
Journal of Fluids and Structures 77 (2018) 170–181

Contents lists available at ScienceDirect

Journal of Fluids and Structures

journal homepage: www.elsevier.com/locate/jfs

Numerical study of vortex-induced vibrations of a flexible
cylinder in an oscillatory flow
Bowen Fu, Lu Zou, Decheng Wan *
State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University,
Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China

h i g h l i g h t s

• VIV of a flexible cylinder in an oscillatory flow is simulated using a CFD method;
• In-line vibrations are found to consist of three components;
• The butterfly-shaped trajectory has been observed;
• Wavelet analyses of vibrations and hydrodynamic forces have been conducted.
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a b s t r a c t

The vortex-induced vibrations of a flexible cylinder oscillating harmonically in still water
have been numerically simulated using a CFD method based on the strip theory. The
algorithm PIMPLE in OpenFOAM is adopted to compute the flow field while the small-
displacement Bernoulli–Euler bending beam theory is used to model the cylinder. Two
ends of the flexible cylinder are forced to oscillate harmonically. The simulation results
have been compared with experimental results and further analyzed. Features such as the
hysteresis phenomenon and the build-up–lock-in–die-out cycle are observed in the cross-
flow vibration. The in-line vibrations consist of three components, the low-frequency oscil-
lation, the first-natural-frequency vibration during the cylinder reversal, and the second-
natural-frequency vibration due to vortex shedding. The butterfly-shaped trajectory has
been observed. Detailed wavelet analyses of the vibrations have been given at the end.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

A cylinder exposed to an oscillatory flow will experience vortex shedding if the Reynolds number and the Keulegan–
Carpenter number are not too small, resulting in periodic variations in the force components on the cylinder. One feature of
the cylinder exposed to an oscillatory flow is that the return of shedding vortices towards the cylinder after the flow reversal
may cause a sudden change in the hydrodynamic forces. The in-line displacements primarily oscillate at the frequency of
support motion, while small high-frequency periodic fluctuations are superimposed on the low-frequency displacements.
These high-frequency fluctuations are induced by vortex shedding and vortex motions around the cylinder due to flow
reversals. The case also applies to the in-line hydrodynamic forces. Vibrationswill be amplifiedwhen the natural frequency is
close to any of these vibration components, low-frequency oscillations or high-frequency fluctuations.When the amplitudes
of the in-line oscillations become large, the in-line motions may begin to influence the cross-flow vibrations (Lipsett and
Williamson, 1991). The cross-flow vibrations are generally of larger amplitudes.
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Nomenclature

φ Mode shape
Ay Amplitude of cross-flow vibration
CHx In-line hydrodynamic force coefficient
CHy Cross-flow hydrodynamic force coefficient
D Diameter of the cylinder
fHx In-line hydrodynamic force frequency
fHy Cross-flow hydrodynamic force frequency
fn1 First natural frequency
fn2 Second natural frequency
fst Strouhal frequency
f ms Frequency of modal weight of variable s
fw Support motion frequency
fx In-line vibration frequency
fy Cross-flow vibration frequency
L Length of the cylinder
s Time-averaged value of the variable s
smax Maximum value of the variable s
T Tension of the cylinder
Tw Support motion period
Ur Reduced velocity
wm

s Modal weight of variable s
x Relative in-line displacement
xs Support motion displacement
xt Total in-line displacement
y Cross-flow displacement
z Elevation

The hydrodynamic excitation of cylinders in oscillatory flows has been the subject of numerous investigations in
the past several decades. Some researchers conducted experiments on the hydrodynamic response of rigid cylinders in
oscillating flow (Kozakiewicz et al., 1994; Sarpkaya, 1979; Sumer and Fredsøe, 1988). From the experiment one of the
typical characteristics of the response in oscillatory flows is the multi-peak behavior in the cross-flow amplitude responses
(Kozakiewicz et al., 1997; Sumer and Fredsøe, 1988). A comprehensive reviewof the investigations can be found in Sumer and
Fredsøe (1997). Some numerical investigations have also been conducted. Graham and Djahansouz (1991) used a discrete
vortex method to predict the excitation of a cylinder in two directions. Anagnostopoulos and Iliadis (1998) used a finite
element technique to study the cylinder response in the in-line direction. And more recently, Zhao (2013) conducted two-
dimensional numerical studies of 2dof VIV of a circular cylinder in oscillatory flows, which reproduced some phenomena
observed in experiments.

