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ABSTRACT

Flows past a surface-piercing finite circular cylinder at various Froude numbers Fr ranging from 0.8 to 1.7 are investigated by utilizing high-
fidelity numerical simulation based on the adaptive mesh refinement technique, the geometric volume-of-fluid method, and the embedded
boundary method. The primary objective of the study is to reveal the relationship and interactions between the flow field and the air entrain-
ment mechanism in a surface-piercing cylinder flow. Numerical approaches are validated in various aspects by comparing simulation results
to previous experimental and numerical data. The detailed flow characteristics, including free surface deformation, velocity fields, and
vortex structures at different Froude numbers, are discussed thoroughly. The free surface breaking is captured and characterized by the local
surface slope jrgj, with three distinct breaking regions and two different breaking types identified. Features of the velocity field at various
Froude numbers are discovered by analyzing the velocity distributions at certain locations, turbulent kinetic energy, and vortex structures.
Bubble statistics including bubble size distribution and spatial distribution are obtained. Three distinct slopes of bubble size distribution
Nr � r�3=2; r�10=3; r�5 are identified for different bubble radius intervals. The bubble spatial distribution is closely related to the Froude
number, with the vertical depth of the bubble clouds increasing from y=D ¼ �1:56 at Fr ¼ 1:1 to y=D ¼ �2:59 at Fr ¼ 1:7. Many distinct
flow characteristics are associated with bubble size and spatial distribution, which can be utilized to interpret air entrainment mechanisms
and bubble statistics. Moreover, the effects of surface tension on bubble statistics are examined.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0259260

I. INTRODUCTION

Flow past a circular cylinder is a hot research topic in fluid
mechanics for its wide application in engineering. In the past decades,
massive research on the single-phase flow past a circular cylinder has
been conducted through experiments1–3 and numerical simulations.4–7

In terms of ocean engineering, surface-piercing circular cylinders can
be simplified models for many marine structures, such as Spar plat-
forms, floating offshore wind turbines, vertical pipes, etc.8,9

Understanding the free surface and the finite cylinder interaction pro-
vides valuable references for designing relevant marine structures.
Early studies on the flow past a surface-piercing finite circular cylinder
were conducted by Hay,10 including more than 350 experiments on
various cylinder diameters, depths, and speeds.11 Due to the limitations
of measurement and photographic techniques, Hay’s studies did not
involve detailed characteristics in the free surface deformation and
flow field.

In recent years, many experimental and numerical studies on
flow past a surface-piercing cylinder were carried out thanks to the

great progress of model basin experimental and high-performance
computational technology. Researchers mainly focus on three catego-
ries of flow characteristics in this problem.

The first category is the free-surface effect on the forces suffered
by the surface-piercing cylinder. Chaplin and Teigen12 presented an
experimental study on surface-piercing cylinders with a constant
Reynolds number to Froude number Re=Fr ratio of 2:79� 105. They
found that the total resistance coefficient peaked at the Froude number
of about 1. They also studied the vertical distribution of the resistance
force and defined the surface resistance coefficient, which reached a
maximum number of 0.9 at the Froude number of about 1. A similar
vertical distribution of the drag coefficient was found in the numerical
studies by Yu et al.13 and Koo et al.14 At the Froude number of about
1, the drag coefficient increased from about 0.5 at the bottom of the
cylinder to about 1 near the free surfaces. However, the drag coeffi-
cients at different vertical positions were almost identical at lower and
higher Froude numbers. Benitz et al.15 conducted numerical simula-
tions on surface-piercing circular cylinders of varying aspect ratios at
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the Froude number Fr ¼ 0:65. The total drag coefficient was relatively
small at low aspect ratios compared to the fully submerged case. With
the increase in the aspect ratio, the drag coefficient gradually
approaches that in the fully submerged case.

The second category is the free surface deformation caused by the
cylinder, including the bow wave characteristics and the wake charac-
teristics. Kawamura et al.16 presents a study on the turbulent flow
around a surface-piercing circular cylinder at a Reynolds number of
approximately 2:7� 104 and Froude numbers of 0:2; 0:5; 0:8 using
large eddy simulation (LES). At low Froude numbers (Fr ¼ 0:2; 0:5),
the surface deformations were small, and the flow near the surface was
similar to the single-phase case. However, at Fr ¼ 0:8, the generated
surface waves were huge and strongly unsteady. Many researchers paid
attention to the bow wave height and the depression depth of the cylin-
der wake.10–14,17,18 The definition of the bow wave height D1 and the
depression depth L0 is shown in Fig. 1. At low Froude numbers
(Fr2 < 1) and high Reynolds numbers (Re=Fr > 105), a classical
equation derived from Bernoulli’s theory was adopted to predict the
bow wave height D1: D1=D ¼ Fr2=2, where D is the diameter of the
cylinder. For lower Reynolds numbers, the bow wave height was fitted
to a power law: D1=D / FrB. The parameter B was close to 1 at the
lowest Reynolds numbers and increased to 2 as the Reynolds number
increased. At higher Froude numbers (1 < Fr2 < 10), the bow wave
height tended to be lower than Bernoulli’s theory. Keough et al.17 pre-
sented a modification of Bernoulli’s theory based on towing tank
experiments and curve fitting: D1 ¼ V2=2g � CdisspV2, in which the
turbulent dissipation coefficient Cdissp was fitted to 0.005. At even
higher Froude numbers (Fr2 > 10), the bow wave height tended to a
stable value due to strong bow wave breaking. The growing trend of
the depression depth L0 is more complicated. Hay’s experimental data
provided a fitting power law: L0=D ¼ 0:286Fr2. However, many
experimental and numerical studies have demonstrated that the appli-
cation range of the fitting power law was limited and the mechanisms
behind remain unclear. Recently, some studies shifted focus from
points and lines to the whole face of the free surface.11,19–22 Detailed
characteristics of the bow wave and the wake area at various Froude
numbers were discussed.

