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Abstract 

This paper presents numerical simulations of vortex-induced vibrations of a vertical riser which is sinusoidally excited at its top end in 
both one and two directions in still water. A computational fluid dynamics method based on the strip theory is used. The riser’s responses to 
both top-end and two-end excitations are carefully examined. In low reduced velocity cases, the in-line vibrations consist of three components, 
the low-frequency oscillation, the first-natural-frequency vibration during the riser reversal, and the second-natural-frequency vibration due 
to vortex shedding. The sheared oscillatory flow along the span causes low-frequency oscillations in higher modes in the in-line direction, 
thus forming ‘X’ shaped, ‘II’ shaped, and ‘O’ shaped trajectories at various positions along the span when the riser is excited at its top end 
in one direction. In the presence of excitations in the other direction, more complex trajectories appear. 
© 2017 Shanghai Jiaotong University. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

Keywords: Vortex-induced vibration; Oscillatory flow; Riser; Platform motion; Viv-FOAM-SJTU solver. 
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1. Introduction 

Marine risers can experience vortex-induced vibrations
(VIV) when exposed to currents. Furthermore, offshore float-
ing platforms subject to waves, currents or winds may cause
risers to reciprocate. Risers are thus exposed to a relatively
oscillatory flow with a degree of shear and forced to cross
their own wakes, rendering their responses more like wake-
induced vibrations. The vortex shedding frequencies keep go-
ing up and down due to the continuous flow velocity changes.
Lock-in or resonance phenomena occur when the vortex shed-
ding frequencies meet one of risers’ natural frequencies. 

Vibrations of rigid cylinders in oscillatory flow have been
the subject of numerous investigations in the past several
decades [1,2] . A comprehensive review of the early investiga-
tions can be found in Sumer and Fredsøe [3] . More investiga-
tions of vibrations of rigid cylinders in oscillatory flow have
∗ Corresponding author. 
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a  

c  

t  

fl

http://dx.doi.org/10.1016/j.joes.2017.09.001 
2468-0133/© 2017 Shanghai Jiaotong University. Published by Elsevier B.V. This
( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
een conducted in recent years. Zhao et al. [4,5] conducted
wo-dimensional numerical studies of vibrations of a circular
ylinder in oscillatory flow and combined steady and oscil-
atory flow. Fernandes et al. [6] experimentally investigated
arious trajectories of a cylinder in oscillatory flow. 

Vortex-induced vibrations of flexible cylinders in oscil-
atory flow have received more and more attention. Duggal
nd Niedzwecki [7] conducted a large-scale experimental
tudy of vibrations of a long flexible cylinder in regular
aves. Anagnostopoulos and Iliadis [8] used a finite element

echnique to study the in-line response of a flexible cylinder
n oscillatory flow. Park et al. [9,10] and Senga and Koter-
yama [11] conducted experimental and numerical studies on
ibrations of a hanging riser subject to regular or irregular
op-end excitations. Riveros et al. [12] experimentally and
umerically studied a model riser sinusoidally excited at
ts top end. More recently, Fu et al. [13] and Wang et
l. [14] conducted model tests on vibrations of a flexible
ylinder in oscillatory flow. Thorsen at al. [15] improved
heir semi-empirical method to predict cross-flow VIV of a
exible cylinder in oscillatory flow. 
is an open access article under the CC BY-NC-ND license. 
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Most of the previous numerical studies of risers in oscil-
atory flow are based on semi-empirical methods, and stud-
es based on computational fluid dynamics (CFD) methods
re lacking, which can better reveal interactions between the
ow and the riser. In the present work, vibrations of a verti-
al top-tensioned riser sinusoidally excited at its top end are
umerically investigated using a CFD method based on strip
heory. The simulations are conducted by the in-house solver
iv-FOAM-SJTU, which has been validated in previous stud-
es [16,17] . The present article is organized as follows. Key
oints to be considered in the simulations are introduced at
rst. Then the capability of the solver to handle the vibrations
f flexible cylinders in oscillatory flow is further validated.
nd simulation results of vibrations of a riser excited at its

op end in one and two directions are carefully examined in
 later section. 

