 0.273 0.177 coefficient of basis u1 

a2 − 0.120 0.111 coefficient of basis u2 

a3 − 0.133 0.086 coefficient of basis u3 

a4 − 0.073 0.073 coefficient of basis u4 

a5 − 0.061 0.061 coefficient of basis u5  

Fig. 6. Comparison of transverse hull lines of initially modified and new 
deformed hulls. 

Fig. 7. Hull line comparison (left) and coordinate error (right) of the initial and 
reconstructed hulls. 
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With no more than 5 basis modes selected, the final dimensionality 
reduction effect is that the dimensionality of the design space is reduced 
from 7 to no more than 5. Then, the total drag optimization in the new 
design space, which is constituted by bases (no more than the first five) 
that are obtained by dimensionality reduction, can be done. 

According to the value range of each variable in the design space 
after dimensionality reduction obtained above, Optimal Latin 

Hypercube Sampling (OLHS) designs (Liu et al., 2018) can be carried out 
for the new design space with M = 1, 3, 5, and 20, 60, 100 sample points 
can be obtained respectively. 

It should be noted, however, that the OLHS approach picks samples 
within a regular hypercube design space, which, based on previous 
analysis, may be larger than the actual feasible range, but it is difficult to 
obtain their complex relationship theoretically. From the perspective of 
practical application, based on the dense sampling with N = 5000, 5000 
reconstructed new hull forms with their corresponding five new design 
variable values can be obtained. After doing projections of the five 
design variables in two-dimensional spaces, we can almost get new 
design variables’ spatial distributions, and a new “boundary” can be 
regarded as a new constraint among new design variables, although this 
may lead to a more “conservative” new hull form. 

Taking M = 5 as an example, the two-dimensional projections of the 
corresponding basis coefficients of 5000 new samples after dimension
ality reduction are respectively given, as shown in the blue dots in Fig. 8. 
It can be seen clearly that after the dimensionality reduction, the new 
design space is no longer a hypercube. For the basis modes themselves, 
however, they do not change depending on whether their coefficient 
ranges constitute a hypercube. Therefore, if we use OLHS method to 
obtain the new hulls without considering the constraints, as shown in 
the 100 green points in Fig. 8, there will be some new hull forms out of 
the real design space. Predictably, they are beyond the scope of defor
mation in original design space and may be unrealistic hull forms. 

It can be seen from Fig. 8 (b), (g), and (i) that a relatively conser
vative irregular design space with constraints among design variables 
can be determined through the “boundary lines” of two-dimensional 
projections. Constraints can be regarded as linear inequality con
straints in the form as follows: 

f1(a1, a3) ≤ 0
f2(a1, a3) ≤ 0
f3(a1, a3) ≤ 0
f4(a1, a3) ≤ 0
f5(a2, a5) ≤ 0
f6(a2, a5) ≤ 0
f7(a3, a5) ≤ 0

(33) 

In this new irregular design space, 5-dimensional new design vari
ables with a number of 100 can be obtained through the SCMC method 
with the use of maximum-minimum distance criterion, which fully 
satisfy all the above inequalities, making full use of the design-space 
boundaries and avoiding the waste of calculation resources. 

Shown above, the constraints between the first five basis coefficients 
(a1, a2, a3, a4, a5) have already been obtained by two-dimensional pro
jections. For the cases of M = 1 and M = 3, only a1 and (a1, a2, a3)

changes. Specifically, for the case of M = 1, only the maximum and 
minimum values of the projection a1 need to be given through dense 

sampling, that is a1 ∈

[

min
xi∈X

(xi − x)Tu1,max
xi∈X

(xi − x)Tu1

]

,i = 1,2,⋯,N. For 

the case of M = 3, after roughly giving maximum and minimum values of 
(a1, a2, a3) like above, the constraint relationship between the three 
coefficients needs to be given through two-dimensional projections of 
(a1,a2),(a1,a3),(a2,a3), which can be seen from Fig. 8 (a), (b) and (e) in 
the case of M = 5, so the projections of (a1, a2), (a1, a3), (a2, a3) are not 
given repeatedly. 