The third category is the turbulent structures around the cylinder
and in the wake area. Kawamura et al.16 observed that periodic vortex
shedding was attenuated near the free surface at Fr ¼ 0:8. Yu et al.13

extended the Froude number up to Fr ¼ 3 and the Reynolds number
up to Re ¼ 1� 105. The attenuation of organized vortex shedding at
the free surface was stronger at higher Froude numbers but reduced at
higher Reynolds numbers. Similar observations were found in Suh
et al.23 The streamwise vorticity and outward transverse velocity gener-
ated at the edge of the separated region were believed to be responsible
for the phenomenon. Koo et al.14 conducted a numerical study on the
Reynolds and Froude number effects on the flow structures by large
eddy simulation and the coupled level-set and volume of fluid
(CLSVOF) interfacing capturing method.24,25 For the sub-critical
Froude number Fr ¼ 0:84, smaller bow waves and Kelvin waves were
observed, while at Fr ¼ 1:24, larger bow waves broke and wrapped
around the cylinder, producing splashes and bubbles. At Fr ¼ 1:64,
bow waves increase significantly, with the largest wake and deepest
depression, and Kelvin waves are less visible due to increased turbulence.
A remarkably reduced separated region below the interface at z ¼ �1
was observed for the critical Re regime, resulting in a much-reduced
wake and recirculation region behind the cylinder. Chen et al.26,27 inves-
tigated the flow past a surface-piercing circular and round-cornered
square cylinder at Fr ¼ 1:1 and Re ¼ 2:7� 105 by delayed detached
eddy simulation.28,29 The instantaneous and time-averaged primary tur-
bulent structures were thoroughly discussed by using the modified
Omega–Liutex method.30 A spectral analysis was further conducted to
determine the characteristics of different turbulent structures.

A summary of the previous studies on the flow characteristics
past a surface-piercing circular cylinder is listed in Table I.

Recently, some research shed light on the air entrainment and
bubbles in the flow past a surface-piercing cylinder at high Froude
numbers. Ageorges et al.19 conducted a series of towing tank experi-
ments with the cylinder diameter ranging from 1.4 to 16 cm. The
Froude number ranged from 0.2 to 2.4 and the Reynold number
ranged from 4500 to 240000. Two modes of air entrainment were dis-
covered in the research: (i) in the cavity along the cylinder wall and (ii)
in the wake of the cylinder. High-definition optical photos and videos
were presented to capture the bubble distribution and trajectories. The
flow parameters depicting the different air entrainment regimes were
determined based on massive experimental data in various cases. Hilo
et al.21 conducted an experimental study on air ventilation and acous-
tic characteristics of flow around surface-piercing circular and elliptical
cylinders at different Froude numbers. The results showed that the air
volume fraction behind the circular cylinder is much higher than the
elliptical cylinder due to the formation of the air cavity. The experi-
mental measurements also confirmed that most noise sources behind
the cylinder are associated with the air cavity.

However, high-fidelity numerical simulations and analyses on the
air entrainment and bubble statistics in the flow past a surface-piercing
cylinder at high Froude numbers are limited. How flow characteristics
around the surface-piercing finite circular cylinder affect the genera-
tion and development of the bubble clouds remains unclear. In addi-
tion, the detailed characteristics of the bubble clouds and how they
react back to the flow field are of great significance in helping further
understand the mechanisms in the surface-piercing finite cylinder
flow, especially at high Froude numbers. The present work uses high-
fidelity numerical simulations based on the adaptive mesh refinement
technique (AMR) to investigate the flow past a surface-piercing finite
circular cylinder with bubbles and droplets. The primary objectives are
to study the detailed flow and bubble characteristics at high Froude

FIG. 1. Definition of bow wave height and depression depth from Chaplin and
Teigen.12

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 37, 032127 (2025); doi: 10.1063/5.0259260 37, 032127-2

Published under an exclusive license by AIP Publishing

 22 M
arch 2025 20:10:18

pubs.aip.org/aip/phf


numbers and to analyze the relationship between air entrainment and
flow features. Table II compares the present work with recent research
on the flow past a surface-piercing cylinder.

The structure of this paper is as follows: Sec. I gives an introduc-
tion to the background and primary focus of the present study. Section
II introduces the key computational methods used in the numerical
analysis. Section III describes the numerical setup including the physi-
cal model, computational domain, and computational mesh.
Validations on the numerical approaches are also included. The flow
characteristics past a single surface-piercing cylinder at various Froude
numbers are discussed and compared to previous studies in Sec. IV.
Section V focuses on air entrainment and bubble statistics, including
the bubble size distribution, bubble spatial distribution, and the capil-
lary effects on bubble statistics. By relating the features of bubble statis-
tics in Sec. V to the flow features in Sec. IV, the interactions between
the flow and air entrainment are investigated and discussed. In the
end, the conclusions are summarized in Sec. VI.

II. COMPUTATIONAL METHODS
A. Governing equations

Basilisk31 is an open-source solver for solving partial differential
equations on adaptive Cartesian meshes, which is the successor of the

famous flow solver Gerris.32,33 In this study, the incompressible two-
phase Navier–Stokes equations considering surface tension are solved
using Basilisk. The governing equations for incompressible two-phase
flow are as follows:

q
@u
@t

þ u r � uð Þ
� �

¼ �rpþ lr2uþ qg þ rjdSn;

@q
@t

þr � quð Þ ¼ 0;

8>>><
>>>:

(1)

where q is the density of fluid, u ¼ u; v;wð Þ is the velocity vector of
fluid, p is pressure, and l is the fluid dynamic viscosity. The term
rjdsn is introduced for surface tension where r is the surface tension
coefficient, j and n are the curvature and normal unit vector to the
interface, and the surface Dirac function ds helps distinguish the fluid
interface. It equals one on the interface and zero otherwise.

For the multiphase flow, an indicator function a is used to locate
the air–water interface. The evolution of the interface is given by the
following advection equation:

@a
@t

þr � auð Þ ¼ 0: (2)

TABLE I. Summary of the previous studies on three categories of flow characteristics.

Category Related references Key characteristics

Drag forces Chaplin and Teigen;12 Yu et al.;13 Koo et al.;14

Benitz et al.;15 Ageorges et al.19
The drag force is reduced compared to the single-phase case. At
Fr ¼ 1, the drag coefficient peaks near the free surface and varies

along the vertical direction.
Free surface
deformation

Keough et al.;11 Chaplin and Teigen;12 Yu et al.;13

Koo et al.;14 Potts et al.;18 Ageorges et al.20
The bow wave height is estimated using Bernoulli’s theory and its
modifications. Different flow regimes in the bow wave and wake

area are identified as the increase of the Froude number.
Turbulent
structures

Yu et al.;13 Suh et al.;23 Koo et al.;14 Kawamura
et al.;16 Ageorges et al.;20 Chen et al.26

The vortex shedding is attenuated by the free surface, which is
replaced by small-scale vortex structures. The two shear layers
deviate from the symmetric vertical plane, and the separation
region increases in the streamwise and transverse directions.

TABLE II. Comparison of the present work with recent research on flow past a surface-piercing cylinder.