There is no much research on vortex-induced vibrations of flexible cylinders in oscillatory flows. Wang et al. (2014)
conducted a series of experiments on this problem. In the present work, we investigate vortex-induced vibrations of a
flexible cylinder subject to oscillatory flows using a computational fluid dynamics method, with parameters maintained
identical to the model test by Wang et al. (2014) to facilitate comparison. The simulations are based on the in-house solver
viv-FOAM-SJTU, which has been validated in previous studies (Duan et al., 2016; Fu et al., 2016; Wan and Duan, 2017). The
present article is organized as follows. Section 2 introduces the concerned problems, followed by the simulationmethods in
Section 3 for handling the problems in Section 2. And Section 4 gives the simulation results with detailed analyses. Finally,
a curt summary is presented in Section 5.

2. Problem

As regards oscillatory flows, there are two approaches to form them. In one, oscillatory flows are created by driving the
water. For example, in the study of Sarpkaya (1986), a U-shaped oscillating flow tubewas used.While inmost other research,
an oscillating cylinder is adopted. In both the experiment of Wang et al. (2014) and the present simulation, the oscillatory
flow is formed by forcing two ends of the cylinder to oscillate harmonically. The main parameters of the experiment are
listed in Table 1 and are maintained identical in the simulation. The mass ratiom∗ in Table 1 denotes the ratio of the mass of
the cylinder to themass of the displacedwater. Depicted in Fig. 1 is the experimental setup. The support motion is a periodic
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Table 1
Main parameters in both Wang et al. (2014) and the present work.

Symbols Values Units

Mass ratio m∗ 1.53 –
Diameter D 0.024 m
Length L 4 m
Bending stiffness EI 10.5 Nm2

Tension T 500 N
First natural frequency fn1 2.68 Hz
Second natural frequency fn2 5.46 Hz
Keulegan–Carpenter number KC 84 –
Maximum reduced velocity Ur max 4 –

Fig. 1. Experimental setup in Wang et al. (2014). The supporting frame was forced to oscillate harmonically. The direction parallel to the support motion
is referred to as the in-line direction x, while the direction perpendicular to the in-line direction x and the axial direction z is referred to as the cross-flow
direction y.

function of time, expressed as

xs = A · sin
(
2π
Tw

t
)

, (1)

us =
2πA
Tw

· cos
(
2π
Tw

t
)

, (2)

where A denotes the oscillating amplitude and Tw the oscillating period, xs the oscillating displacement and us the oscillating
velocity. The reduced velocityUr of the supportmotion can be used to represent the relationship between the flow situations
and the structural properties. It is supposed that the excitation range of cross-flow vibrations in terms of the reduced velocity
extends over 3 < Ur < O(10) in water. In the present research, the maximum reduced velocity Ur max can be written as

Ur max =
us max

fn1D
=

2πA
Twfn1D

, (3)

where fn1 is the first natural frequency of the cylinder. In the sinusoidal flow, the Keulegan–Carpenter (KC) number can be
given by

KC =
us maxTw

D
=

2πA
D

, (4)

in which us max is the maximum support velocity. The physical meaning of the KC number can probably be best explained
as the stroke of the motion to the diameter of the cylinder. Small KC numbers mean that the orbital motion of the water
particles is small relative to the diameter of the cylinder. For very largeKC numbers, wemay expect that the flow for each half
period of the motion resembles that in a steady current. The KC can be regarded as the dimensionless version of oscillating
amplitude A.

3. Method

In order to compute the vibrations of flexible cylinders, the hydrodynamic forces acting on themmust be obtained. To do
this, the transient incompressible Reynolds-averaged Navier–Stokes equations are solved numerically:

∂ui

∂xi
= 0, (5)

ρ
∂ui

∂t
+ ρ

∂(uiuj)
∂xj

= −
∂p
∂xi

+

∂
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iu
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, (6)
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where Sij is the mean strain tensor

Sij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, (7)

and τij = −u′

iu
′

j is the Reynolds stress tensor. The SST k − ω turbulence model is employed to determine the Reynolds
stresses (Menter, 1994; Menter et al., 2003). No wall functions are used in the present work. Instead a refined mesh close to
the cylinder is used to predict turbulence kinetic energy close to the cylinder (Chien, 1982; Wilcox, 1993).

