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A B S T R A C T

This paper describes numerical simulations of the vortex-induced vibrations (VIVs) of a long flexible riser in a step
current. We consider the model vertical riser tested at the Delta Flume. The simulation is carried out by our in-
house computational fluid dynamics (CFD) solver viv-FOAM-SJTU, which was coupled with the strip method and
developed in OpenFOAM platform. The vibration modes in both in-line (IL) and cross-flow (CF) directions are
accurately predicted. The numerically predicted maximum mean IL displacement and its location differed
marginally from the experimental results. The good agreement between the numerical and experimental results
proved that this solver was reliable for predicting the VIV response. A large number of numerical tests were then
carried out to study the effects of various parameters on VIV responses further. Three main parameters are
considered in this study: current velocity, top tension and mass ratio. The intrinsic relationship between the
natural frequency and oscillating frequency was analyzed to explain the occurrence of the dominant mode. Based
on the numerical results, the regular characteristics of the VIV response with the reduced velocity were pointed
out. The curvatures and the maximum mean offset values were proportional to the squares of the reduced
velocities.
1. Introduction

Vortex-induced vibration (VIV) is a critical concern for the offshore
industry; it affects pipelines, spar platforms and risers. The greatest
concern of those is in the field of deep-water oil extraction. Recently,
offshore oil platforms have been installed in water depths of over 2000
m. As a result, there is a great need to develop a reliable numerical solver
for the prediction of VIV response of risers with very high aspect ratios.

Over the past few decades, VIV responses of long flexible risers have
been extensively studied. Model testing has given valuable insights into
the phenomenon of VIVs (Chaplin et al., 2005a, 2005b; Huera Huarte,
2006; Huera-Huarte et al., 2006; Huera-Huarte and Bearman, 2009a,
2009b). These model tests have shown that the response included sig-
nificant contributions from several modes except at the lowest reduced
velocities; a temporary mode transition could also occur occasionally.
Apart from the experimental studies, numerical investigations have also
attracted the attention of researchers. Empirical models and CFD models
are the two main numerical methods used to predict the vibrations of
risers (Willden and Graham, 2001, 2004, 2006; Srinil, 2010; Duan and
ctober 2017; Accepted 10 December
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Wan, 2016a; Duan et al., 2016). Willden and Graham (2004) investigated
the transverse VIVs of a flexible riser with an aspect ratio of the order of
1000. It has been observed that the mode of vibration with frequency
closest to the local natural vortex shedding frequency is most likely to be
excited. Wang and Xiao (2016) presented a numerical study on VIVs of a
vertical riser subject to uniform and linearly sheared currents. The IL and
CF vibrations were predicted accurately. Zhang et al. (2017) presented a
systematic study of the flow around a spring mounted wavy cylinder
mainly at a moderate Reynolds number of 5000. Borazjani and Sotir-
opoulos (2009) investigated VIVs of two identical 2D elastically mounted
cylinders in tandem in the proximity-wake interference regime at
Re ¼ 200 for systems having one and two degrees of freedom. Zhao and
Wan (2016a, 2016b) studied flow past a cylinder and two cylinders by
the approaches of SST-DES and SST-DDES.

Chaplin et al. (2005a) compared laboratory measurements of the VIV
responses of a riser with the blind predictions obtained via 11 different
numerical methods, including six CFD models and five empirical models.
It was found that the empirical models were more successful at predicting
CF displacements than CFD models. However, the mode transition of the
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Nomenclature

ϕm Modal shape of the mth mode
cx In-line curvature
cy Cross-flow curvature
D Diameter of the riser
f mn Natural frequency of mth mode
fS Vortex shedding frequency
fox In-line oscillatory frequency
f mox In-line oscillatory frequency of mth mode
foy Cross-flow oscillatory frequency
f moy Cross-flow oscillatory frequency of mth mode
L Length of the riser
m Mode number
m* Mass ratio

mx In-line mode number
my Cross-flow mode number
s Time-averaged value of the variable s
σs Standard deviation of the variable s
smax Maximum value of the variable sover elevation z
srms Root mean square value of the variable s over elevation z
St Strouhal number
Tt Top tension of the riser
um In-line modal weight of mth mode
vm Cross-flow modal weight of mth mode
Vr Reduced current velocity
x In-line displacement
y Cross-flow displacement
z Elevation
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response with respect to time could not be embodied in those empirical
models; mode transition is a key feature of VIV responses of long flexible
risers. However, the IL responses obtained by the given six CFD models
were not in agreement with the experimental results. Thus, there is need
for improvement in the accuracy of the CFD model.

The dynamic features of long slender cylinders are determined by
many structural parameters. The vibration amplitudes and modes of riser
VIV responses are also influenced by the flow field. Using experimental,
numerical and empirical models, many researchers have addressed this
very important topic. Chaplin et al. (2005b) presented an experimental
study of a vertical model riser with a different top tension, which was
exposed to a stepped current. In the experiment of Huera-Huarte and
Bearman (2009a), three different top tensions were investigated. For the
smallest top tension, the initial, lower and upper branches were observed
in the dynamic response of the model, whereas for the other top tension
cases, the lower branch of the dynamic response vanished. Chen et al.
(2012) investigated the dynamic characteristics and VIVs of the
deep-water riser with axially varying structural properties. Huang et al.
(2011) investigated cases that covered a wide range of riser VIV problems
for risers having different outer diameters, lengths, tensioning conditions
and current profiles.