Reference
Approach
(exp./num.) Fr/Re range Focus and key findings

Ageorges et al.19 exp. Fr ¼ 0:2–2:4
Re ¼ 4:5� 103–2:4� 105

Uncover two modes of air entrainment and determine the
air entrainment onset

Chen et al.26 num. Fr ¼ 1:1Re ¼ 2:7� 105 Identify and characterize the turbulent structures; deter-
mine the prominent frequency of the turbulent structures

Hilo et al.21 exp. Fr ¼ 0:87–1:73 Air entrainment visualization and air volume calculation;
discover the relationship between bubbles and noises

Keough et al.11 exp. Fr ¼ 0:36–3:99 Characterize the flow regimes under various Froude
numbers

Present work num. Fr ¼ 0:8–1:7
Re ¼ 2:4� 104–5:2� 104

Characterize the flow features and detailed bubble statistics;
reveal the links between flow features, wave breaking, and
air entrainment process; discover the surface tension effect

on air entrainment and bubbles
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B. Interface-capturing method

The momentum-conserving geometric volume of fluid method34

based on piecewise-linear interface calculation (PLIC)35 is employed to
precisely capture the discontinuous interface and resolve the small
flow structures like bubbles and droplets. The fraction function f x; tð Þ
is introduced as the volume fraction of water in each cell as follows:

f x; tð Þ ¼ 1
V

ð
XF

a x; tð ÞdV ; (3)

where x, t are the position and time of a cell in the simulation.
Then, the evolution advection equation of the interface is discre-

tized as

@f
@t

þ u � rf ¼ 0: (4)

The density and viscosity of a cell can be written as

q x; tð Þ ¼ f x; tð Þqw þ 1� f x; tð Þ� �
qa;

l x; tð Þ ¼ f x; tð Þlw þ 1� f x; tð Þ� �
la;

(
(5)

where qw, qa, lw, and la are the density and the dynamic viscosity of
water and air.

The PLIC method is employed to reconstruct the interface. The
three-dimensional cell is cut by a plane Cf into two parts, the water
phase on one side and air on the other. The normal vector of the plane
nCf is estimated using the Mixed-Youngs-Centered method.36 Then
the intersection points between the plane Cf and the mesh cell bound-
ary (A, B, and C in Fig. 2) are calculated using a predefined stencil with
the normal vector nCf and the volume fraction f as

aCf ¼ F nCf ; f
� �

: (6)

C. Embedded boundary method (EBM)

To account for the curved boundary in the Cartesian grid, the
embedded boundary method (EBM)37,38 is introduced. EBM, also
known as the cut-cell method, uses an approach similar to the geomet-
ric PLIC method to achieve a sharp solid interface. The cell is also cut
by a plane in EBM. Different from PLIC in the g-VOF method, the
solid volume fraction of a mixed cell CS is to be solved. The normal

vector of the solid interface nCS and the intersection points are calcu-
lated by the predefined geometry. By reversing the same stencil in Sec.
IIA, the solid volume fraction CS is calculated as

CS ¼ F�1 nCS ; aSð Þ: (7)

To achieve the Dirichlet boundary condition and calculate the
flux through and the force on the surface of the circular cylinder, the
key procedure is to calculate the gradient along the normal vector nCS

of the embedded boundary. A 3D implementation by Schwartz et al.38

is adopted as follows:

@/
@n

¼ 1
d2 � d1

d2
d1

/B � /I
1

� �
� d1
d2

/B � /I
2

� �� �
; (8)

where /B is the value of / on the solid boundary./I
1, /

I
2, are the values

of / on the two points for gradient interpolation, respectively. d1, d2
are the distances between the solid boundary and the two points. The
values of /I

1, /
I
2 are calculated using the biquadratic interpolation with

9 values on the cell center (shown in Fig. 3).

D. Adaptive mesh refinement

As implemented in the Basilisk solver, the tree-based adaptive mesh
refinement technique (AMR) plays a crucial role in enhancing the accu-
racy of numerical simulations while conserving computational resources.
This method dynamically adjusts the mesh cell size throughout the simu-
lation, allowing for a more detailed examination of small-scale flow struc-
tures such as bubbles and droplets, which are critical in this study.

The AMR module in Basilisk is underpinned by wavelet analysis,
which provides a sophisticated approach to grid refinement and coars-
ening. Wavelet analysis is rooted in multi-resolution analysis and allows
for estimating numerical errors in the representation of spatially discre-
tized fields. This study uses the gradient of the velocity field and the vol-
ume fraction field for wavelet analysis. When the gradient of the velocity
field or the volume fraction field of water reaches a predefined threshold,
the parent cell is refined into eight child cells (shown in Fig. 4).

FIG. 2. An example of geometry reconstruction of the interface (solid line: edges of
the three-dimensional mesh cell; colored solid line: actual interface; dashed line:
reconstructed interface).

FIG. 3. An example of the second-order stencil for the gradient normal to the
interface.
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III. NUMERICAL SETUP
A. Physical model and computational domain

This paper simulates and studies flow past a surface-piercing cyl-
inder at various Froude numbers. The diameter of the cylinder D is
equal to 0.05m, with the draught of the cylinder h ¼ 2:55D and the
length of the cylinder L ¼ 4:55D. The origin of the computational
domain is located at the center of the waterplane of the cylinder. To
avoid wall effects and potential fake wave reflections, the size of the
computational domain is set to �106x=D625 in streamwise,
�156 z=D6 15 in cross-stream, and �86y=D68 vertically. For the
boundary conditions, a uniform inflow is set at the inlet and the
Neumann boundary condition for velocity is applied for the outlet. A
no-slip Dirichlet boundary condition is set on the surface of the circu-
lar cylinder using EBM discussed in Sec. II. A sketch of the computa-
tional domain is shown in Fig. 5.

The density ratio of water and air is set to qw=qa ¼ 1000=1
¼ 1000 and the viscosity ratio is set to lw=la ¼ 1:14� 10�3=
1:79� 10�5 ¼ 63:7. The gravity acceleration is set to g ¼ 9:8067m=s2.
The surface tension coefficient r is controlled by the Bond number
Bo¼ qw�qað ÞgD2=r. The inlet velocity U0 is controlled by Froude
number Fr¼U0=

ffiffiffiffiffiffi
gD

p
. In this study, we choose five different cases:

Fr¼ 0:8; 1:1; 1:3; 1:5; and1:7.