Considering the large scale in the axial direction of the flow domain and also in the direction of support motion, it is not
feasible to solve the three-dimensional flow field directly. In this case, a better choice is to solve two-dimensional flow strips
located equidistantly along the span. As Willden and Graham (2004) has mentioned, though three-dimensional vortices
might be developed when flow passes a cylinder, an effect of lock-in actually increases the correlation of flow along the
span and renders the local flow primarily two-dimensional, making it possible to compute the fluid dynamics locally in a
two-dimensional way. To some degree, the case also applies to oscillatory flows (Kozakiewicz et al., 1992). In order to reduce
the computation cost and make the simulation feasible, 3-D features in the flow field are ignored in the present work. And
the only connection between two strips is via cylinder displacements. Hydrodynamic forces are calculated from pressure
forces and viscous forces integrated over the surface of the cylinder on each strip. The PIMPLE algorithm in the OpenFOAM
is used to compute the two-dimensional flow fields (Holzmann, 2017).

On the other hand, the flexible cylinder is modeled as a small-displacement Bernoulli–Euler bending beam, with two
ends set as pinned. In the present work, the two ends of the cylinder oscillate harmonically as prescribed. In contrast to
steady currents, the concept ‘in-line displacement’ is not quite straightforward in oscillatory flows. Terms ‘total in-line
displacement’ and ‘relative in-line displacement’ are used to distinguish the total one and the deflection. Thus, the cylinder’s
total displacement in the in-line direction is referred to as total in-line displacement xt, i.e. the sum of the support motion
xs, plus the relative in-line displacement x:

xt = xs + x. (8)

The equilibrium of forces for this system can be written as

mẍt + cẋ + kx = fHx, (9)

where m, c , k are the mass, the damping and the stiffness of the system, fHx the in-line hydrodynamic force. Thus we have

mẍ + cẋ + kx = fHx − mẍs. (10)

In the case of oscillatory flows, there is one additional contribution to the total in-line forces from the point of view of
the cylinder, the additional inertial force. While in the direction vertical to the forced support motion, referred to as the
cross-flow direction y, no such additional inertial force exists. In the finite element method the equations can be discretized
as

Mẍ + Cẋ + Kx = FHx − Mẍs, (11)
Mÿ + Cẏ + Ky = FHy, (12)

where x, xs, and y are the relative in-line, the forced in-line, and the cross-flow nodal displacement vectors, the dot over a
variable indicates its differentiation with respect to time, whileM, C,K are themass, the damping and the stiffness matrices.
FHx and FHy are the hydrodynamic force vectors in corresponding directions. For the Rayleigh dampingwehaveC = αM+βK,
where α and β are calculated based on the first two natural frequencies fn1 and fn2 listed in Table 1, which are the actual
involved ones, with the damping ratio ζ adopted as 0.03. The equation (Clough and Penzien, 2003) can be written as[

α

β

]
=

2ζ
fn1 + fn2

[
2π fn1fn2
1/(2π )

]
. (13)

Eqs. (11)–(12) are solved using the Newmark-beta method (Clough and Penzien, 2003).
With both the flow fields and the structure fields being solved separately, they can then be integrated together. At the

beginning of each time level, the hydrodynamic forces aremapped to the structuralmodel elements. Then the displacements
of the cylinder are computed. With the displacements obtained, the mesh can be moved or deformed accordingly, thus
resulting in new flow fields fromwhich the hydrodynamic forces can be calculated. In this way, a time step is advanced. The
procedure is shown in Fig. 2, based on which the solver viv-FOAM-SJTU is formed.

Twenty strips equidistantly located along the span of the cylinder are plotted in Fig. 3. These strips share the same initial
flow field mesh, as shown in Fig. 4(a). The number of simulation strips can be determined by considering the highest mode
of vibration. Three strips are required per half wave-length of vibration (Willden and Graham, 2004). The highest mode
considered in the present work is the 2nd mode. As a result, 20 strips seem sufficient for the simulation. To verify the mesh
resolution, meshes of 0.3, 0.5, 0.7 million cells have been tested. The results of 0.5 million cells differ only slightly with 0.7
million cells, especially in the low-frequency oscillations in the in-line hydrodynamic forces due to the support motion.
Considering the randomness in the flow, it is reasonable for some variations to appear among the high-frequency forces.
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Fig. 2. Fluid–structure interaction. The fluid and the structure are coupled by hydrodynamic forces and structural displacements.