For risers having such high aspect ratios and complex flow fields
around them, a complete three-dimensional simulation is not feasible.
The strip theory is an efficient strategy for solving VIV problems of
flexible cylinders with extremely high aspect ratios. Based on the strip
theory, we developed the solver viv-FOAM-SJTU by using the open
source code package, OpenFOAM. The entire fluid-structure solution
procedure was carried out in the time domain via a loose coupling
strategy. We applied the mesh movement based on interpolation using
the radial basis function (RBF). The solver has good versatility; it allows
simulations of VIVs in both CF and IL directions with various aspect ra-
tios, mass ratios, top tensions and current profiles.

To validate the solver, we carried out numerical simulations of the
VIVs for the benchmark case. The numerical results were found to be in
good agreement with the benchmark data given in Huera-Huarte (2006).
Based on the study of the flow field, the intrinsic relationship between
the flow field and the vibration response of the riser was analyzed. The
main contribution of this paper is that it investigates the parametric ef-
fects on the VIV based on the solver viv-FOAM-SJTU. A series of test
studies are conducted using different parameters. The effects of top
tension, current velocity and mass ratio are investigated, and the
response modes and trends analyses under different conditions are pre-
sented. The results show multi-mode characteristics of vibrations of the
riser.

The rest of the paper is organized as follows. A brief introduction to
the numerical methods is given in Section 2. In this section, the governing
2

equations of flow field and structure field are introduced. The detailed
algorithm of the fluid-structure interaction strategy is presented. In
addition, the post-processing method of displacement responses is pre-
sented for modal analyses. In Section 3, the computations are validated
by comparison with the benchmark experiment of Huera-Huarte (2006).
Section 4 provides a detailed study of the effects of different parameters
on VIV. The parameter analysis of the current velocity, the top tension
and the mass ratio are investigated separately. In section 5, the study of
the VIV responses with respect to the reduced velocity based on the
previous results are presented. We analyzed the changes in the standard
deviations of the displacement and the curvature as the velocity is
reduced. Finally, in the last section, conclusions are drawn based on the
results presented.

2. Method

2.1. Flow model

The flow field is modelled by solving the unsteady, incompressible
Reynolds-averaged Navier-Stokes (URANS) equations

r⋅U ¼ 0 (1a)

ρ
∂U
∂t þ ρr⋅

��
U �Ug

�
U
��r⋅

�
μeffrU

�� ðrUÞ⋅rμeff ¼ �rpeff (1b)

where U is the flow velocity and Ug is the grid velocity, μeff ¼ ρðνþ νtÞ
the effective dynamic viscosity, in which ν and νt are mixture kinematic
viscosity and eddy viscosity, respectively. νt is obtained by the SST tur-
bulence model for turbulence closure. peff ¼ pþ 2 =3 ρk is the effective
pressure, in which k is the turbulence kinetic energy.

2.2. Structural dynamic model

A finite element structural model based on the Euler-Bernoulli beam
theory is employed to calculate the dynamic response of the cylinder.
Supposing that EI and m* remain constant along the span, we have

EI
∂4

∂z4 xðz; tÞ �
∂
∂z

�
TðzÞ ∂xðz; tÞ∂z

�
þ m

∂2xðz; tÞ
∂t2 þ c

∂xðz; tÞ
∂t ¼ fxðz; tÞ (3a)

EI
∂4

∂z4 yðz; tÞ �
∂
∂z

�
TðzÞ ∂yðz; tÞ∂z

�
þ m

∂2yðz; tÞ
∂t2 þ c

∂yðz; tÞ
∂t ¼ fyðz; tÞ (3b)

The axial force of the pipe TðzÞ varies spatially, but not temporally,
because of the effects of the weights. To solve the structural dynamic
equations in Finite Element Methods (FEMs), Eq. (3a) and Eq. (3b) can be
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discretized as

½M�f€xg þ ½C�f _xg þ ½K�fxg ¼ fFxg;

½M�f€yg þ ½C�f _yg þ ½K�fyg ¼ �
Fy

�
;

where fxg and fyg are the nodal displacement vectors and with dots
denoting differentiation with respect to time, ½M�,½C� and ½K� are the mass,
damping and stiffness matrices, respectively. fFxg and fFyg are the hy-
drodynamic force vectors. The governing equations are solved using the
Newmark-beta method.
2.3. Fluid-structure interaction

The strip theory CFD model is used to simulate the fluid dynamics.
The fluid flow computed locally in multiple two-dimensional computa-
tional planes is placed along the cylinder span. The PIMPLE (merged
PISO-SIMPLE) algorithm in OpenFOAM is adopted to compute the flow
field, which is appropriate for solving the transient incompressible
problem. The reliability of this locally two-dimensional method has
already been confirmed (Willden and Graham, 2004).

The fluid force at the individual axial strips is mapped to the nodes of
the structural model at the start of each time step. Subsequently, the
pipe's motion is computed based on the Euler-Bernoulli beam theory, and
the motion is used for moving the boundaries in the fluid domain
accordingly. Then, the computation of a new flow field is followed. In this
way, a time step is advanced. This procedure is shown in Fig. 1. Based on
the above theory the solver viv-FOAM-SJTU was developed. The entire
flow-structure solution procedure was carried out in the time domain by
using a loose coupling strategy.
2.4. Mesh deformation based on the RBF method

The viv-FOAM-SJTU solver applies the radial basis function (RBF)
dynamic grid technique into solution of dynamic mesh of OpenFOAM.
The RBF dynamic grid technique could facilitate large mesh deformation
that limits the application of Laplace mesh deformation. The viv-FOAM-
SJTU solver could predict the VIV responses in both IL and CF directions
of flexible riser with aspect ratio of 1000 magnitude under high Reynolds
number.

It is always expected to find a mesh solution method that is not only
efficient and capable of enduring large mesh deformation, but also
maintain the quality of the grid after deformation (especially the grid in
Fig. 1. Fluid-structure interaction.