B. Computational mesh and convergence test

The octree adaptive mesh refinement technique is applied in this
study. A mesh convergence study is performed at first with three dif-
ferent maximum refinement levels 8; 9; and 10 (corresponding to
2563; 5123; and 10243 uniform meshes, respectively) to determine a
sufficient mesh resolution and quantify numerical uncertainties. The
grid convergence index (GCI) introduced by Celik et al.39 is adopted,
and the bow wave height D1=D and the depression depth L0=D are the
chosen flow parameters for quantification. The results are shown in
Table III. Parameter e21 ¼ w2 � w1 and e32 ¼ w3 � w2 are the abso-
lute error, where w is the value of the chosen flow parameters, the sub-
script 1; 2; 3 represents fine, medium, and coarse meshes, respectively.
R ¼ e21=e32 is the convergence ratio. As shown in Table III, the

absolute values of the convergence ratio for both parameters are low,
indicating a converged trend. The numerical uncertainties of the fine
mesh are GCI21 ¼ 1:186%; 0:763%, indicating a low uncertainty for
capturing the free surface characteristics. It is concluded that the fine
mesh (maximum refinement level equal to 10) is sufficient for the
numerical simulation and analysis.

As the simulation goes, the mesh is adaptively refined or coars-
ened as needed. Figure 6 shows the instantaneous free surface and the

FIG. 5. Sketch of the computational domain.

TABLE III. Mesh convergence study by GCI.

Parameter e21 e32 R GCI21(%) GCI32(%)

D1=D �0.0148 �0.0538 0.2749 1.186 4.425
L0=D 0.0103 �0.0525 �0.1966 0.763 3.977

FIG. 4. Octree adaptive mesh refinement.

FIG. 6. Adaptive mesh refinement diagram at t ¼ 3 s.
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computational mesh near the free surface at t ¼ 3 s and Fr ¼ 1:3. The
mesh is very fine in the bow wave and wake region where the flow
characteristics are complicated and coarse in the non-critical region.

C. Numerical validation

In this subsection, the global drag coefficients, bow wave height at
various Froude numbers, and the free surface deformation at Fr ¼ 1:1
are adopted to validate the present numerical approach.

Figure 7 compares the drag coefficients Cd of the cylinder at dif-
ferent Froude numbers with results from Ageorges et al.20 In the study,
Cd is calculated using: Cd ¼ Fd= 0:5qDhV2ð Þ, where Fd is the drag
force. The calculated Cd decreases from 0.87 at Fr ¼ 1:1 to 0.73 at
Fr ¼ 1:7, which conforms better to experimental results than previous
LES results. The bow wave heights at different Froude numbers are
plotted in Fig. 8. At lower Froude numbers, the values of the bow wave
height conform to standard Bernoulli theory results. When the Froude
number gets larger, the bow wave heights come near the modified

equation provided by Keough et al.17 Table IV provides the quantita-
tive error analysis of the drag coefficient and the bow wave height. In
summary, the bow wave height measurement accords well with theo-
retical and experimental results.

Figure 9 further plotted was the free surface deformation at
z=D ¼ 0 and z=D ¼ 1 at Fr ¼ 1:1. The trend of the free surface defor-
mation corresponds well with the former experimental and numerical
results, especially in front of the cylinder. However, the free surface

FIG. 7. Drag coefficient Cd at different Froude numbers. FIG. 8. Nondimensional bow wave height D1=D at different Froude numbers.

TABLE IV. Quantitative error analysis of the drag coefficient CD and the bow wave
height D1=D.

Parameter Fr ¼ 1:1 Fr ¼ 1:3 Fr ¼ 1:5 Fr ¼ 1:7 Average error

CD 1.98% 1.11% 3.77% 0.68% 1.89%
D1=D 8.38% 4.40% 3.05% 1.31% 4.28%

FIG. 9. Free surface deformation at z=D ¼ 0 and z=D ¼ 1 at Fr ¼ 1:1.
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deformation behind the cylinder slightly varies from the references.
This is largely due to a different cylinder diameter and the ratio of
draught and diameter chosen in this study. The ratio h=D ¼ 2:55 is
smaller than h=D ¼ 4 in Ref. 26, resulting in a stronger free-end effect
on the free surface which will be discussed in Sec. IV.

IV. FLOW CHARACTERISTICS
A. Surface deformation

The flow field at high Froude numbers varies greatly from that at
lower Froude numbers. At the lower Froude number [Fr¼ 0.8,
Fig. 10(a)], the change of the free surface is gentle with relatively small
amplitudes of the crest and trough. The concave free surface behind
the cylinder (or called the depression region) appears to be the fan
shape with a few discontinuous points where air entrainment
occurs. The wake area presents a continuous Kelvin waveform. As the
Froude number increases to Fr ¼ 1:1 [Fig. 10(b)], a spilling breaker
forms before the cylinder. The trough of the free surface moves from
the center to the two sides, making the depression region a “Wing”
shape. The Kelvin waveform still exists, but the Kelvin wave crest
moves far from the cylinder. A wave crest begins to form at the center
behind the cylinder. At higher Froude numbers ½Fr ¼ 1:3; 1:5; 1:7,
Figs. 10(c)–10(e)], the bow wave steepness in front of the cylinder con-
tinues to increase. The spilling breaker turns into plunging breaking
bow waves with air entrainment and droplet splashing. The trough
behind the cylinder turns into a “Y” shape. With the increase in the
Froude number, the included angle of the top two branches of the “Y”
or the wake angle decreases and the vertical stem of the “Y” becomes
longer, conforming to former experimental and numerical results.14,20

The Kevlin waveform fully transforms into Mach-like wakes described
by Rabaud andMoisy.40,41

Strong wave breaking phenomena are observed for high Froude
number cases. The wave breaking onset is the first step in fully under-
standing the wave breaking phenomenon.42 For two-dimensional
Stokes wave breaking, Deike43 provided a critical wave steepness � ¼
a0k ¼ 0:32 at high Bond numbers, where a0 was the initial wave
amplitude and k was the wave number. McAllister et al.42 recently pre-
sented an experimental study on a three-dimensional wave breaking.
Three different wave breaking regimes were identified: (i) “traveling-
wave breaking,” (ii) “standing-wave breaking,” and (iii) “traveling-
standing-wave breaking.” It was found that the steepest non-breaking
local surface slope jrgj reached over 0.8 in standing waves, much
higher than the two-dimensional waves. In this study, we adopt the
previous results and analyze the wave breaking in the flow past a
surface-piercing circular cylinder. The local surface slope jrgj is
defined as

jrgj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@g
@x

� �2

þ @g
@y

� �2
s

: (9)

Note that the mesh resolution is different across the computa-
tional domain because of the adoption of the AMR technique.
Therefore, the simulation results require resampling before calculating
the local surface slope. To make sure an appropriate resampling mesh
resolution (Dx=D) is chosen for the local surface slope calculation and
the results are independent of the resolution, a sensitivity analysis
is conducted at first. The variations of the two different indexes are
chosen to measure the sensitivity: (i) the average local surface slope

(jr�gj) and (ii) the area of jrgj > 1 (Sjrgj>1), which reflects the cap-
ture ability of the concerned region. The baseline mesh resolution is
Dx=D ¼ 1=20 and the results are shown in Fig. 11. When the mesh
resolution varies by 620%, the errors in both indexes are within 5%.
This indicates that the local gradient has a low sensitivity to the mesh

FIG. 10. Instantaneous free surface and time-averaged surface-elevation contour
lines at various Froude numbers.
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resolution used for calculating the local surface slope. Therefore, using
the resampling mesh resolution (Dx=D ¼ 1=20) for data processing
and analysis is appropriate.