Fig. 3. Twenty strips located equidistantly along the span of the flexible cylinder.

The mesh of 0.5 million cells is employed for further investigation. The computation domain is of 80 cylinder diameters in
the in-line direction x, 40 diameters in the cross-flow direction y. Every quadrant of the cylinder is divided into 40 parts.
While 80 nodes are distributed in the radial direction between the cylinder and the outer concentric circle with a diameter
20 times that of the cylinder. The mesh near the cylinder is refined to predict turbulence kinetic energy close to it and is
shown in Fig. 4(b). The motion solver ‘‘displacementLaplacian’’ in OpenFOAM is applied to handle the dynamic mesh (Jasak,
2009). Imposed on the surface of the cylinder is the no-slip boundary, and no external current is applied. The cylinder is
discretized into 80 elements, with each element imposed of uniformly distributed loads.

4. Results

As has been mentioned above, cylinders tend to vibrate significantly for 3 < Ur < O(10). In the present study, a case
with the KC number of 84 and the maximum reduced velocity Ur max of 4 has been simulated (the oscillating period Tw is
7.5 s accordingly). The VIV development at the mid-span of the flexible cylinder in the cross-flow direction within half an
oscillating period is presented in Fig. 5. The comparison between the present simulation and Wang et al. (2014) is given. To
quantify the development of the cross-flow vibrations in the oscillatory flows, Wang et al. (2014) adopts the critical value
of

√
2/2 of the maximum cross-flow displacement to define the ‘lock-in’ stage and the ‘build-up’ and ‘die-out’ stages. The

‘lock-in’ concept in the present study serves to characterize the intense vibration stage and is different from the generally
accepted definition. The reduced velocityUr increases over time in the build-up stage. As timepasses the amplitude increases.
When the amplitude exceeds the critical value mentioned above, the lock-in stage starts, during which the vibrations will
reach the maximum amplitude in the half oscillating period. Similarly, when the amplitude falls below the critical value, the
die-out stage starts and the amplitude will further decrease. It should be noted that the maximum amplitude appears not
exactly at the reduced velocity peak, but shortly after it. For the selected half cycle, the lock-in duration is 21% of the half
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(a) Initial mesh on each strip. (b) Mesh near the cylinder.

Fig. 4. Mesh used in the simulation.

(a) Wang et al. (2014). (b) The present simulation.

Fig. 5. Development of the cross-flow vortex-induced vibrations at the mid-span of the cylinder within half an oscillating period.

Fig. 6. Hysteresis phenomenon of cross-flow vibration amplitudes Ay · D−1 between accelerating and decelerating stages with the reduced velocity Ur
varying from 0 to 4. The solid line with triangles pointing to right ‘▷’ denotes the accelerating stages, while the dashed line with triangles pointing to left
‘◁’ indicates the decelerating stages.

oscillating period Tw/2, while the value is 22% for Wang et al. (2014). From this perspective, the simulation agrees with the
experiment well. The amplitude in the present simulation is slightly larger than that of the experiment. For in the absence
of data of the damping ratio of the experimental model, the value of 0.03 is adopted. This small damping may give rise to
the larger amplitude.

Oscillatory flows keep accelerating and decelerating by nature. It is not surprising to see that the response amplitudes
in decelerating stages differ from those in accelerating stages with the same reduced velocities Ur, i.e. the hysteresis
phenomenonoccurs. In order to indicate thehysteresis phenomenonor the ‘history dependence’, the amplitudes of the cross-
flow vibrations Ay varying with the reduced velocities Ur during the course of increase or decrease of the reduced velocity
are obtained separately over a sufficiently long period of time, as plotted in Fig. 6, from which the differences between the
accelerating and decelerating stages can be clearly seen. The ‘hysteresis’ means that the cross-flow vibration amplitudes Ay
tend to be low in the early accelerating stages and are reluctant to be lowered down in decelerating stages. The lag between
the vibration amplitude and the reduced velocity may be due to the lag between the vortex shedding (or the corresponding
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Fig. 7. The total in-line displacements xt · D−1 and total in-line reduced velocities Ut r at the mid-span of the cylinder.