3

the boundary layer). The solution that can meet the above three demands
are achieved by the RBF grid technique. If the inner and outer diameters
are set appropriately, the grid inside the boundary layer could keep
relatively static, and the mesh quality and the deformation ability of the
mesh will also be secured.

The RBF dynamic grid technique based on the dynamic mesh module
(dynamicFvMesh) of OpenFOAM is developed. The RBF interpolation,
which is first proposed by Rendall and Allen (2008), can be used to derive
the displacement of the internal fluid nodes when the displacement of the
structural nodes on the interface is given.

The RBF is a set of basis functions with Euclidean distances defined as
follows:

sðrÞ ¼
Xn

i¼1

γiϕðrÞ

where r is the Euclidean distance, and ϕðrÞ is the general form of the RBF
function which has various forms. There are four commonly used func-
tions: C2, TPS, Gauss and IMQB; the definitions of these functions are
given in Table 1. The parameter γi is the interpolation weight coefficient
for the interpolation point i, and n is the number of the object surface
nodes of the dynamic mesh.
2.5. Post processing

Following Chaplin et al. (2005b), the IL and CF deflections of the riser
from the initial vertical straight-line condition were denoted by xðz; tÞ
and yðz; tÞ, respectively.

The deflected shape of the riser can be usefully represented in spectral
terms, which means that each pipe's total displacement can be decom-
posed into modal contributions. The displacements in IL and CF di-
rections can then be expressed in terms of time-dependent modal weights
u ¼ ðu1; u2; :::; uMÞ and v ¼ ðv1; v2; :::; vMÞ as

xðz; tÞ ¼
XM
m¼1

ϕmðzÞumðtÞ (4a)

yðz; tÞ ¼
XM
m¼1

ϕmðzÞvmðtÞ (4b)

where ϕ ¼ ðϕ1;ϕ2; :::;ϕMÞ is the matrix of the mode shapes, and M is the
number of unconstrained structural degrees of freedom.

The matrix form of Eq. (4) is

xðz; tÞ ¼ ϕðzÞuðtÞ (5a)

yðz; tÞ ¼ ϕðzÞvðtÞ (5b)

The required mode is only needed to solve. The least squares method
is needed to solve the equations. In this way, the required modal infor-
mation is achieved and the rest mode is filtered out. The numpy library of
python is used to solve the equations.

Spatial frequency analysis can also be performed over the curvatures.
Let us take the second derivative of Eq. (4) and assume that ½ϕmðzÞ�00 ¼
�k2m2ϕmðzÞ is satisfied, where k is some constant, that is, the mode
shapes are exactly sinusoidal or something similar. Therefore, we have
Table 1
Definition of radial basis functions.

No Name Abbreviation f ðxÞ
1 Wendland's C2 C2 ð1� rÞ4ð4r þ 1Þ
2 Thin Plate Spline (TPS) TPS r2 logðrÞ
3 Gaussian Gauss e�r2

4 Inverse multiquadric biharmonics IMQB
ffiffiffiffiffiffiffiffiffiffi

1
a2þr2

q
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cxðz; tÞ ¼ x00ðz; tÞ ¼
XM

�k2m2ϕmðzÞumðtÞ (6a)

m¼1

cyðz; tÞ ¼ y00ðz; tÞ ¼
XM
m¼1

�k2m2ϕmðzÞvmðtÞ (6b)

where a prime sign denotes differentiation with respect to z; cx ¼
x00=ð1þ x0Þ3=2 � x00 is considered suitable for this study because x0 is al-
ways far below 1. This is also suitable for cy . Thus, the modal weights for
the curvature �k2m2um and �k2m2vm can be of high absolute value for a
large mode number.

We know from Lie and Kaasen (2006) that the modal responses that
are physically impossible to be included in the observed range of re-
sponses should be excluded from the analysis. However, if those unde-
sirable mode shapes are discarded just after solving Eq. (5), some
information useful to the remaining accepted mode-shapes may also be
discarded. Taking this into account, Lie and Kaasen (2006) chose to solve
the modal amplitudes in the least-squares sense. Consequently, the time
histories of the modal displacements for each spacing was obtained at
every time step as

ϕT ðzÞxðz; tÞ ¼ ϕTðzÞϕðzÞuðtÞ

ϕT ðzÞyðz; tÞ ¼ ϕTðzÞϕðzÞvðtÞ

where only the desirable mode shapes are included in ϕ.

3. Validation of computations

The validation of the solver viv-FOAM-SJTU follows Huera-Huarte
(2006) benchmark experiments; the experimental setup is shown in
Fig. 2.

The model riser and experimental setting are the same as that of
Chaplin et al. (2005a, b), with key parameters set out inTable 2.

A series of simulations of the model riser has been undertaken; the
riser was 28 mm in diameter, 13.12 m in length and had a bending
stiffness of 29.88 Nm2; the lower 45% of the riser was exposed to a
Fig. 2. Layout of the experiment of Huera-Huarte (2006).

4

uniform current whereas the upper part remained in still water.

3.1. Natural frequency

The natural frequency is obtained as follows:

ðK � λMÞϕ ¼ 0 (7)

where K andM are the stiffness matrix and mass matrix, respectively; λ is
a diagonal matrix consisting of λii ¼ ω2

i , where ωi is the natural frequency
of the system.

The FEM calculation of the natural frequencies related to the first ten
modes of the riser are presented. The FEM natural frequencies and mode
shapes are shown in Table 3 and Fig. 3. Here the top tension is taken as
1600 N. The experimental natural frequencies are shown in Table 4. The
riser was excited after setting different top tensions to determine the
experimental natural frequencies. Twelve sets of tests were carried out.
The top tensions were increased from 397 N to 1919 N, and the closest
one was 1676 N. Table 4 gives the first ten experimental natural fre-
quencies at the top tension of 1676 N.