. Method 

The incompressible Reynolds-averaged Navier–Stokes 
quations are solved numerically to obtain the hydrodynamic
orces acting on the riser. The SST k − ω turbulence model
s employed to determine the Reynolds stresses. Consider-
ng the large scale in the axial direction of the flow domain,
wo-dimensional flow strips positioned equidistantly along the
pan are computed instead of the entire three-dimensional
ow field. As Willden and Graham [18] has mentioned,

hough three-dimensional vortices may develop, an effect of
ock-in actually maintains the locally two-dimensional prop-
rty, making it appropriate to compute the fluid dynamics
ocally in a two-dimensional way. Hydrodynamic forces at
ny positions along the span can be interpolated accordingly.
he number of simulation strips can be determined by con-
idering the highest mode of vibration. Three strips are re-
uired per half wave-length of vibration [18] . The highest
ode considered in the present work is the 5th mode. As a

esult, 20 strips seem sufficient for the simulation. The PIM-
LE algorithm in the OpenFOAM is used to compute the

wo-dimensional flow fields. 
In numerical simulations, the top end or two ends of the

iser are forced to oscillate sinusoidally. The excitation motion
f the riser is a periodic function of time, expressed as 

 s = A · sin 

(
2πt · T −1 

w 

)
, (1) 

 s = 2πA · T −1 
w 

· cos 
(
2πt · T −1 

w 

)
, (2) 

A being the excitation amplitude, T w 

the excitation period,
 s the excitation displacement and u s the excitation velocity.
educed velocity U r and its maximum value U r max can be
ritten as 

 r = 

u s 

f n1 D 

= 

2πA 

T w 

f n1 D 

cos 
(
2πt · T −1 

w 

)
(3) 

 r max = 

u s max 

f n1 D 

= 

2πA 

T w 

f n1 D 

, (4) 

here f n1 is the first natural frequency of the riser. In the
inusoidal flow, the Keulegan–Carpenter ( K C) number can be
xpressed as 
 C = u s max T w 

· D 

−1 = 2πA · D 

−1 , (5)

n which u s max is the maximum excitation velocity. 
Thus, the riser’s total displacement x t at any positions

long the span can be expressed in terms of the quasi-static
omponent due to support motion x s , and the deflections of
he riser from its straight-line condition x [19] : 

 t = x s + x. (6) 

The quasi-static displacement x s is linear along the span
or riser pinned at the two ends. More details about obtaining
uasi-static displacements can be found in Clough and Pen-
ien [19] . The equilibrium of forces for this system can be
ritten as 

f I + f D 

+ f S = f Hx , (7) 

here f I , f D 

, f S , f Hx are the inertial, the damping, the spring,
nd the hydrodynamic forces in the corresponding direction,
espectively. The force components can be expressed as f I =
 ̈x t , f D 

= c ̇  x , f S = kx, m, c, k being the mass, the damping
nd the stiffness of the system. Thus we have 

 ̈x t + c ̇  x + kx = f Hx , (8)

 ̈x + c ̇  x + kx = f Hx − m ̈x S . (9)

With the riser modeled as a small displacement Bernoulli–
uler bending beam and two ends set as pinned, we have 

 

∂ 2 x t ( z, t ) 

∂ t 2 
 ︷︷ ︸ 

m ̈x t 

+ c 
∂x ( z, t ) 

∂t ︸ ︷︷ ︸ 
c ̇ x 

+ E I 
∂ 4 x ( z, t ) 

∂ z 4 
−

∂ 
[ 
T ( z ) ∂x ( z,t ) 

∂z 

] 
∂z ︸ ︷︷ ︸ 

kx 

= f Hx ( z, t ) (10) 

 

∂ 2 x ( z, t ) 

∂ t 2 ︸ ︷︷ ︸ 
m ̈x 

+ c 
∂x ( z, t ) 

∂t ︸ ︷︷ ︸ 
c ̇ x 

+ E I 
∂ 4 x ( z, t ) 

∂ z 4 
− ∂ 

[
T ( z ) 

∂x ( z, t ) 

∂z 

]
︸ ︷︷ ︸ 

∂z ︸ ︷︷ ︸ 
kx 

= f Hx ( z, t ) − m 

∂ 2 x s ( z, t ) 

∂ t 2 ︸ ︷︷ ︸ 
m ̈x S 

(11) 

here flexural stiffness E I and linear density m keep constant
long the span, while tension T (z) varies along the span due
o gravity. This also applies to the cross-flow displacement.
n the finite element method, the equations can be discretized
s 

 ̈x + C ̇  x + Kx = f Hx − M ̈x S , (12) 

 ̈y + C ̇  y + Ky = f Hy − M ̈y s , (13) 

here x, x s , y, and y s are nodal displacement vectors, M, C ,
are the mass, the damping and the stiffness matrices, and

 Hx and f Hy are the hydrodynamic force vectors in corre-
ponding directions (including hydrodynamic mass forces).
he Rayleigh damping C = αM + βK is adopted, where α
nd β are calculated based on the natural frequencies of two
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Fig. 1. Fluid-structure interaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Twenty strips located equidistantly along the span of the riser. 