Fig. 8. The relative in-line displacements x · D−1 and the in-line hydrodynamic force coefficients CHx at the mid-span of the cylinder (upper) and modal
weights of x · D−1 and CHx over the entire cylinder, wm

x · D−1 and wm
Hx (lower).

hydrodynamic forces on the flexible cylinder) and the reduced velocity. The vortex shedding doesn’t change immediately
when the velocity is altered.

The time t is non-dimensionalized by the oscillatory period Tw in the following analyses. Since xs = A · sin
(
2π t · T−1

w

)
,

the support displacement gets zero when t · T−1
w = i + 0 or 0.5, approaches peaks when t · T−1

w = i + 0.25, and approaches
valleys when t · T−1

w = i + 0.75, where i is some integer. Thus this non-dimensionalization will largely facilitate analyses.
The total in-line displacements and the total in-line reduced velocities at the mid-span of the cylinder are provided in Fig. 7
as a reference showing the situations and positions of the cylinder at any time in the selected interval.

Depicted in the upper part of Fig. 8 are time series of the relative in-line displacements at themid-span of the cylinder and
the corresponding hydrodynamic forces acting on it. There is a good deal of resemblance between the displacements and the
forces. That is the result of the feedback between the responses and the forces. From the relative in-line displacement figure,
it is clear that there exists a low-frequency, large-amplitude oscillation. The oscillation reaches its peaks and valleyswhen the
supportmotion crosses zero, i.e. a lag of 0.25Tw seems to exist between the supportmotion and the low-frequency oscillation.
It is known that there always exists a delay between the responses with the excitation forces. This delay is always a quarter
of a period at the resonance, but negligible when the excitation frequency is far less than the natural frequency, which is
exactly the case for the low-frequency oscillation. Thus, it is reasonable to assume that the low-frequency component of the
in-line hydrodynamic forces caused by the support motion acts as the driving force of the low-frequency oscillation.

Another phenomenon is that when the support displacement xs · D−1 reaches peaks or valleys (i.e. when the relative in-
line displacement x ·D−1 crosses zero), the distinct short-duration fluctuationsmanifest in the relative in-line displacements
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Fig. 9. Development of vortices during cylinder reversal in the strip at the mid-span of the cylinder. Horizontal axis: non-dimensionalized time t · T−1
w ;

vertical axis: total in-line displacements xt · D−1 .

x ·D−1 and in-line hydrodynamic force coefficients CHx. When the cylinder reverses its motion direction, the vortices behind
it will be washed over it. Plotted in Fig. 9 is the development of the vortices in the plane at the mid-span of the cylinder
during the cylinder reversal. The short-duration fluctuations are attributed to the vortices washing over the cylinder.

The lower part of Fig. 8 presents the modal weights of the relative in-line displacements and the in-line hydrodynamic
force coefficients. The deflected shape of the flexible cylinder is represented in spectral terms, i.e. the entire cylinder’s
displacements are decomposed into modal contributions in the least-squares sense (Lie and Kaasen, 2006; Trim et al., 2005)
through

φTx = φTφwx, (14)

where only those desirable mode shapes are included in the matrix of mode shapes φ. Modal decompositions of forces are
conducted in a similar way.

One feature of the in-line vibrations is that the first-ordermodalweight ismainly contributed by the hydrodynamic forces
due to the support motion. And some fluctuations exist in the second-order modal weight shortly after the reduced velocity
peaks or valleys. In the present case, the maximum Reynolds number Remax = us maxD/ν = 6174, the flow is mainly in the
‘subcritical’ regime (Blevins, 2001). And the Strouhal number St for a smooth circular cylinder is about 0.2 in the ‘subcritical’
regime. The Strouhal number St is of the similar form to the reciprocal of the reduced velocity Ur,

St =
fstD
us

= 0.2, (15)