Therefore, after design-space dimensionality reduction, the new hull 
form optimization problem whose design-space dimensionalities are 
M = 1, 3, 5 respectively, can be defined as follows: 

min Rt =Rf + Rw (34)  

s.t. 

Fig. 8. Relationship among the new design variables.  
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(M = 1) (M = 3) (M = 5)

a1 ∈ [− 0.273, 0.177]

a1 ∈ [− 0.273, 0.177]
a2 ∈ [− 0.120, 0.111]
a3 ∈ [− 0.133, 0.086]
f1(a1, a3) ≤ 0
f2(a1, a3) ≤ 0
f3(a1, a3) ≤ 0
f4(a1, a3) ≤ 0

a1 ∈ [− 0.273, 0.177]
a2 ∈ [− 0.120, 0.111]
a3 ∈ [− 0.133, 0.086]
a4 ∈ [− 0.073, 0.073]
a5 ∈ [− 0.061, 0.061]
f1(a1, a3) ≤ 0
f2(a1, a3) ≤ 0
f3(a1, a3) ≤ 0
f4(a1, a3) ≤ 0
f5(a2, a5) ≤ 0
f6(a2, a5) ≤ 0
f7(a3, a5) ≤ 0 

The hydrodynamic performance evaluation tool used in this opti
mization problem is the in-house solver NMShip-SJTU (Liu et al., 2020) 
based on the NM potential flow theory. Fig. 9 shows the comparison of 
Wigley ship’s free surface wave elevation at Fr = 0.3, which is calculated 
by using in-house NMShip-SJTU and RANS-based naoe-FOAM-SJTU 
(Shen et al., 2015) solvers. It can be seen that the positions of the bow 
and stern wave systems calculated by the two solvers are basically the 
same, and the height ranges of the peaks and troughs are also roughly 
the same, indicating that using potential flow theory can efficiently and 
accurately capture the calm-water free surface wave elevation. 

In addition, according to the experimental test data of Wigley ship 
model given by Ship Research Institute (SRI), the drag coefficient 
calculated by NMShip-SJTU is further verified. Among them, NMShip- 
SJTU is used to get the wave-making drag coefficient Cw, and 1957 
ITTC formula is used to calculate the frictional drag coefficient Cf , and 
the total drag coefficient Ct is obtained by adding the two. The con
version formulas of total, wave-making, and frictional drags Rt,Rw,Rf 

and their corresponding coefficients Ct,Cw,Cf are as follows, 

Ct =
Rt

1
2 ρU2S

(35)  

Cw =
Rw

1
2 ρU2S

(36)  

Cf =
Rf

1
2 ρU2S

(37)  

where ρ,U, S represent the fluid (water) density, ship speed, and static 
wet surface area, respectively. 

As can be seen from Fig. 10, the total drag coefficient measured by 
the experiment and numerical simulation show nearly the same trend 
with the growth of Froude number, and the difference between the two 
results is small at medium and high speed (such as Fr more than 0.3). 
Therefore, NMShip-SJTU can well predict the total drag coefficient of 
the Wigley hull form at medium and high speed, which can be used for 
total drag optimization. 

NMShip-SJTU is used to evaluate the resistance performance of the 
new sample hull forms in the original design space before dimension
ality reduction and the three new design spaces after dimensionality 

reduction, and the surrogate models of total drag and corresponding 
design variables are constructed. The optimal hulls can be finally ob
tained respectively by single-objective Genetic Algorithm (GA), whose 
optimization parameters are shown in Table 4 below. 

The design variable values corresponding to the optimal hulls in the 
four design spaces are then obtained, as shown in Table 5 below. Herein, 
KLE-1, KLE-3 and KLE-5 represent the optimal hull in 1-, 3-, and 5- 
dimensional design space after dimensionality reduction, and Optimal 
represents the optimal hull in original 7-dimensional design space. 

Comparison of transverse hull lines of each optimal hull and initial 
hull is shown in Fig. 11. In general, with the increase of design-space 
dimensionality, the change of the optimal hull compared to the initial 
hull increases, and the optimal hull in the 5-dimensional design space is 
the closest to the optimal hull in the original 7-dimensional design 
space. 

The total drags for the optimal hulls are further evaluated by 
NMShip-SJTU, which are compared with the initial hull. 