(a) Initial mesh on each strip;

(b) Mesh near the riser on each strip.

Fig. 3. Mesh details on each strip. 

Table 1 
Main structural properties of the riser. 

Symbols Values Units 

Mass ratio m 

∗ 1 . 53 −
Diameter D 0. 024 m
Bending stiffness EI 10. 5 N · m 

2 

Top tension T t 500 N
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mainly involved modes, with a damping ratio ζ of 0.03. The
equation can be written as [
α

β

]
= 

2ζ

f ni + f n j 

[
2π f ni f n j 

1 / ( 2π) 

]
. (14)

The equations are solved using the Newmark-beta method
[19] . 

The tension variation along the span for a vertical riser is
considered in geometric stiffness matrices. The varying ten-
sion for each element can be written as T (z) = T b + K T · z,
where T b is the tension at the element bottom, z denotes dis-
tance from the element bottom and K T = ( m − ρπD 

2 / 4 ) g.
In the 4 × 4 element geometric stiffness matrix, the ele-
ment geometric-stiffness coefficients are calculated through
k G i j = 

∫ l 
0 T (z) ψ 

′ 
i (z) ψ 

′ 
j (z) dz, where ψ 

′ 
i (z) is the derivative of

shape function ψ i (z) and l is the length of the element [19] .
Thus the following consistent element geometric stiffness
matrix can be formed: 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

3 K T 
5 + 

6 T b 
5 l 

K T l 
10 + 

T b 
10 − 3 K T 

5 − 6 T b 
5 l 

T b 
10 

K T l 
10 + 

T b 
10 

K T l 2 

30 + 

2l 
15 T b −K T l 

10 − T b 
10 −K T l 2 

60 − l T b 
30 

− 3 K T 
5 − 6 T b 

5 l − 3 K T 
5 − 6 T b 

5 l 
3 K T 

5 + 

6 T b 
5 l − T b 

10 
T b 
10 −K T l 2 

60 − l T b 
30 − T b 

10 
K T l 2 

10 + 

2l 
15 T b 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

(15)

with K T being zero for a horizontal cylinder. 
At the beginning of the fluid-structure interaction proce-

dure, the hydrodynamic forces are mapped to the structural
model elements. Following that the displacements of the riser
are computed using the finite element method and passed to
the flow fields. The meshes of flow fields on all strips move or
deform accordingly. Thus new flow fields can be computed.
The hydrodynamic forces acting on the riser can be obtained
and a time step is advanced as a result. The procedure is
shown in Fig. 1 , based on which the solver viv-FOAM-SJTU
is formed. 
Twenty strips equidistantly located along the span of the
iser are plotted in Fig. 2 . These strips share the same initial
ow field mesh, as shown in Fig. 3 . Meshes for cases with
xcitations in two directions are wider in the cross-flow
irection. The motion solver “displacementLaplacian” in
penFOAM is employed to handle the dynamic mesh [20] .

mposed on the surface of the riser is the no-slip boundary,
nd no external current is present. The riser is discretized into
0 elements, with each element imposed of uniformly dis-
ributed loads. Main parameters of the riser are listed in Table
 . Natural frequencies of the riser in still water are calculated
sing the finite element method with a hydrodynamic mass
oefficient of 1. The first few of them are set out in Tables 2
nd 3 . 
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Table 2 
Calculated natural frequencies of the short riser. 

Symbols Values Units 

Length L 4 m
First natural frequency f n1 2. 68 Hz 
Second natural frequency f n2 5 . 46 Hz 

Table 3 
Calculated natural frequencies of the long riser. 

Symbols Values Units 

Length L 12 m
First natural frequency f n1 0.86 Hz 
Second natural frequency f n2 1.72 Hz 
Third natural frequency f n3 2.60 Hz 
Fourth natural frequency f n4 3.48 Hz 
Fifth natural frequency f n5 4.38 Hz 

Table 4 
Main parameters for simulation cases. 