1
Ur

=
f n1D
us

≥ 0.25, (16)

where fst is the vortex shedding frequency for a stationary cylinderwith the current speedu, i.e. the Strouhal frequency.When
the cylinder is accelerating, the Strouhal number St gets closer to the reciprocal of the reduced velocity Ur, i.e. the Strouhal
frequency fst approximates the fundamental natural frequency of the flexible cylinder f n1. When the Strouhal frequency gets
close to the first natural frequency, the first-ordermodalweight of the cross-flow vibrationswill increase. Accordingly, twice
the Strouhal frequency will approximate the second natural frequency, i.e. the second-order modal weight of the in-line
vibrations will increase, in exactly the same fashion as in steady currents. This is actually what we see from the lower part of
Fig. 8—the second-ordermodalweightmanifests exactly after the reduced velocity peaks and valleys.Moreover, the second-
order modal component of the in-line hydrodynamic forces seems more evident than that of the in-line displacements.

One way of determining the relationship between displacements and forces is to identify their dominant frequencies. A
common technique regarding the determination of the dominant frequencies is Fourier analysis. Fourier analyses of modal
weights of the in-line displacements and force coefficients are presented in Fig. 10. In the in-line direction, a lower bound of
1 Hz (0.37fn1) is imposed to manifest the high-frequency components, otherwise their effects will be overshadowed by the
low-frequency, large-amplitude in-line oscillation. It is shown that the first-order modal vibration near the motion reversal
is at the first natural frequencywhile the second-ordermodal vibration at the second natural frequency dominates thewhole
cylinder. In contrast, nearly no first-natural-frequency-dominated stages are found for the in-line hydrodynamic forces.

Similar figures in the cross-flow direction are presented in Fig. 11. From the cross-flow displacement figure, the build-
up – lock-in – die-out cycle features can be clearly observed. The die-out stages appear to be longer than the build-up stages,
forming a triangle-shaped envelope pointing to the right for each cycle. Actually, the cross-flow amplitude is still decreasing
when the cylinder starts to accelerate. Though the lag also exists for the amplitude peaks, it is not as evident, resulting in
longer decreasing amplitude stages. This conclusion fits Figs. 5 and 6. It can be seen from these two figures that the amplitude
is actually decreasing at the beginning of the accelerating stages. The peak amplitude of the oscillations in the cross-flow
hydrodynamic coefficient is not a stable value. As is seen, it varies from one period to another. It may even happen that peaks
in someperiods aremissed, such as t ·T−1

w = 11. From themodalweights it is clearly seen that the second-ordermodalweight
for the cross-flowhydrodynamic forces ismore pronounced than the cross-flow displacements. This can be due to that forces
are more sensitive to any small changes in the flow, especially to high-frequency fluctuations, while displacements as the
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Fig. 10. Power spectral density of modal weights of the relative in-line displacements x · D−1 and the in-line hydrodynamic force coefficients CHx over the
entire cylinder. The in-line modal vibration frequencies f mx and the in-line modal hydrodynamic force frequencies f mHx are non-dimensionalized by the first
natural frequency fn1 .

Fig. 11. The cross-flow displacements y · D−1 and the cross-flow hydrodynamic force coefficients CHy at the mid-span of the cylinder (upper) and modal
weights of y · D−1 and CHy over the entire cylinder, wm

y · D−1 and wm
Hy (lower).

Fig. 12. The trajectory of vibrations at the mid-span of the cylinder. The support motion is not included in the in-line displacement.

result of the actions of forces over a short period of time. This cumulative effect inevitably renders displacements more
stable.
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Fig. 13. Wavelet analyses of the in-line displacements x and of the in-line hydrodynamic force coefficients CHx .

The trajectory of the vibrations in an oscillatory period is plotted in Fig. 12. The two ‘8’ figures are located at two sides
of the trajectory, in accordance with the above analyses that the most intense vibrations in both directions occur when the
relative in-line displacement reaches its extreme value, during which the first natural frequency dominates the cross-flow
vibrations while the second natural frequency dominates the in-line vibration. The in-line vibration is mainly at the first
natural frequencywhen relative in-line displacement gets close to zero. Thismay explain the small circular coils in the center.
The butterfly-shaped trajectory can be a key feature of vibrations of flexible cylinders in oscillatory flows in low-mode cases.