Fig. 12 shows the comparison of the free surface wave elevations by 
NMShip-SJTU. It can be clearly seen that, with the increase of design- 
space dimensionality, the free surface wave elevation of the corre
sponding optimal hull decreases more sharply, implying that its wave- 
making drag also reduces gradually. Relatively speaking, the optimal 

Fig. 9. Comparison of the wave elevation by two solvers.  

Fig. 10. Comparisons of the experimental and computational results of drag 
coefficients. 

Table 4 
Single-objective optimization parameters setup of 
Wigley ship.  

Parameter Value 

population 50 
maximum iteration 300 
crossover rate 0.8 
mutation rate 0.2  

Table 5 
Comparison of the optimal hulls’ design variable values.  

Design variable KLE-1 KLE-3 KLE-5 Optimal 

a1 or x 0.1784 0.1470 0.1518 0.5290 
a2 or z / − 0.0958 − 0.0818 − 0.0375 
a3 or y / 0.0305 0.0273 0.0050 
a4 or α1 / / − 0.0729 0.0200 
a5 or α2 / / − 0.0010 0.2000 
α3 / / / 0.0200 
α4 / / / − 0.2000  
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hull in the 5-dimensional design space is closest to the optimal hull in the 
original design space from the view of the free surface wave elevation. 

Fig. 13 shows the comparison of dynamic pressure distribution on 
the hull surface by NMShip-SJTU. It can also be seen that with the in
crease of design-space dimensionality, the area of high- and low- 
pressure regions on the hull surface of the corresponding optimal hull 
decreases gradually. It can be predicted that the optimal hull in the 5- 
dimensional design space has a fewer total drag than that in the 1- 
dimensional or 3-dimensional design space. 

The viscous CFD solver naoe-FOAM-SJTU is used for further verifi
cation of each optimal hull. Table 6 below gives the calm-water total 
drags of the optimal hulls and the initial hull by naoe-FOAM-SJTU. It can 
be seen that the optimal hull form with relatively better resistance 
performance can be obtained in the 5-dimensional design space. For the 
optimization problems in this paper, the maximum relative changes in 
the wet surface area and the drainage volume of the hull are 3% and 5%, 
respectively. It can also be seen from Table 6 that, due to the fact that the 
optimal hulls all have a generated bulbous bow, the wet surface areas of 
the optimal hulls are all increased compared with the initial Wigley hull 
without a bulbous bow; as for the drainage volume, however, since the 
comprehensive effect by the shifting and RBF method, the KLE-5 and 
Optimal hulls have a bit smaller drainage volumes. To sum up, for the 
optimal hulls, their relative changes in wet surface area and drainage 
volume are all less than 2% and 3%, respectively. 

Fig. 14 shows the comparison of free surface wave elevation obtained 
by using naoe-FOAM-SJTU. It can be seen from Fig. 14 that the decrease 
trend of the optimal hull’s free surface wave elevation is consistent with 
that of the potential-flow-based calculation results, and with the in
crease of the design-space dimensionality, the decrease of the corre
sponding optimal hull’s free surface wave elevation is more severe. 

Fig. 15 shows the comparison of dynamic pressure distribution on 
the hull surface obtained by using naoe-FOAM-SJTU. The decrease trend 
of the area of high- and low-pressure regions calculated by potential- 
flow and viscous-flow solvers are consistent as a result. 

In general, the NMShip-SJTU solver can be used to optimize the total 
drag of the hull form at medium and high speeds, and the optimization 
results are verified by the viscous CFD solver, showing that the opti
mization effect of the total drag is obvious. In addition, the design-space 
dimensionality reduction technique can reduce the huge computational 
cost of hydrodynamic evaluation and obtain the optimal hull with pretty 
good resistance performance. 