Having determined the mesh resolution for the local surface slope
analysis, Fig. 12 shows the local surface slope distribution at different
Froude numbers. The regions where local surface slopes under 0.3 are
filtered. Three high local surface slope regions are identified: (i) the
bow wave region, (ii) the depression region, and (iii) the wake region.
At Fr ¼ 1:1, the “V-shaped” wake region is not confectioned, while at
Fr ¼ 1:3 and above, the wake region is complete with a decreasing
angle and an increasing side length. Moreover, the high local surface
slope wake regions identified in Fig. 12 fit well with the breaking region
seen in the instantaneous free surface in Fig. 10. It proves that the local
surface slope is a valid criterion for identifying wave breaking. Kevlin-
or Mach-like wakes arising from the surface-piercing cylinder flow
match the “traveling wave” described by McAllister et al.42 It is also
observed that the high local surface slope region in the wake at Fr ¼
1:3 is not as widely distributed as that at Fr ¼ 1:5; 1:7, but the width
of the region and the peak slope area are larger. From Fig. 10, non-
breaking waves with steep local slopes are observed at the side of the
cylinder. These two waves meet at the depression region behind the
cylinder and form vertical jets at high Froude numbers. The phenome-
non matches the “standing-wave breaking” regime, where the slope of
wave breaking onset is much higher than “traveling-wave breaking.”

B. Characteristics of the velocity field

In this subsection, we mainly discuss the flow characteristics
related to the velocity field. We start by plotting the non-dimensional
average velocity distribution on certain locations in the velocity fields.
As shown in Fig. 13, three specific locations on the streamwise
(x=D ¼ �1; 1; 2) and vertical directions (y=D ¼ �0:5;�1:5;�2:5)
are chosen, respectively, making nine concerned cross-stream lines
(L1�L9). For the streamwise or horizontal direction, x=D ¼ �1 repre-
sents the location in front of the circular cylinder, x=D ¼ 1 represents
the location near the back of the circular cylinder, and x=D ¼ 1

represents the location farther behind the circular cylinder. For the ver-
tical direction, y=D ¼ �0:5 represents the location near the interface,
which is more influenced by the free surface, y=D ¼ �1:5 represents
the location at the middle of the immersed part, which is closer to the
single-phase condition, and y=D ¼ �2:5 represents the location near
the free end, where free end effects are more considered.

Figure 14 shows the streamwise velocity distribution. The stream-
wise velocity shows a consistent pattern across different Froude num-
bers in front of the circular cylinder (L1, L4, and L7). It reaches a
minimum value at the center of the x-y plane and increases rapidly
toward the cross-stream direction. The minimum values of the stream-
wise velocity in front of the cylinder are slightly different near the free
surface. However, at Fr ¼ 1:5; 1:7, the minimum values near the free
end vary from lower Froude number cases with two symmetry loca-
tions, indicating distinct flow regimes at the free end. The streamwise
velocity also shows a consistent pattern behind the cylinder at
y=D ¼ �1:5. The deformation of the free surface contributes to the
velocity change near the free surface. However, the maximum value of
the streamwise velocity decreases and the maximum velocity point is
closer to the center with the increase in the Froude number, indicating
the regime transition of the free surface deformation and reduced sepa-
ration area at higher Froude numbers. This observation is distinct
from the variation trend of the separation area with the Froude num-
ber at Fr < 1 recorded by Suh,23 suggesting that the trend of separa-
tion near the free surface varies with the Froude number rang. For
higher Froude numbers (Fr > 1), the velocity pattern conforms to
the Kelvin- and “Mach-like” wake transition pattern discussed above.
The streamwise velocity reduced more intensely near the free end at
Fr ¼ 1:5; 1:7 behind the cylinder (L8, L9). It also influences the
streamwise velocity further behind the cylinder (L6).

Figure 15 shows the vertical velocity distribution. Near the free
surface, the vertical velocity near the front of the cylinder (L1) shows
an upward trend. This indicates that the flow is being lifted due to the
presence of the cylinder, which disrupts the flow and creates a region
of low pressure in front of it. At Fr ¼ 0:8, the vertical velocity near the

FIG. 11. Variations of the mesh resolution change on the local surface slope results.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 37, 032127 (2025); doi: 10.1063/5.0259260 37, 032127-8

Published under an exclusive license by AIP Publishing

 22 M
arch 2025 20:10:18

pubs.aip.org/aip/phf


free surface shows an opposite direction compared to higher Froude
numbers. This corresponds to different bow wave forms, such as con-
tinuous, spilling, and plunging. The vertical velocity near the free sur-
face behind the cylinder is complicated, but a “W-shaped” velocity
distribution is observed at all Froude numbers. At Fr ¼ 1:1, there is a
peak of the vertical velocity at the centerline at L2. Similar observations
at P5 and P8 imply a unique upward flow regime at this critical
Froude number. The vertical velocity near the free end behind the cyl-
inder takes on a pulse shape (L8, L9). The free-end effect and a strong
upward flow behind the cylinder suppress the flow separation. The
maximum values of the vertical velocity near the free end at x=D ¼ 1
for Fr ¼ 1:3 and below are larger, while at x=D ¼ 2, the maximum
values for Fr ¼ 1:5; 1:7 are larger. This suggests that the upward flow
behind the cylinder is delayed at higher Froude numbers.

Figure 16 shows the cross-stream velocity distribution. The cross-
stream velocity in front of the cylinder shows a consistent pattern at
different Froude numbers like the streamwise and vertical velocity. As
the Froude number increases, the maximum value of the cross-stream
velocity slightly decreases in the middle and near the free surface. Near
the free end, the peak of the cross-stream velocity is significantly
reduced. However, the free end contributes to the outward flow behind
the cylinder, making the peak much larger than that in the middle.FIG. 13. The concerned locations of the velocity field.