Case L (m) K C x K C y U r max V r max Excited at 

1 4 84 0 4 0 Two ends 
2 4 168 0 30 0 Two ends 
3 4 168 0 8 0 Top end 
4 12 84 0 12 0 Top end 
5 12 84 21 12 6 Top end 
6 12 84 42 12 12 Top end 

3
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. Validations 

The capability of the solver to predict the vibrations of
exible cylinders in oscillatory flow is validated based on

wo cases against data from a model test and a simula-
ion using a semi-empirical method. A total of six cases
entioned in the article are shown in Table 4 . Symbols
 C x , K C y , U r max and V r max in the table denote K C numbers
nd maximum reduced velocities at the top end of the riser
n the in-line and cross-flow directions, respectively. Excita-
ions at the two ends are the same and in phase when it is
escribed as ‘excited at two ends’. The model considered in
he validation section is a two-end excited flexible horizontal
ylinder instead of a top-end excited vertical riser. 
(a) Wang et al. (2014)

Fig. 4. Development of the cross-flow vortex-induced vibrations at the
.1. Low reduced velocity case 

In case 1, the cross-flow vibrations are mainly in the 1st
ode, i.e. one half-wave along the span, due to the low re-

uced velocities. The largest amplitude of cross-flow vibra-
ion occurs at mid-span of the riser. In Fig. 4 the develop-
ent of the vibration within half an excitation period in both

he present simulation and the model test from Wang et al.
14] appears similar. The critical value of 

√ 

2 / 2 of the maxi-
um cross-flow displacement is used to distinguish the ‘lock-

n’ stage from the ‘build-up’ and ‘die-out’ stages. The lock-in
uration is 21% of the half excitation period in the simula-
ion, 22% for Wang et al. [14] . The vibration amplitude in
he present simulation is slightly larger. Moreover, the vibra-
ion in the simulation does not damp as quickly as in the
est, rendering the hysteresis effect of the ‘lock-in’ stage with
espect to the maximum reduced velocity more evident. The
low damping may be due to the poor selection of damping
atio, which is not given in Wang et al. [14] . Considering that
e are comparing a detailed displacement history at a single
oint on the cylinder rather than a general dominant vibration
ode, the simulation agrees reasonably with the test. 

.2. High reduced velocity case 

The simulation results of case 2 in Thorsen et al. [15] using
 semi-empirical method and the present work are presented
n Figs. 5 and 6 , respectively. Modal weights of cross-flow
isplacements in Fig. 6 are obtained through modal decom-
ositions in the least-squares sense [21,22] via 
T φw y = φT y, (16) 

here w y is the modal weight vector of cross-flow displace-
ents and only those desirable mode shapes are included in

he matrix of mode shapes φ. Model weights in the other
irection can be computed in a similar way. First six mode
hapes are shown in Fig. 7 . 

The K C number and the maximum reduced velocity U r max 

n Thorsen et al. [15] are 178 and 32, slightly larger than them
n the present simulation. Results agree well for the 4th-mode-
ominated stage during the first half period and the 3rd-mode-
ominated stage during the last half period. The modal weight
(b) The present simulations

 mid-span of the riser in case 1 within half an excitation period. 
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(a) Incoming flow velocity as a function of time.

(b) Contour plot of the cross-flow displacement ⋅
−1.

(c) First five modal weights.

(d) Wavelet contour plot of the cross-flow displacement ⋅
−1 at mid-span of the 

riser.

Fig. 5. Simulation results of case 2 ( KC = 178 , U r max = 32) in Thorsen et al. [15] . 
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for the 5th mode is higher in the present simulation. The
vibration frequency at mid-span of the riser is also slightly
higher. As is known, a reduced velocity U r max of 6 will bring
out the largest vibration amplitude for the 1st mode, it seems
reasonable to suppose that a reduced velocity of 30 will excite
the 5th mode significantly, which is more consistent with the
present simulation. 

4. Results 

The time t is non-dimensionalized by the excitation period
T w 

in the following analyses. Since x s = A · sin ( 2 π t · T −1 
w 

) ,
the excitation displacement gets zero when t · T −1 

w 

= i +
 or 0. 5 , approaches peaks when t · T −1 
w 

= i + 0. 25 , and ap-
roaches valleys when t · T −1 

w 

= i + 0. 75 , where i is some
nteger. 