It should be noted that, since the hull form in the design space after 
dimensionality reduction is basically within the possible deformation 
range in the original high-dimensional design space, the smoothness of 
the hull grid mainly depends on the rationality of the deformation 
method and the selection of design variables in the original design space. 
The mother ship adopted in this paper is Wigley ship. After generating 
an initial bulbous bow by RBF method, the modified Wigley ship hull is 
further optimized. In the process of deformation, the NURBS surface was 
firstly deformed, which was mentioned in by Liu et al. (2019). Local 
refinement of the control points of the NURBS surface at the bow part 
was carried out to ensure that after the bulbous bow was generated, the 
hull surface mesh converted by the new hull NURBS surface had high 
quality and good smoothness. Therefore, when we do further optimi
zation of the modified Wigley hull by RBF and shifting deformation 
methods, the deformed hull surface mesh will still have good smooth
ness. For actual ship form with complex bow and stern shapes, the 
amount of grid points on the hull surface may be relatively larger, so the 
dimensionality of the constructed matrix will increase, which will in
crease the time required for dimensionality reduction, but the essence of 

Fig. 11. Hull line comparisons of initial and optimal hulls.  
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the linear reduced order method keeps unchanged. 
It can be obviously seen from the body lines of the optimal hulls that 

the hull grids and NURBS surfaces have good smoothness, which is 
meaningful to the numerical simulation (hull grids) and the actual 
construction (hull NURBS surface for IGES file format). What’s more, 
from the view of the corresponding calculated flow fields before and 
after optimization, since the flow fields are smooth, the calculated hull 
grids are smooth enough. 

Last but not the least, since the 5-dimensional design space can 
capture 95% deformation information of the 7-dimensional design 
space, 5% information has been lost. Furthermore, considering that the 
new design variables (basis coefficients) have some constraints, the 2- 
dimensional projections are done to see the linear constraints adding 
into the sampling method and optimization algorithm, however, this 
operation is relatively conservative. Therefore, the optimal hulls in the 
7-dimensional design space and the 5-dimensional design space have 
some differences in the total drag reduction rate, shown in Table 6. 
However, in the optimization case with a 7-dimensional design space, 
140 sample hulls need to be evaluated to guarantee the fidelity of the 
Kriging (Krige, 1951) surrogate model, while in optimization cases with 
1, 3, 5-dimensional design spaces, only 40, 60, 100 sample hulls are 
needed. That is to say, the computational cost can have a 28.6% 
reduction in 5-dimensional design space, which will be much more 
beneficial in the viscous-flow-based hull form optimization problems, 
although its optimal hull KLE-5 has a 2.7% total drag difference with the 
Optimal hull. After comprehensive consideration of optimization effec
tiveness and efficiency, the new 5-dimensional design space can be 
regarded as the best design-space dimensionality reduction result. 

Fig. 12. Wave elevation comparisons of initial and optimal hulls by NMShip- 
SJTU (Unit: m). 

Fig. 13. Pressure comparisons of initial and optimal hulls by NMShip-SJTU 
(Unit: Pa). 

Table 6 
Comparison of the hydrostatic parameters and total drag of initial and optimal 
hulls.  

Hull 
form 

Static wet 
surface area S/ 
m2 

Static drainage 
volume ∇/m3  

Total 
drag Rt/N 

Total drag 
reduction rate 

Initial 2.379 0.177 20.52 – 
KLE-1 2.430 0.179 18.75 8.60% 
KLE-3 2.430 0.178 18.4 10.30% 
KLE-5 2.427 0.176 18.2 11.30% 
Optimal 2.397 0.173 17.65 14.00%  
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5. Application of linear dimensionality reduction method in 
multi-physics field learning in the later stage of hull form 
optimization 

The optimization example in the previous section presents a 
Simulation-Based Design (SBD) optimization process which is widely 
used nowadays. There is no doubt that for hull form optimization, the 
resistance performance is a crucial item for various hydrodynamic per
formances of ships. However, in SBD optimization process, after doing 
the hydrodynamic evaluations of each new hull form, only a certain or 
some performance index values such as total drag, sinkage or trim values 
are extracted for further optimization to obtain the optimal hull(s), 
which does not make full use of calculated multi-physics field results of 
the samples. For instance, for the resistance performance evaluation, the 
free surface wave elevation and pressure distribution on hull surface can 
be learned, to analyse the main modes of the flow and the influence of 
hull form deformation to the flow field, and then to have further un
derstanding of a given hull form deformation design space. Furthermore, 
according to the existing database of new hull forms, fast hydrodynamic 
performance prediction, especially the flow field prediction, can also be 
made for any new hull in the design space. 