The mode shapes can be quite similar to pure sinusoids. The mass
ratios are of small values; therefore, tension variations along the riser
span become insignificant. These results lay the foundation for subse-
quent studies on multi-mode vortex-induced vibrations of the riser.

3.2. Numerical model and boundary conditions

Fig. 4 shows the distribution of 20 strips placed at equal distances
along the portion of the riser exposed to a uniform current. No strip is
placed on the upper part, which is in still water. The riser is discretized
into 90 equal structural elements. Forty elements are placed on the lower
part in the uniform flow. For each element of this part, a distributed load
is applied. The remaining 50 elements are placed on the upper part in the
still water.

The computational mesh of each strip is shown in Fig. 5. The
boundary conditions are given as follows:

The inlet velocity boundary conditions are set to be the same as the
freestream velocity:

u ¼ u0; v ¼ w ¼ 0

The outflow boundary condition is defined by:

∂u
∂x ¼

∂v
∂x ¼

∂w
∂x ¼ 0

The symmetry boundary condition is applied to other sides of the
domain to avoid the effect of the boundaries on the flow field:

∂U
∂y ¼ ∂W

∂y ¼ 0; V ¼ 0

The no-slip boundary condition is employed at the surface of the
cylinder. The velocity of the cylinder boundary must agree with the pipe
motion calculated using the 3D FEM structural analysis:

u ¼ usolid
Table 2
Key parameters for the benchmark experiment.

Symbol Value Unit

Mass ratio m* 3.0 –

Current velocity V 0.6 ms�1

Diameter D 0.028 m
Submerged length Ls 5.94 m
Total length L 13.12 m
Flexible stiffness EI 29.88 Nm2

Top tension Tt 1600 N



Table 3
First ten FEM natural frequencies (unit: Hz).

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

1.224 2.452 3.688 4.936 6.201 7.487 8.796 10.233 11.520 12.906

Fig. 4. Illustration of multi-strip model.
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3.3. Cross-flow motion analysis

The displacements have been decomposed into modal contributions
to manifest the modal feature, especially the multi-mode feature. Fig. 6
depicts the modal amplitudes from the 2nd to the 7th non-dimensional
CF displacement; it also shows the power spectral densities of modal
weights. The dynamics in the CF direction are governed by the 4th mode
response. The 4th mode response appears to be the most energetic, as
seen from its modal power spectral density. The CF modal analysis agrees
well with the experimental data, as shown in Fig. 7. There is evidence of
simultaneous contributions from the modes on either side of the domi-
nant 4th mode. The power spectral densities of the left modes are very
small; therefore, their modal contributions to the total mode shape can be
neglected. The modal amplitude of this study is not as stable as the
experimental results; its Reynolds number is approximately 1:69� 104.
At this Reynolds number, the flow is fully turbulent. The turbulence is
irregular, multi-scale and non-linear. In Huera-Huarte (2006), the modal
amplitudes of different serial experiments were found to be quite stable.
It is possible that a device might have been installed to stabilize the vi-
bration of the riser. However, the modulating responses in the CFD
simulations that come from the numerical aspects also account for this
stability.

Next, we proposed an analysis of the dominant mode. The vibration
frequency of riser was obtained by performing a fast Fourier transform
(FFT) of the CF displacement modal amplitudes. On the right of Fig. 6 is
the power spectra of the CF displacement modal amplitudes. The fre-
quency corresponding to the dominant mode is equal to 4.556 Hz. This
value is very close to the 4th natural frequency. Consequently, the CF
vibration is controlled by the 4th mode. It is also worth noting that the
dominant frequency width is considerably wider than that of the exper-
imental data; therefore, one may expect more than one mode modulation
during the vibration.

Typical instantaneous deflected shapes of the riser and the relevant
experimental results are shown in Fig. 8 (a) and Fig. 8 (b), where the CF
displacements are plotted against the relative elevation z=L. Continuous
lines in Fig. 8 (a) plot the positions of the riser at intervals of 0.01 s
through a time period (1 s) of the CF oscillation. The numerical results
agree well with the experimental data (see Fig. 8 (b)) not only in the
mode shape but also in the predicted amplitude. The saddle points of the
numerical deflected shapes are fixed and distributed at equal distances
Fig. 3. Modal shape of first 5 modes for displacement obtained from FEM.

Table 4
First ten experimental natural frequencies (unit: Hz).

f1 f2 f3 f4 f5

1.223 2.414 3.657 4.855 6.120

5

along the riser. A typical feature of the results is demonstrated in
Fig. 8—the displacements of the upper part of the riser (in still water) are
not smaller than those exposed to the uniform flow below because the
oscillation of the riser is excited at the lower half of the riser, and the
vibration wave propagates from the bottom to the top.

Fig. 9 (a) shows the spatio-temporal plot of the non-dimensional CF
responses, obtained by numerical simulation. It shows that the dominant
mode shape is controlled by the 4th mode, which agrees well with the
f6 f7 f8 f9 f10

7.855 8.632 9.941 11.301 12.595

Fig. 5. Domain and mesh of a strip.



Fig. 6. CF displacement modal amplitudes and power spectral density.