The dominant vibration frequencies of the displacements and force coefficients varying over time obtained fromwavelet
analyses are given in Fig. 13 for in-line direction and Fig. 14 for cross-flow direction. Fig. 13 clearly presents three states
the cylinder experiences in the in-line direction: the first-natural-frequency vibration dominated stage, the second-natural-
frequency vibration dominated stage, and the lower-frequency oscillation dominated stage (despite that a lower bound of
1 Hz is imposed). The first natural frequency rather than the second natural frequency dominates the in-line vibrations at
z·L−1

= 0.5, for that themid-spanof the cylinder is exactly the standingpoint of the secondmode.On the other hand, near the
two sides the cylinder is less likely to vibrate at the first natural frequency. However, almost no such first-natural-frequency
vibration dominated stages occur in the force figure, as formerly shown in Fig. 10, indicating that the displacements and
the hydrodynamic forces are dominated by different frequencies and lock in does not occur at the mid-span in the in-line
direction. No lock-in means less stable forces. As a result of this, the in-line hydrodynamic force coefficient at the mid-span
is dominated by the low-frequency oscillation for the most time. The subject can probably be best explained by that no
standing points of forces exist along the span. Once vortex shedding occurs, the generated forces appear, no matter whether
the displacement at the position is zero (at twice the Strouhal frequency for the in-line hydrodynamic forces of a stationary
cylinder). No lock-in only means less amplitude for the forces, which is exactly the case for the in-line hydrodynamic
force at the mid-span of the cylinder. Frequencies being out of sync also appears near two ends of the cylinder where the
displacements are very limited. Near the peaks or valleys of the second-order mode, i.e. z · L−1

= 0.25, 0.75, lock-in occurs,
resulting in the almost same frequency at the same time between the displacements and the forces and large amplitudes
for both. When we look back at Fig. 8 it will be seen that the more obvious high-frequency fluctuations and instabilities in
in-line hydrodynamic force coefficients may be attributed to both the more sensitive nature to the short-period changes as
well as the non-lock-in state.

The frequencies of the cross-flow vibrations are much more stable. The slight fluctuations of the vibration frequencies
would presumably be due to the variation of the natural frequencywith the reduced velocity, considering that themass ratio
is merely 1.53. The natural frequency in the water situation is not maintained at its still-water value, but rather it increases
with the reduced velocity (Sumer and Fredsøe, 1997). Different from the stable displacements, the cross-flow hydrodynamic
force frequencies occasionally experience an abrupt drop to some frequency lower than the first natural frequency but larger
than the lower bound of 1 Hz, especially near two ends of the cylinder. This suggests that the displacements lose control over
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Fig. 14. Wavelet analyses of the cross-flow displacements y and of the cross-flow hydrodynamic force coefficients CHy .

the forces near the two ends due to small vibration amplitudes. The displacement and force frequency diagrams indicate
that the small-amplitude vibrations occur at the first natural frequency, while the vortex shedding (the fluctuations in the
cross-flow hydrodynamic forces) mainly occurs at the stationary cylinder Strouhal frequency, going up and down, in exactly
the same fashion as for rigid cylinders (Sumer and Fredsøe, 1997).While near themid-span the vortex shedding is controlled
by the Strouhal law in lesser time.

5. Conclusions

The vortex-induced vibrations of a flexible cylinder oscillating harmonically in still water with KC of 84 have been
numerically simulated using a CFD method. The simulation results have been compared with a test carried out by Wang
et al. (2014) and further analyzed. One feature of the vortex-induced vibrations in oscillatory flows is the build-up – lock-
in – die-out cycle. The hysteresis between the decelerating and the accelerating stages is another distinct feature. The in-
line vibrations in the present low-mode case consist of three components, the low-frequency oscillation, the first-natural-
frequency vibration during the cylinder reversal, and the second-natural-frequency vibration due to vortex shedding. The
first natural frequency component during the cylinder reversal deserves further research. The trajectory turns out to be
butterfly-shaped, the two ‘8’ figures indicating that the frequency of in-line vibration during lock-in stage is twice that of
cross-flow vibration, and the lock-in occurs when the cylinder reaches its maximum in-line displacement. Detailed wavelet
analyses of the vibrations have been given. It is shown that the first natural frequency is less likely to dominate the in-line
hydrodynamic forces, even at the mid-span of the cylinder, where the in-line vibrations are dominated by the first natural
frequency.
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