5.1. Multi-physics field database construction 

The basic principle of dimensionality reduction learning for 
geometric-physical fields is almost the same as the dimensionality 
reduction techniques used previously in design space. The main differ
ence between the two is that, in the database construction of the 
geometrical-physical field, the information contained in each new 
sample hull is not only the variation of grid point coordinates of the hull, 
but also the wave height of the free surface and the dynamic pressure 
distribution on the hull surface, so the vector can be written as xT

i = (xi
1,

Fig. 14. Wave elevation comparisons of the optimal hulls by naoe-FOAM-SJTU 
(Unit: m). 

Fig. 15. Pressure comparisons of initial and optimal hulls by naoe-FOAM-SJTU 
(Unit: Pa). 
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yi
1,zi

1,⋯,xi
Np,yi

Np,zi
Np,ηi

1,ηi
2,⋯,ηi

Nf ,p
i
1,pi

2,⋯,pi
Np), where Np,Nf are the grid 

point numbers of the hull surface and free surface, respectively. When 
doing database construction, it should be noted that it is best to obtain 
the dimensionless quantity of the geometric field and each physical field 
in the scale of the ship model. Specifically, some equations can be used 
as follows: 

x=
X

Lwl
(38)  

y=
Y

Lwl
(39)  

z=
Z

Lwl
(40)  

η= Н
U2/

g
(41)  

p=
P

ρU2 (42) 

There are two main reasons for this. One is to prevent the phenom
enon of “large numbers eat the small”: for a ship model sailing in me
dium or high speed, from a purely numerical point of view, if we all use 
standard international units to measure, compared with the dynamic 
pressure on the hull surface, the free surface wave height is quite small. 
Therefore, if the corresponding vector of each new hull form in the 
database contains the real values of the multi-physics field, the dimen
sionality reduction field learning can be completely subject to the 
pressure distribution, and the information of hull geometrical changes 
and free surface wave elevation may be ignored, and it’s unlikely to 
reach the purpose of the entire geometrical-physical field learning. By 
making all the above physical quantities dimensionless, they can be 
limited to a very small numerical range, which weakens the possibility 
of “large numbers eat the small” phenomenon to a certain extent. The 
other is that it is convenient for physical field data acquisition at 
different ship model scales: through dimensionless operation to the 
sample new hulls in the database for geometrical-physical fields, after 
field learning, the multi-physics field can be quickly forecast for any new 
hull form within the design space, and the fields are all dimensionless 
values with respect to the ship model waterline length. If real values of 
the multi-physics field for a certain ship model length is required, the 
dimensionless quantities can be converted to real values just according 
to the above Eqs. 38–42, that is to say, the dimensionless quantity has a 
wider range of generality, which is not constrained by a certain geo
metric model scale. 

For the 140 new sample hulls of the above modified Wigley ship in 
the original 7-dimensional design space, the geometric and physical 
field results obtained by NMShip-SJTU are integrated into the multi- 
physics field learning database. The example grid points contained in 
the database are shown in Fig. 16, which are required for the potential- 
flow-based calculation. 

Considering the symmetry of the geometrical-physical field about the 
central sheer plane, the calm-water resistance evaluation is carried out 
by the half-field calculation, as shown in Fig. 16, where the number of 
free surface grid points is 24460, and the number of hull surface grid 
points is 8120. Therefore, for the multi-physical field learning of the 
calm-water resistance optimization database, including hull geometry, 
hull surface dynamic pressure distribution and free surface wave 
elevation, the database contains 140 new hull forms, and the number of 
data points containing multi-physical field information of each new hull 
is 24460+ 4× 8120 = 56940. 

5.2. Influence of mode order on multi-physics field reconstruction effect 

Firstly, according to the existing new sample hulls in the database, 

the influence of the mode order M on the flow field reconstruction effect 
is discussed, and the required mode order can be determined. The 
changes of arithmetic square root (arranged from largest to smallest) of 
the eigenvalue and energy proportion corresponding to each mode 
contained in the database are shown in Figs. 17 and 18 respectively. 

As can be seen, in order to capture 99% of the total multi-physics 
field information, the first 10 modes should be selected. The mean 
flow field and first 10 basis modes are shown in Fig. 19 below. 