Fig. 7. CF displacement modal amplitudes and power spectral density from the experimental results of Huera-Huarte (2006).
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experimental data of Huera-Huarte (2006) (see Fig. 9 (b)). The instan-
taneous color legend of the experiment is always the same because the
experimental modal weight of each order is very stable. For the numer-
ical study, although the vibration mode shape is the same, the amplitude
is time variant. Therefore, the instantaneous color legend of the present
study varies. This is because the numerical modal weight cannot remain
constant all the time because of the turbulence.
3.4. In-line motion analysis

The CF vibration is around the initial position. Unlike the CF motion,
the riser first reaches its equilibrium position, and then it vibrates around
the position in the IL direction. Fig. 10 shows the IL mean displacement
plotted against the relative elevation z=L. The red line represents the
experimental results, and the blue line represents the results of this study.
As shown in Fig. 10, the maximum displacement is not in the middle of
the line because the displacement of the upper part of the riser (in still
water) is smaller than the displacement of the lower part exposed to the
current. The IL equilibrium position agrees well with the experimental
6

results. The value and location of the maximum IL displacement are listed
in Table 5. The present study precisely predicts the location of the
maximum displacement with an error of only 1.1%.

The rest of the analysis for the IL motion of the riser is performed as in
the previous section. The IL modal amplitudes from the 5th to the 10th
order are provided in Fig. 11. High consistency was achieved as
compared with the experimental results of Huera-Huarte (2006), as
shown in Fig. 12. The IL response predicted by the numerical method is
entirely dominated by the 7th mode, which is consistent with the
experimental data; it also presents the dominant 7th mode of the IL vi-
bration. Fig. 11 shows few contributions from the modes on either side of
the dominant 7th mode. The modal weight of the 7th mode is very stable
and steady, and the modal weight of the 6th and 8th modes is much
smaller than the 7th mode. The IL vibration is in the form of a standing
wave.

An FFT is applied to obtain the IL displacement modal amplitude,
which is used to explain the mechanism of the dominant mode. On the
right of Fig. 11 is the power spectrum of each IL modal amplitude. The
dominant 7th mode has the largest spectral densities; it has a frequency



Fig. 8. CF deflected shapes of the riser.
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of 9.032 Hz. This value is close to the 7th natural frequency. The IL vi-
bration is excited by the drag imposed on the riser, and the CF vibration is
excited by the lift. The frequency of the IL oscillation is about twice that
of the CF direction because the drag frequency is approximately twice
that of the lift. The change of natural frequency is non-linear. The natural
Fig. 9. Spatio-temporal p

7

frequency increases slowly along with the increase of the top tension.
Therefore, the 7th natural frequency is about twice that of the 4th order.
It is easy to identify the mode shape from the instantaneous spatio-
temporal plot of the non-dimensional IL response, as shown in Fig. 13.
The numerical results agree well with the experimental data, as shown in
Fig. 14. The single 7th mode is seen as the result of the nearly constant IL
modal amplitudes plotted in Fig. 11.
3.5. Flow field analysis

The vortex-induced vibration of a long, flexible riser is excited by the
flow field. Fig. 16 shows the lift and drag coefficients at the 15th slice,
where the IL displacement is the largest. It is worth noting that the
fluctuation range of the drag coefficient is larger than that of a fixed
cylinder.

The time history of displacements corresponds to the time history of
hydrodynamic coefficients. Fig. 15 depicts the IL and CF displacements
of the 15th slice. The lift coefficient is very small in the initial 2.5 s; the
corresponding CF displacement is also very small. The drag coefficient
increases rapidly from the start. The drag coefficient begins to vibrate
around this position to reach the equilibrium position, after approxi-
mately 4 s. The IL displacement correspondingly increases from the
start and vibrates around the equilibrium position after 4 s. Generally
speaking, the motion of the riser in the early stage is primarily in the IL
direction. After reaching its IL equilibrium position, the vortex begins
to shed alternatively from the riser. The motion of the riser is mainly
manifested by the CF vibration at the IL equilibrium position. The
consistency between the hydrodynamic force and the displacement il-
lustrates the fluid-structure coupling effect. Fig. 17 depicts the contours
of the instantaneous vorticity magnitude along the riser from the IL and
CF views. At this Reynolds number, a 2S pattern is observed.
lot of CF response.



Fig. 10. Mean IL displacement.

Table 5
Value and location of the max IL displacement.

The max value of IL displacement The location of the max value

Experiment 3.292 D 0.371 L
Present 3.072 D 0.367 L
Error/% 6.7 1.1
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4. Parametric investigations

A series of parametric studies with varying parameters were further
performed separately to investigate the effects of the top tension, the
current velocity and the mass ratio.
Fig. 11. IL displacement modal ampli
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4.1. Parametric analysis of current velocity

Three current velocities were considered in this section:
U ¼ 0:2 ms�1, 0:4 ms�1 and 0:6 ms�1, where 0:6 ms�1 indicates the
benchmark case for section 3. The main results for the different current
velocities are listed in Table 6. It includes the maximum IL mean
displacement (xmax=D), the location of the maximum IL mean displace-
ment (z/L), the maximum IL RMS displacement, the maximum CF RMS
displacement, the dominate IL mode and the dominate CF mode.

When the velocity is low, the vibration can be quite moderate. In the
numerical simulation, the riser vibrated at the 2nd mode in the IL di-
rection whereas in the CF direction, it vibrated at the 1st mode (see
Figs. 18 and 19). Not only the dominant mode, but also the maximum
mean displacement was considerably reduced (compared to the bench-
mark) from 3.072 to 0.389 times the riser diameter.