FIG. 12. Local surface slope jrgj of the
average wave height.
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The free surface provides a similar contribution. At higher Froude
numbers, the maximum value of the cross-stream velocity at x=D ¼ 2
are larger than those at x=D ¼ 1. This observation corresponds to
other velocity components and accounts for the longer depression
region at higher Froude numbers. The cross-stream velocity near the
free end behind the cylinder is also affected by the upward flow. The
peak cross-stream velocity near the free end at x=D ¼ 1 for Fr ¼ 1:1
is more significant but at x=D ¼ 2 the peak cross-stream velocity for
Fr ¼ 1:7. It is consistent with the vertical component and suggests
that the upward flow suppresses the flow separation.

To further visualize the free surface and free end effect on the cyl-
inder flow, the time-averaged velocity distributions at z=D ¼ 0 are
shown in Fig. 17. Note that the arrows in Fig. 17 only represent the
direction of the local velocity rather than the magnitude, some arrows
penetrate the cylinder, but the velocity at the cylinder surface is zero

according to the colormap. Several typical features are observed. In the
bow wave region, a velocity reduction is found under the bow wave in
the water phase and along the bow wave crest in the air phase, proving
the reasonability of the Bernoulli equation in bow wave height predic-
tion. Flow separation is observed at the free end in the water and air.
With the increase in the Froude number, the low-speed region behind
the cylinder in the water phase grows larger. Backward flow is observed
and a vortex is formed near the free end at high Froude numbers. At
Fr ¼ 1:3 and above, a high-speed region under the free surface and a
low-speed region above is observed. The region’s area also grows larger
with the increase in the Froude number, indicating stronger shear near
the free surface.

The non-dimensional turbulent kinetic energy TKE is adopted to
visualize the fluctuation of the velocity field at the free surface in
Fig. 18. In this study, the value of TKE is calculated as follows:

FIG. 14. Time-averaged lines for the streamwise component of velocity.
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TKE ¼ 1
2

u02x þ u02y þ u02z
	 


=U2
0 ; (10)

where u0 ¼ u� �u is the instantaneous velocity fluctuation. The turbu-
lent kinetic energy at the free surface is mainly distributed in the bow
wave region and the wake region where wave breaking occurs as men-
tioned in Sec. IVA. Several turbulent kinetic energy peaks are
observed, corresponding to the instantaneous bubble and droplet for-
mation process. At Fr ¼ 1:7, a large area of high turbulent intensity is
observed in front of the circular cylinder, suggesting that strong plung-
ing wave breaking occurs in this region. In the spilling breaking cases
where air entrainment is limited, the turbulent intensity is reduced a
lot. In the wake region, the turbulent kinetic energy occupies quite a
large “fan-shaped” area at Fr ¼ 1:1; 1:3, which is also observed in the
former study.26 However, at higher Froude numbers a different distri-
bution is observed. The peaks of the turbulent kinetic energy are dis-
persed along the two “Mach-like” wave crests. The turbulent intensity

near the back of the cylinder reduces, with two symmetry laminar
regions appearing between the bow wave and the “Mach-like” wake.

C. Vortex structures

Three-dimensional instantaneous vortex structures extracted
using Q-criterion contour44 Q ¼ 520 at different Froude numbers
with a side view and an upward view are shown in Fig. 19. The vortex
structures are colored by the magnitude of the vorticity. Near the free
surface, the vortex structures are mainly composed of small-scale
structures due to the free surface deformation. Large vortex structures
are observed to detach from the surface of the middle cylinder, which
are known as the Karman vortex shedding. The structures near the
free end show an upward-sloping trend, which corresponds well to the
measurement of the velocity distribution and observation in the previ-
ous study by Chen et al.26 It is observed that the wake structures at the
free end show distinct characteristics at different Froude numbers. At

FIG. 15. Time-averaged lines for the vertical component of velocity.
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Fr ¼ 0:8, the structures at the free end quickly join into the primary
vortex in the middle and have little influence on the subsequent devel-
opment, suggesting that the free end effect is insignificant at low
Froude numbers. The slope of the upward trend at the free end reaches
a maximum value at Fr ¼ 1:1 and decreases with the increasing
Froude number. It indicates that at medium and high Froude num-
bers, the free end effect is more crucial; however, it is delayed and
reduced by a stronger inlet velocity. From the upward view, distinct
characteristics are also observed at different Froude numbers. The vor-
tex structures only distribute behind the circular cylinder at Fr ¼ 0:8,
with the Kelvin wave region remaining laminar flow. At higher Froude
numbers especially at Fr ¼ 1:5; 1:7, the vortex structures also appear
in the breaking wake on both sides. The observation suggests that
wake turbulence from the surface-piercing cylinder has two main com-
ponents: (i) the vortex structures detached from the cylinder surface
and (ii) the vortex structures generated by the breaking wake.

To further quantify the three-dimensional features of the vortex
structures, Fig. 20 plots the areas of the vortex region (Q > 520) at dif-
ferent vertical locations. The area of the vortex region SQ is non-
dimensioned by the cylinder diameter D. It is observed that for all
Froude numbers, the areas of the vortex show a growing trend from
the free end to the free surface. This conforms to the observation of the
upwash flow. The stronger upwash flow at Fr ¼ 1:1; 1:3 is also quanti-
fied by the increasing speeds of the vortex region area match a qua-
dratic power law. On the contrary, the increasing speeds of the vortex
region area match a linear power law at other Froude numbers. The
vortex region area of Fr ¼ 0:8 at the free surface is much smaller than
other Froude numbers, demonstrating that the vortex structures near
the free surface is generated by the wave breaking.

Figure 21 shows the local vortex structures near the cylinder
and beneath the breaking wake to provide a deeper insight into the
components of the vortex structures. In Fig. 21(a), the vortexes

FIG. 16. Time-averaged lines for the cross-stream component of velocity.
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FIG. 17. Time-averaged velocity distribu-
tion at z=D ¼ 0 (white line: free surface).