It is obvious that with the increase of M, the amplitude of free surface 
wave height and hull surface pressure corresponding to the basis mode 
decreases gradually on the whole. 

Fig. 16. Calculation mesh example of NMShip-SJTU.  

Fig. 17. Changes of eigenvalues corresponding to each mode.  

Fig. 18. Changes in the energy proportion En of the first M several modes.  
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Define relative error er for the reconstruction (or prediction) error of 
the dimensionless multi-physics field (η̃, x̃, ỹ, z̃, p̃) after dimensionality 
reduction and the real field (η, x, y, z, p) of a certain new hull. To be 
specific, it is the arithmetic square root of ratio of the sum of squares of 
information difference (total error energy) to the real multi-physics field 
information (total energy), that is   

For each sample in the database, the change relationship between its 
relative error er and M is measured. Six samples are randomly selected 
from the database, and the relationship is shown in Fig. 20. 

It can be found that, with the increase of M, the relative error of the 
reconstructed field corresponding to each new hull decreases monoto
nously, and when M reaches 10, the relative error reaches less than 

0.5%, indicating that the reconstructed field has high credibility. 
Taking Model 3 as an example, the absolute error of the recon

structed flow field with M changing is shown in Fig. 21. It can be intu
itively seen that the total absolute error of multi-physical fields 
decreases gradually with the increase of M. 

5.3. Influence of sample number on multi-physics field reconstruction 
effect 

Secondly, according to the existing new sample hulls in the database, 
the influence of sample number N on the multi-physics field recon
struction effect is discussed to determine whether the number of existing 
samples is sufficient. Therefore, select 2500 or 5000 sample points in the 
original design space by Sobol method, which correspond to 2500 or 

Fig. 19. Mean flow field and first 10 basis modes.  
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5000 new hull forms, and do the resistance performance evaluations of 
the new hulls by NMShip-SJTU to build the two new databases, and do 
the dimensionality reduction multi-physics field learning using the two 
databases. The variation of En with M with different sample numbers N 
is shown in Fig. 22. 

It can be seen that the three change curves almost coincide, indi
cating that with the increase of M, the change of the proportion of the 
total energy truncation of multiple physical fields is almost synchro
nized under different sample numbers. In other words, the database 
built with 140 new hulls used in the existing hull form optimization case 
is enough to capture the change rule of the multi-physics fields with the 
hull form in the original design space. 

5.4. Prediction effect analysis of multi-physics field for new hull form 

Thirdly, according to the previous analysis, it can be known that for 
each sample hull existing in the database, if the basis modes and their 
coefficients corresponding to the sample hull are known, using formula 
like Eq. (3), the reconstructed multi-physics fields can be quickly ob
tained. When M = 10 is selected, the reconstruction error is small 
enough. However, more often than not, we need to quickly predict the 
multi-physical fields of new hulls that are not in the database. Although 
the basis modes of the database have already been determined, each 
basis coefficient corresponding to the not-in-the-database new hull 
cannot be directly solved by formula like Eq. (3). Therefore, it is 
necessary to find a general method to quickly obtain the basis 
coefficients. 

Considering that each new hull in the database is determined by 7 
hull form deformation design variables, and first 10 basis modes with 
their corresponding coefficients are determined. Therefore, a total of 10 
Kriging surrogate models for design variables (hull form deformation 
parameters) and each basis coefficient (for multi-physics field interpo
lation) can be established, so that for any new hull, the basis coefficient 
can be obtained and then the multi-physics field information can be 
predicted quickly. 

The following is a brief verification of the prediction error of the 

multi-physics field for a not-in-the-database new hull. Here, variable 
names (x1, x2, x3, x4, x5, x6, x7) are corresponding to the design variables 
in Table 2 that define the hull form deformation in the 7-dimensional 
design space, that is to say, (x1,x2,x3,x4,x5,x6,x7) = (x,z,y,α1,α2,α3,α4). 

For the convenience of expression, each design variable of the new 
hull form is unitized, i.e. 

x*
i =

xi − xi,min

xi,max − xi,min
, i = 1, 2,⋯, 7 (44) 

Obviously, we have x*
i ∈ [0,1],i = 1,2,⋯,7, since the original design 

space is a standard hypercube, and define x* = (x*
1,x*

2,x*
3,x*

4,x*
5,x*

6,x*
7). 