When the current velocity was increased to U ¼ 0:4 ms�1, the riser
pipe vibrated at the 5th mode in the IL direction and 3rd mode in the CF
direction, as shown in Figs. 20 and 21. The maximummean displacement
was 0.910 times the riser diameter. With increasing current velocity, the
maximum mean IL displacement increased, and the position of the
maximum value became low. This is reasonable because drag increases
with increasing current velocity. Furthermore, only the lower part of the
pipe experienced current flow, this asymmetry played a significant role as
the increase of the velocity, which resulted in a keep falling of the
location of the maximum IL displacement. With larger current velocities,
higher modes tend to be excited. This is because the natural frequency of
the riser is not changed with the varying current velocity. Since the
Strouhal number maintains at approximately 0.2 in a large range of
Reynolds numbers. The Strouhal number is defined as St ¼ fsD=U. The
vortex shedding frequency increases as the flow velocity increases. In
other words, the vortex shedding frequency is proportional to the current
velocity. The oscillatory frequency of nodes is equal to the vortex shed-
ding frequency when lock-in happens. The natural frequency remains
unchanged, and the oscillatory frequency increases with increased flow
velocity. Therefore, the natural frequency order corresponding to the
oscillatory frequency increases.

4.2. Parametric analysis of top tension

Three top tensions are considered: 1600 N, 1900 N and 2200 N; the
benchmark is T ¼ 1600 N. The dominant mode of T ¼ 1600 N is the 4th
mode in the CF direction. As presented in section 3, the amplitude of the
4th mode is greater than the amplitude of 3rd mode all the time. No jump
tudes and power spectral density.



Fig. 12. IL displacement modal amplitudes and power spectral density from the experimental results of Huera Huarte (2006).
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between multi-modes is present in the CF vibration; therefore, the mode
shape is of a very stable 4th order. When the top tension is increased to
1900 N, the modal weight of the 3rd mode increases in the CF direction;
at some interval, the weight of the 3rd mode becomes even larger than
that of the 4th mode, which can be easily seen from Fig. 22. The 3rd
mode carries a bigger weight when T ¼ 1900 N than when T ¼ 1600 N.
Therefore, the mode shape sometimes exhibits the 3rd order. Most of the
time, the mode shape is the unsteady 4th order. Fig. 23 is the spatio-
temporal plot of the CF response, which shows the transition process
between the 4th and 3rd modes when T ¼ 1900 N. It indicates that the
Fig. 13. Spatio-temporal plot of IL response.

Fig. 14. Spatio-temporal plot of IL response of Huera Huarte (2006).
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dominant mode number begins to decrease with increasing top tension.
The above view of mode transition is also supported by the instan-

taneous deflected IL and CF shapes, as shown in the Fig. 24. The envelope
Fig. 15. Time history of IL and CF displacement.

Fig. 16. Time history of Cl and Cd.



Fig. 17. Vortex-shedding along riser from IL and CF view.

Table 6
VIV response with different flow velocity.

Flow
velocity

xmax=D Location
of xmax

Max of
xRMS=D

Max of
yRMS=D

IL
Mode

CF
Mode

U¼ 0.2 m/s 0.389 0.381 0.157 0.834 2 1
U¼ 0.4 m/s 0.910 0.374 0.053 0.126 5 3
U¼ 0.6 m/s 3.072 0.367 0.177 0.561 7 4
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of the IL vibration is very clear, and there is a distinct mode shape.
Whereas the instantaneous deflected CF shape is not clear, and two mode
shapes (the 3rd mode and the 4th mode) coexist in the envelop together.

When T ¼ 2200N, the IL dominant mode is further reduced to the 6th
mode while the CF vibration remains at the steady 3rd mode; this con-
forms with the tendency described above. Fig. 25 depicts the IL and CF
instantaneous deflected shapes of the riser.

The main results for different top tensions are listed in Table 7. The
VIV response of the riser follows the rule that the maximum IL mean
value increases with the reduced top tension. This is reasonable because a
large tension means a stronger restriction, which makes a large defor-
mation impossible. The positions of these maximum values barely varied
with the top tension because the current profile is not changed, and the
asymmetric effect of riser arising from the non-uniform flow field is the
same. As the top tension increases, the dominant IL mode decreased from
the 7th order to the 6th order, and the dominant CFmode decreased from
the 4th order to the 3rd order. The top tension does have an effect on the
vibration of riser, but its effect is less significant than the flow velocity.
Fig. 18. Deflected shapes, the mean and the standa
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Modal analysis was conducted to clarify the mechanism. The first
seven natural frequencies of various top tensions are listed in Table 8. It is
evident that the top tension can alter the natural frequencies. The natural
frequencies increased as the top tension increased.

As stated in Willden and Graham (2004), the vibration depends upon
the proximity of the natural frequency to the Strouhal frequency or the
oscillatory frequency when a lock-in occurs. If we match the natural
frequencies in Table 8 with the oscillatory frequencies, we can easily find
the most proximate natural frequency. The corresponding mode number
can be exactly obtained from in Table 8. For instance, when T ¼ 2200 N,
the dominant frequency of IL vibration is 8.335 Hz (see Table 8), which is
very close to the 6th order natural frequency 8.778 Hz. Therefore, the IL
mode shape presents the 6th order. The rule is also applicable to the CF
direction. The dominant frequency of CF vibration is 4.177 Hz, which is
very close to the 3rd order natural frequency 4.342 Hz. Therefore, the CF
mode shape presents the 3rd order. In addition, the dominant mode
number in the IL direction is usually twice the size of the mode number in
the CF direction because the excitation frequency for the IL vibration is
approximately twice the Strouhal frequency.

We concluded that the increasing top tension could suppress the vi-
bration in two ways—by restricting the mean IL displacement and by
reducing the vibration mode. However, increasing the top tension to
suppress vibrations can never be a perfect solution. Excessive top tension
makes the axial stress increase accordingly, which can cause negative
effect on the strength of riser. A very large axial stress will undoubtedly
reduce the life expectancy of the riser, which is undesirable.
rd deviation of IL displacement, U ¼ 0.2 m/s.