FIG. 18. Contours of turbulent kinetic
energy at different Froude numbers.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 37, 032127 (2025); doi: 10.1063/5.0259260 37, 032127-13

Published under an exclusive license by AIP Publishing

 22 M
arch 2025 20:10:18

pubs.aip.org/aip/phf


FIG. 19. Global view of the vortex structures at different Froude numbers.
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induced by air entrainment are distributed in the depression region.
In addition to these vortexes, there are no other vortex structures in
this region. Necklace vortexes surrounding the front of the cylinder
are also observed. They form from the coming flow and the reverse
flow near the front stagnation point.26 It is also observed that the
necklace vortexes on the side are connected to the air entrainment
induced vortexes by streamwise vortex filaments. The necklace vor-
texes near the free surface contribute to free surface breaking and act
as the source of the air entrainment induced vortexes, revealing the
close relationship between the two types of vortexes. The streamwise
vortex filaments are observed in Fig. 21(b), which make up the main
vortex structures in the breaking wake. Similar vortex structures are
observed in the study of Stokes breaking wave.45,46 Together with the
observations in the free surface deformation, it suggests that the
breaking wake and the Stokes breaking waves belong to the same cat-
egory of wave breaking.

V. AIR ENTRAINMENT AND BUBBLE STATISTICS

In this section, we dive into the air entrainment and bubble statis-
tics in the flow past a surface-piercing circular cylinder at high Froude

FIG. 20. Areas of the vortex region at different vertical locations (solid line: linear;
dashed line: quadratic).

FIG. 21. Local vortex structures at
Fr ¼ 1:5.
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numbers. The locations and the volumes of the bubbles are counted
using the technique mentioned in Deike et al.47 We focus especially on
the close relationships between bubble statistics and the flow field char-
acteristics discussed in Sec. IV.

A. Bubble size distribution

The size distribution of bubbles is a widely used approach to
characterize the bubble dynamics.47–50 Figure 22 shows the time-
averaged bubble size distribution. Nr represents the number of bubbles
distributed by bubble radius. The number of bubbles smaller than
2mm is similar at different Froude numbers, while the number of
larger bubbles at Fr ¼ 1:1 is less than that at higher Froude numbers.
However, there was no significant difference in bubble size distribution
at Fr ¼ 1:3; 1:5; and 1:7. One possible reason for this phenomenon is
that the bubbles are counted in the entire computational domain. At
Fr ¼ 1:5; 1:7, the breaking wake is much closer to the outlet, leading
to a decrease in the number of bubbles remaining in the computational
domain. Three different slopes of bubble size distribution are observed.
The first and second slope is Nr � r�3=2 and Nr � r�10=3, which is
widely observed in the studies of breaking waves.47,49,51 These two
slopes correspond to bubbles whose radius is under 3mm and are
mainly distributed in the fully developed wave breaking region. For
larger bubbles and cavities, a third slope which is much steeper is
observed in this study. Figure 23 plots the bubble size distribution over
time at Fr ¼ 1:3 and provides a deeper insight into the phenomenon.
Nt represents the number of bubbles distributed by time. It is observed
that the number of bubbles whose radius is smaller than 3mm is stable
over time, suggesting that the formation and bursting of bubbles are in
dynamic equilibrium at this scale. On the contrary, rapid fluctuations
in quantity over time can be observed for large bubbles. It suggests that
the formation frequency of large bubbles is lower than the fragmenta-
tion frequency. Therefore, they are at the top of the cascade of bubble
fragmentation events and closely related to the air entrainment onset.

B. Bubble spatial distribution

First, the numerical results of the bubble spatial distribution at
Fr ¼ 1:3 are compared to the experimental photograph from

Ageorges et al.19 in Fig. 24. It is observed that the spatial distribution of
bubbles is well captured in the numerical results, corresponding to
three air entrainments from the three wave breaking regions. A slight
difference is observed that the rising area of the bubbles entrained in
the bow wave and depression region in the numerical simulations is at
3 < x=D < 4, which is ahead of the area observed in the experiment.
A possible reason for the phenomenon is that the draught-diameter
ratio of the cylinder h=D is smaller than that in the experiment.
Figure 25 shows the vortex structures of two different draught-
diameter ratio cylinders. It is observed that the upwash flow generated
from the free end has an impact length of about 1:5D vertically, and
the vertical distribution range of the bubble is �1:5 < y=D < 0 at
Fr ¼ 1:3, which explains that if the draught-diameter ratio of the
cylinder is smaller than 3, the upwash flow will influence the bubble
spatial distribution by accelerating the rise of bubbles.

Figure 26 shows the instantaneous spatial distributions of bubbles
at different Froude numbers. Sub-figures on the left show the spatial
distribution in the x-y plane, and sub-figures on the right show the
spatial distribution in the x-z plane. At Fr ¼ 1:1, the bubbles are
mainly distributed in the vertical region between y=D ¼ 0 and
y=D ¼ �1. The deepest bubble reaches y=D ¼ �1:56. Large cavities
are formed in the wake behind the cylinder, split into small clusters of
bubbles in cascades, and move with the wake. At Fr ¼ 1:3, more bub-
bles are observed at the back of the cylinder, but the number of bubbles
in the depression region is still limited. This observation is consistent
with the observation in the local surface slope (Fig. 12), the turbulent
kinetic energy (Fig. 18), and the vortex structures (Fig. 19). In the wake
region, bubbles are more widely distributed in the vertical direction.
Some bubbles are twisted into deeper areas at x=D � 13 and
x=D � 17, corresponding to the characteristic of the plunging break-
ing wake. At Fr ¼ 1:5 and Fr ¼ 1:7, the deepest bubbles near the back
of the cylinder reach the end of the finite cylinder, with a depth of
y=D ¼ �2:59. This observation conforms to the observation of the
velocity field, where the upward flow is delayed (Fig. 15) and a strong
vortex is formed near the free end behind the cylinder (Fig. 17) at
higher Froude numbers. However, no bubbles are found deeper than
the free end, and the upward movement of the bubbles is observed.

FIG. 23. Bubble size distribution over time at Fr ¼ 1:3.

FIG. 22. Time-averaged bubble size distribution at different Froude numbers
(dashed line: Nr � r�3=2; solid line: Nr � r�10=3; and dot-dashed line: Nr � r�5).
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This is distinct from the experimental photographs recorded by
Hilo et al.,21 in which the draught of the circular cylinder is much
larger, suggesting the upward flow motivated by the free end greatly
impacts the vertical spatial distribution of the bubbles. Moreover, large
bubbles and cavities are observed to be dispersed along the wake crest,
which conforms to the turbulent kinetic energy peak distribution
(Fig. 18).