Take a new hull, whose normalized design variables are x* = (0,0.5,
0.5, 0.5, 0.5, 0.5, 0.5), as an example. Through Kriging models, the 10 
basis coefficients can be obtained, and the prediction multi-physics field 
can be got. Compared with the real field evaluated by NMShip-SJTU 
solver, the physical field information is almost identical shown in 
Fig. 23, and quantitative analysis of the relative error is given in Table 7. 

Therefore, the multi-physical fields corresponding to any new hull in 
the design space can be quickly predicted with the number of samples N 

= 140 and the mode order M = 10. 

5.5. Sensitivity analysis of hull form optimization design variables 

Sensitivity analysis investigates the influence of an independent 
variable on the dependent variable when other independent variables 
remain unchanged for a multi-variable problem. By using the above 
results, the geometrical and flow field corresponding to any new hull can 
be quickly obtained with high accuracy, and then the influence of all 
design variables on the flow field details such as free surface wave 
elevation and hull surface dynamic pressure distribution can be 
analyzed. 

Fig. 24 shows the changing trend of the relative change rate of the 
wave-making drag coefficient corresponding to the new hull when each 
dimensionless design variable changes from 0 to 1. The relative change 
rate of wave-making drag coefficient is positively correlated with the 
design variables x3,x5,x6,x7, but negatively correlated with the design 
variables x1, x2, x4. In addition, the design variables x1, x3, x4 have a 
greater effect on the wave-making drag coefficient, which is called more 
“sensitive”. It can be inferred that the change of design variables x1, x3,

x4 will lead to the obvious change of the free surface wave elevation and 
the dynamic pressure distribution on the hull surface. 

The variation trend of free surface wave elevation and the dynamic 
pressure distribution on the hull surface when changing x*

1 and x*
3 are 

respectively given below. 
Taking 0.1 as an interval, sensitivity analysis is conducted on the 

design variable x*
1, and the dimensionality reduction model could be 

used to quickly obtain the corresponding multi-physics fields of each 
new hull, as shown in Fig. 25. It can be seen that with the increase of x*

1, 
the bulbous bow of the ship elongates, the phase of the wave system 
moves forward as a whole, and the high- and low-pressure regions of the 
hull surface move forward with their areas decreasing, which is 
conducive to the reduction of the wave-making drag coefficient. 

Taking 0.1 as an interval, sensitivity analysis is also conducted on the 
design variable x*

3. It can be seen from Fig. 26 that with the increase of 

Fig. 20. Relationship between the relative errors of multi-physical fields of 
each new hull and M. 

er =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑Nf

i=1

(
ηi − η̃i

)2
+
∑Np

i=1

(

xi − x̃i

)2

+
∑Np

i=1

(

yi − ỹi

)2

+
∑Np

i=1

(

zi − z̃i

)2

+
∑Np

i=1

(
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i=1
η2
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∑Np

i=1
y2
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∑Np

i=1
z2

i +
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i=1
p2

i

√
√
√
√
√
√
√
√

(43)   
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x*
3, the bulbous bow becomes wider, and the phase of the wave systems 

move forward as a whole. However, the peak value of the bow wave 
becomes larger, and the area of high-pressure region at the bow in
creases, which is not conducive to the reduction of the wave-making 
drag coefficient. 

The above conclusions obtained from the flow field are consistent 
with the sensitivity analysis results in Fig. 24. Similarly, the influence of 
the other design variables on the flow fields can be analyzed 
sequentially. 

Although the sensitivity analysis in this paper focuses on the wave- 
making resistance coefficient Cw, which can be directly predicted 
through Kriging surrogate model, it should be noted that for sensitivity 
analysis, each new hull form needed is almost located on the boundary 
surfaces of the design space, so it will hardly be in the database of flow 

field learning. That is to say, if there are no flow field learning steps, in 
order to directly observe the change of hull surface pressure distribution 
and the free surface wave elevation with respect to a certain design 
variable, additional numerical simulations should be done, making the 
computational cost larger. Through flow field learning, the main flow 
field information corresponding to any new hull form can be obtained 
within a few seconds, and the overall error can be controlled within 1%. 
Therefore, it can be considered as high-fidelity and high-efficiency 
prediction. 