Fig. 19. Instantaneous deflected shapes and the RMS CF displacement, U ¼ 0.2 m/s.

Fig. 21. Instantaneous deflected shapes and the RMS CF displacement, U ¼ 0.4 m/s.
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4.3. Parametric analysis of mass ratio

Six mass ratios were simulated:
m* ¼ 2:0; 2:5; 3:0; 4:0; 5:0; 6:0, where m* ¼ 3:0 indicates the
benchmark for section 3.

The power spectral density of every node for m* ¼ 2:0 is shown in
Fig. 26. The 3rd mode and 6th mode were attained for the CF and IL
directions, respectively.

The root mean squares of the modal weight histories ymrms and xmrms are
shown in Figs. 27 and 28, respectively, as a function of each mode's
natural frequency normalized upon the Strouhal frequency of the sta-
tionary pipe at the same Reynolds number, fs. The cases in this section are
more than that in the study of parametric analysis of flow velocity and
top tension. Consequently, the specific mode number for different mass
ratio are not studied separately. Alternatively, as is done in this section,
Fig. 20. Instantaneous deflected shapes, the mean
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all the modal responses are put together to be studied. In addition to
macro law, we reached a more extensive and deeper analysis due to the
new comparison method.

The two figures show that all of the test cases respond multi-modally
in both directions, with each simulated response characterized by a
response envelope. The envelope extends over several modes and is
centered on a single dominant mode. However, we do not rule out the
case where two adjacent modes are of similar weight. Changing m*

changes the pipe's natural frequencies and mode shapes, that is, the
natural frequency of a specific mode becomes more closely spaced with
increasingm*. This conclusion can be drawn directly from Fig. 27. All the
cases fromm* ¼ 2:0 to m* ¼ 6:0 are drawn to the 10th mode; the natural
frequency form* ¼ 2:0 is about twice the natural frequency form* ¼ 6:0.

As shown by Lie and Kaasen (2006), when a lock-in occurs, vortices
are shed at the actual oscillatory frequency rather than at the Strouhal
frequency, whereas the oscillatory frequency may not be exactly equal to
the expected natural resonant frequency. Willden and Graham (2004)
mentioned that the vortex shedding frequency was found to occur at the
Strouhal frequency or slightly below it.
and the RMS IL displacement, U ¼ 0.4 m/s.



Fig. 22. Power spectral density of modal weight of CF displacement for T ¼ 1900 N.
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However, a general tendency can still be found from Fig. 27. When
focusing on the dominant mode, it can be clearly seen that the natural
frequency of most of them are slightly below the Strouhal frequency. The
Fig. 23. Spatio-temporal plot of CF response, T ¼ 1900N.

Fig. 24. Instantaneous deflected IL and CF shapes of the riser, T ¼ 1900N (left: CF,
right: IL).
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dominant mode number tends to increase with the mass ratio, as shown
in Table 9. When the mass ratio increased from 2 to 2.5, the peak value
also increased whereas the dominant mode number remained un-
changed. The dominant mode changes from the mass ratio of 2.5–3,
whereas the peak value decreases. A mode transition happens between
these two cases. For the mass ratio of 2.5, the lock-in is mainly confined
to the 3rd mode, and the 4th mode takes place for the mass ratio 3. For
the mass ratios of 4 and 5, the peak value goes as high as the peak values
Fig. 25. Instantaneous deflected IL and CF shapes of the riser, T ¼ 2200N (left: CF,
right: IL).

Table 7
VIV response with different top tension.

Top
tension

xmax=D Location of
xmax

Max of
xRMS=D

Max of
yRMS=D

IL
Mode

CF
Mode

T ¼ 1600N 3.072 0.367 0.177 0.561 7 4
T ¼ 1900N 2.440 0.352 0.111 0.243 7 3–4
T ¼ 2200N 2.282 0.367 0.150 0.484 6 3



Table 8
Natural frequency with different top tension.

T (N) fn1 fn2 fn3 fn4 fn5 fn6 fn7 IL dominant frequency CF dominant frequency

1600 1.224 2.452 3.688 4.936 6.201 7.487 8.796 9.032 4.556
1900 1.336 2.675 4.023 5.381 6.755 8.147 9.561 8.736 4.344
2200 1.443 2.889 4.342 5.805 7.283 8.778 10.29 8.335 4.177

Fig. 26. Power spectral density contour of CF and IL displacement for m* ¼ 2:0.

Fig. 27. CF modal RMS vibration amplitudes, ykrms=D , as a function of modal natural
frequencies normalized by the Strouhal frequencyf kn =fs, with different mass ratio.

Fig. 28. IL modal RMS vibration amplitudes, xkrms=D, as a function of modal natural fre-
quencies normalized by the Strouhal frequency, f kn =fs, with different mass ratio.
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for the mass ratio of 2.5. There occurs a sudden drop in the peak value
again for the mass ratio of 5. A transition from the 4th mode to the 5th
mode occurs again, which confirms our prediction. Consequently, we can
conclude that the dominant mode number tends to increase with the
mass ratio, whereas the amplitude of the dominant mode mainly depends
on the proximity of the natural frequency to the vortex shedding fre-
quency. A sudden drop of peak value may happen for mode transitions.

In Fig. 28, the drawn modes start from the 4th mode. The dominant
modes for IL vibrations are more sensitive to the natural frequencies.
Anyway, the conclusions we draw from Fig. 27 can also apply to Fig. 28.
Generally speaking, the dominant mode increases with the mass ratio.
Furthermore, the natural frequency of the dominant mode for IL vibra-
tions largely remains twice that in the CF direction. A further comparison
between Figs. 27 and 28 indicates that the width of the response enve-
lope for IL vibrations is larger than that of CF vibrations. This can be
reasonable because we expect more modes to be involved in the higher
mode number vibrations.