From the discussion of bubble size distribution, the locations of
large bubbles and cavities strongly relate to the air entrainment
onset. Figure 27 shows the density spatial distribution of bubbles
whose radii are larger than 3mm over time and further demonstrates
the perspective. ND represents the counted number of bubbles over a
second in a certain area non-dimensioned by the cylinder diameter.
It is observed that the regions where large bubbles and cavities are
concentrated conform to the high local surface slope region. Three

air entrainment mechanisms are discovered: (i) by the breaking bow
wave, (ii) by the breaking depression region, and (iii) by the breaking
wake. Among the three mechanisms, the breaking wake contributes
most of the bubbles. The number of large bubbles gradually
decreases with the flow direction, making some streamwise lines. It
suggests that larger bubbles and cavities are subjected to turbulent
shearing effect when moving with the flow and eventually fragment
into smaller bubbles. A relatively dispersed distribution of large bub-
bles and cavities in the wake region is observed at high Froude num-
bers, corresponding to the dispersed distribution of the peak of the
turbulent kinetic energy. It indicates that turbulent kinetic energy
peak is a characteristic of the air entrainment process on turbulent
structures. Moreover, the streamwise bubble lines are longer at
Fr ¼ 1:5; 1:7, indicating that the large bubbles are longer-lived and
subject to less turbulent shear. This can be proved by the vortex

FIG. 25. Vortex structures near the cylin-
der of two draught-diameter ratios.

FIG. 24. Comparison of the vertical distri-
bution of the bubbles at Fr ¼ 1:3.
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FIG. 26. Instantaneous spatial distribution of bubbles (left: x-y plane; right: x-z plane).
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structures shown in Fig. 19, where sparser vortexes are observed
behind the wake at higher Froude numbers.

C. Surface tension effects on bubble distribution

In previous studies on bubble statistics, many researchers have
paid attention to the surface tension effects on the bubble distribution
and dynamics.47,49,52,53 The surface tension effects on bubble distribu-
tion are discussed with the simulation result at Fr ¼ 1:3 and four dif-
ferent Bond numbers classified into three categories: low (Bo ¼ 100),
medium (Bo ¼ 340; 1000), and high (Bo ¼ 3400).

Figure 28 shows the number of bubbles over time and the bubble
size distributions for different Bond numbers. It is observed that the
number of bubbles at the low Bond number is significantly less than
that at medium and high Bond numbers. As shown in Fig. 29, a stron-
ger surface tension effect results in the reduction of the wave breaking
at the free surface, thus suppressing the air entrainment process. It is
observed from the bubble size distribution that although the total bub-
ble number is much lower, the power law discussed in Sec. VA is still
suitable for describing the size distribution at the low Bond number.
The number of bubbles at the high Bond number is larger than that at
the medium Bond number. This phenomenon is mainly contributed
by the bubbles with the lowest radius, which indicates that the surface

tension affects the break up speed of the bubbles, especially for the
smaller bubbles. Figure 30 shows the side view of bubble spatial distri-
bution at different Bond numbers to further uncover the surface ten-
sion effect on the bubble statistics. At Bo ¼ 100, the bubble density is
less than that at higher Bond numbers, but the spatial distribution is
similar. With the increase in the Bond number, more large bubbles are
observed in the flow field, mainly distributed near the free surface. It
also illustrates that lower surface tension leads to more severe wave
breaking and air entrainment. At Bo ¼ 3400, large bubbles are hardly
seen beneath y=D ¼ �0:5, indicating that the bubble break up process
is enhanced without the resistance of surface tension. In summary, the
surface tension has a strong effect on the free surface breaking and the
air entrainment process. However, the bubble spatial distribution has a
closer relationship to the characteristics of the velocity field as dis-
cussed in Sec. VB.

VI. CONCLUSIONS

In this study, the flows past a surface-piercing circular cylinder at
Froude numbers ranging from 0.8 to 1.7 are simulated using high-
fidelity CFD tools. The flow and air entrainment features are analyzed
thoroughly with the relationship between bubble statistics and flow
field highlighted, providing new insights into the flow past a surface-

FIG. 27. Spatial distribution of bubble
radius larger than 3mm over time.
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piercing circular cylinder at high Froude numbers. The main conclu-
sions are as follows:

(1) The free surface deformation at high Froude numbers varies
greatly from that at lower Froude numbers. A “Mach-like” wake
replaces the continuous Kelvin waveform and strong wave
breaking is observed. By applying the local surface slope jrgj to
the results, three distinct surface breaking regions are identified
in the flow field: (i) the bow wave region, (ii) the depression
region, and (iii) the wake region. The surface breakings in the
bow wave region and the depression region correspond to the
“standing-wave breaking” regime. In contrast, the surface
breakings in the wake region match the “traveling-wave break-
ing” regime.

(2) The velocity field exhibits many regular and distinctive charac-
teristics at various Froude numbers. The free surface deforma-
tion contributes to the separation near the free surface. With
the increase of the Froude number, the transition of the wake
regime leads to a reduced separation area. In contrast to the
free surface, the existence of the free end suppresses the flow
separation, with a strong upward velocity observed behind the

cylinder near the free end. The peaks of turbulent kinetic
energy are mainly distributed in the “fan-shaped” area at Fr ¼
1:1; 1:3 and dispersed along two “Mach-like” wave crests at
Fr ¼ 1:5; 1:7. Additionally, several typical vortex structures
are captured using the Q-criterion, including necklace vor-
texes, air entrainment induced vortexes, streamwise vortex fil-
aments, and the Kalman vortex shedding. The surface
breaking and air entrainment are discovered as the origin of
the streamwise vortex filaments in the wake region at high
Froude numbers.

(3) The air entrainment and bubble statistics in the cylinder flow
are thoroughly investigated. Three different slopes—(i) Nr �
r�3=2 and (ii) Nr � r�10=3 for small bubbles mainly distributed
in the fully developed wave breaking region and (iii) Nr � r�5

for large bubbles—are identified in bubble size distribution.
Moreover, rapid fluctuations in quantity over time can be
observed for bubbles with a radius larger than 3mm. These
suggested that large bubbles and cavities are strongly related to
air entrainment onset. The discovery is further proved by the
spatial distribution of large bubbles, which corresponds well
with the high local surface slope. Three air entrainment

FIG. 29. Instantaneous free surface defor-
mation in the depression region at Bo ¼
100 and 1000.

FIG. 28. Number of bubbles over time and bubble size distributions for different Bond numbers.
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mechanisms are identified corresponding to the three distinct
surface breaking regions. The instantaneous and time-
accumulated bubble spatial distributions at various Froude
numbers show a close relationship to the features of the veloc-
ity field. Moreover, surface tension effects on bubble statistics
are examined. Low surface tension leads to more severe surface
breaking and a larger number of bubbles, especially in the
depression region.
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