It can also be seen intuitively from the Fig. 25 in the paper, for 
instance, that when x1 changes alone, how the flow field of the new hull 
will change, which is predicted by the flow field learning using reduced 
order method instead of numerical simulation directly. According to the 
NM potential flow theory, the wave-making resistance coefficient Cw 
and the flow fields, namely the hull surface pressure distribution and the 

Fig. 21. Absolute error of reconstructed flow field under different M (Unit: m for Z, Pa for Pressure).  
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free surface wave elevation, are closely related. Therefore, the flow field 
learning method can be used to match the resistance performance index 
and the flow field with each other by very small computational costs. 

Last but not the least, for other optimization problems, this process 
can also be implemented in the same way in the later stage of hull form 
optimization, in order to quickly predict the flow field of any new hull 
form in the design space of the given optimization problem. This is of 
greater significance for the high-fidelity hydrodynamic performance 

evaluation based on viscous flow, such as using RANS-based solver to 
obtain the flow fields. 

6. Conclusions and future work 

In this paper, the POD (or KLE) method is used as the linear 
dimensionality reduction method, and the steps of dimensionality 
reduction of the design space are introduced. Furthermore, some 
important problems for the design-space dimensionality reduction in 
hull form optimization, such as retainability of fixed control points, 
irrelevance of the relative order of data to dimensionality reduction 
results, and decision of the new design space range after dimensionality 
reduction, are deep discussed. The application of the dimensionality 
reduction method for design-space dimensionality reduction in the 
earlier stage of hull form optimization and the multi-physics field 
learning in the later stage of hull form optimization is given through the 
resistance optimization of the Wigley ship, and the applicability and 
reliability of the method are demonstrated by analyzing the influence of 
mode order and sample number on the reconstruction effect of the hull 
shape or multi-physics field, and the prediction effect of multi-physics 
field for new hull form in detail. Current results are promising, 
showing that the linear dimensionality reduction method can reduce the 
amount of calculation for surrogate-based optimization, and be used for 
quick prediction of multi-physics fields of any new form in the design 
space. 

It should be added that the possible deformations in the new design 
space obtained by the linear dimensionality reduction method cannot 
completely reach the possible deformations in the original design space 
due to the information loss of hull form deformation, such as the 
deformation at the bulbous bow in this example. For any new hull form 
in original design space, the reconstructed hull form after the dimen
sionality reduction has more or less error, which is also directly 
contributing to the slightly inferior drag reduction effect of the optimal 
hulls in the dimensionality-reduced design space compared with that in 
the original design space. Future work includes the application exten
sions of dimensionality reduction method, such as from the linear 
dimensionality reduction method to the nonlinear dimensionality 
reduction method, which may make the reconstruction error of new hull 
form less, and then an optimal hull with better hydrodynamic (resis
tance) performance may be obtained. 

Furthermore, although this paper presents the application of linear 
dimensionality reduction method in the multi-physics field learning in 
the later stage of hull form optimization, the objective function of hull 

Fig. 22. The variation of En with M with different sample numbers N.  

Fig. 23. Comparison between real and predicted flow field by KLE of a 
new hull. 

Table 7 
Relative error of each physical field predicted by KLE of a new hull.  

Dimensionless field Real total energy Total error energy Relative error er 

η  12.7929 0.0074 0.0240 
x 684.6061 0.0003 0.0007 
y 5.3783 0.0002 0.0057 
z 11.6820 0.0003 0.0051 
p 12.1126 0.0286 0.0486 
Sum 726.5719 0.0368 0.0071  

Fig. 24. Sensitivity analysis of design variables to wave-making 
drag coefficient. 
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form optimization cannot be calm-water drag only, and the hydrody
namic performance evaluation method cannot be based on potential 
flow theory only. In parallel, a similar approach is being applied to 
optimize the velocity field at the propeller disk by deforming the ship 
stern with viscous-flow CFD method. Herein, the grid topology rela
tionship at propeller disk of the new hull forms may not be completely 
consistent, not to say that there is no unified grid topology relationship 
for unstructured grids. 
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