5. Discussion

A common concern in VIV study is how the response changes with
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reduced velocity. The numerical results obtained previously in section 4
are analyzed now to further study the trend of the mode, amplitude and
curvature with reduced velocity. The discussion is based on the following
data processing method.

Overall indications of the magnitudes of IL and CF responses are
provided by the root mean square values over z of the standard deviations
of x and y with respect to time. This is defined by

σrms
x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L
∫ L
0

1
T
∫ T
0 ½xðz; tÞ � xðzÞ�2dtdz

r
;

σrms
y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L
∫ L
0

1
T
∫ T
0 ½yðz; tÞ � yðzÞ�2dtdz

r
;

where xðz; tÞ and yðz; tÞ are the time-averaged IL displacement and CF
displacement, respectively. The time-averaged CF displacement yðz; tÞ is
expected to be zero. The integration in time is carried out over an interval
T in which the velocity is constant; in general, this is the last 30 s of the
60 s duration of each test.

The root mean square values of the standard deviations of the IL and
CF curvatures σrms

cx and σrms
cy can similarly be defined as



Table 9
Dominant VIV mode with different mass ratio.

m* IL mode CF mode

2 3 6
2.5 3 6
3 4 7
4 4 8
5 5 10
6 5 10

Fig. 30. Tendency xmax, □ indicates cases with various mass ratios m*, while ○ indicates
that with various top tensions T and △ indicates that with various current velocities V.
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σrms
cx

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L
∫ L
0

1
T
∫ T
0 ½cxðz; tÞ � cxðzÞ�2dtdz

r

σrms
cy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L
∫ L
0

1
T
∫ T
0

	
cyðz; tÞ � cyðzÞ


2
dtdz

r

The RMS value of the standard deviation, the maximum attainable
value of displacement and the oscillatory frequency are plotted in
Figs. 29 and 30 as functions of the reduced velocity V=ðf1DÞ. Here, V is
the flow velocity, and D is the cylinder diameter. The frequency f1 is the
riser's natural frequency in still water in the fundamental mode, which is
obtained from FEM with the corresponding top tension.

In Fig. 29, the standard deviations of displacements appear to be quite
widely scattered with most points in the range of 0.04 and 0.12 diameters
for IL motion and between 0.1 and 0.3 diameters for the CF direction.
However, as will be seen below, this is a consequence of systematic
changes that take place as the reduced velocity passes through the lock-in
range for successive modes. This result suggests that the modal content
has a major effect on the overall amplitude of the riser's response, which
is therefore quite sensitive to small changes in the reduced velocity.

The IL and CF curvatures are of similar magnitudes. The fact that the
curvatures increase approximately with ðV=f1dÞ2 is consistent with the
interpretation that the oscillations occur at an approximately constant
amplitude and at a mode number that increases linearly with reduced
velocity.

The time-averaged displacement of the riser in the IL direction fol-
lowed the same form in all cases. Increasing the velocity of the current
has the effect of increasing the drag, thereby increasing the modal fre-
quencies and the maximum mean IL offset xmax. The modal frequencies,
such as f1, are approximately proportional to the square root of the
Fig. 29. Tendency, □ indicates cases with various mass ratios m*, while ○ indicates that
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tension; therefore, it follows that if the drag coefficients are constant, the
maximum mean offset would be proportional to the square of the
reduced velocity xmax=D ¼ CðV=f1DÞ2 with C independent of the initial
still water tension. The results of the maximum mean offsets for all tests
(plotted together in Fig. 30) are clustered around this relationship.
However, the maximum mean offsets depart from this relationship
slightly, which suggests that there are significant changes in drag co-
efficients associated with mode switching.

6. Conclusions

We made comprehensive calculations of the vortex-induced vibra-
tions of a 13.12 m long model vertical tension riser having a diameter of
28 mm and amass ratio of 3.0. The tests were carried out in a step current
consisting of a uniform flow over the bottom 45% of the riser, whereas
the remainder was in still water. A good agreement between the nu-
merical and experimental results showed that the self-developed solver is
reliable. Good quality results have been obtained for the frequencies and
amplitudes of responses with the 4th and 7th modes in transverse and IL
directions, respectively. The numerically predicted mean IL displace-
ments have good consistency with the experimental result with an
approximate error of only 1%.
with various top tensions T and △ indicates that with various current velocities V.
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In the following study, we carried out a series of numerical simula-
tions of VIVs of a vertical tension riser. The current velocity, top tension
and mass ratio were investigated in detail to understand their effects on
the VIV responses of long flexible risers. The parameters were studied
separately to obtain some laws pertaining to them. For example, it was
found that the maximum IL mean displacement decreases with the in-
crease of top tension. However, the location is almost unchangeable in
any case. The trend of mode order reduction is obtained as the top ten-
sion increases. The relationship between the natural frequency and
oscillating frequency was intensely investigated to explain the reason for
the occurrence of the dominant mode.

Finally, the previous results of all the cases were analyzed to study the
VIV responses for the reduced velocity. Our understanding of the VIVs of
long flexible risers has benefited considerably from the fact that a large
number of tests were carried out. In this study, the amplitude of the
response in each mode grew monotonically as the reduced velocity
increased through its lock-in range. Generally, the overall response of the
riser included significant contributions from two or more modes, and
each combination persisted over a range of reduced velocities. However,
these ranges overlapped so that a given reduced velocity could give rise
to more than one pattern of modal contributions. These remarks apply
equally to the IL and CF motions, and the steps in VIV responses in both
directions are clearly linked. The standing wave or travelling wave re-
sponses were captured for different reduced velocities.
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