.1. Comparison of two-end excitation and top-end 

xcitation 

In the case of the top-end excited vertical riser, the an-
ular acceleration due to the support motion is non-zero and
he tension varies along the span due to gravity and buoyancy.
epicted in Fig. 8 are modal weights of the in-line displace-
ents in cases 1 and 3. The low-frequency, large-amplitude
uctuation in the 1st modal weight reflects the effect of the
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(a) Contour plot of the cross-flow displacement ⋅
−1.

(b) First five modal weights.

(c) Wavelet contour plot of the cross-flow displacement ⋅
−1 at mid-span of the 

riser.

Fig. 6. Simulation results of case 2 ( KC = 168 , U r max = 30) in the present work. 
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Fig. 7. First six mode shapes. 
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drag forces. The distinct short-duration intense oscillations in
the 1st modal weight are found to be during the riser re-
versal. Fig. 9 plots the development of the vortices in the
plane at mid-span of the riser during this period. The fig-
ure shows exactly how the vortices attached on the reversing
riser are washed over to the other side, which gives rise to
the short-duration oscillations. The oscillations are exactly at
the 1st natural frequency. The third component of the in-line
displacement is the 2nd modal vibration during lock-in stage.
These components are shared by cases 1 and 3. However, the
low-frequency oscillation also exists in the 2nd modal weight
for case 3. This can be attributed to the shear velocity nature
of the oscillatory flow when the riser is excited at only the
top end. The drag forces along the riser as a whole contribute
to the low-frequency component in the 1st mode, while the
difference value between the drag forces of the upper part and
the lower part contributes to the low-frequency component in
the 2nd mode. That is to say, the drag forces on the upper
part of the riser act to excite the 2nd modal component while
that of the lower part serve to damp the component. This
low-frequency component will further exist in higher modes
in excitation directions. 

The build-up–lock-in–die-out cycle features can be clearly
observed in the cross-flow modal weights in Fig. 10 for both
cases. The 1st modal weight for the case 3 is smaller and
its 2nd mode is more evident. It is worth noting that the
upper part of the riser experiences higher-speed currents and
consequently higher vortex shedding frequencies and more
energetic excitations, which has the effect of inducing the
riser to vibrate at higher frequencies and in higher modes. 
Fig. 8. Time series of modal weights of the in-line displacem
The relative trajectories of the vibrations within an exci-
ation period are plotted in Fig. 11 . They are viewed from
 reference frame which moves with the straight riser axis,
.e. no support motions are included in them; only deflections
re reflected in the trajectories. The most intense vibrations in
oth directions occur during lock-in stages when the in-line
eflections reach their extreme values, forming two ‘wings’
t two sides of the trajectories in case 1. The butterfly-shaped
rajectory characteristic can be a key feature for low-mode
ibrations of flexible cylinders excited at the two ends. Tra-
ectories are different for risers excited at the top end. It has
een discussed that the difference of value between the drag
orces of the upper part and the lower part of the riser con-
ributes to the low-frequency 2nd modal weights. The 2nd
ode forms opposite phases in the in-line displacement for

 · L 

−1 = 0. 25 , 0. 75 , the peak and valley of the mode shape
nd also almost no in-line vibrations during lock-in stages for
 · L 

−1 = 0. 5 , the standing point of the mode. All the three
ositions are in phase for the 1st modal cross-flow vibrations,
hus the riser has different trajectories at different positions,
.e. ‘X’ shaped, ‘II’ shaped and ‘O’ shaped trajectories due
o various phase differences between the in-line and cross-
ow displacements. The ‘in-phase’ 1st modal vibrations in
oth in-line and cross-flow directions form fundamental tra-
ectories for the riser as in the left part of Fig. 11 , while
he non ‘in-phase’ 2nd modal vibrations (mainly the in-line
ow-frequency component) cause variations based on the fun-
amental trajectories, thus forming the resultant trajectories in
he right part of Fig. 11 for the top-end excited riser. The fea-
ure is only obvious when the reduced velocity is low. More
esearch should be conducted to explain why it is ‘O’ shaped
rajectory for z · L 

−1 = 0. 75 and ‘X’ for z · L 

−1 = 0. 25 rather
han the opposite. 

.2. Comparison of excitations in one and two directions 

In Figs. 12 and 13 are plotted the relative and actual tra-
ectories of cases 4, 5 and 6, respectively. When the riser is
xcited in two directions, the frequency of the cross-flow ex-
itation is twice that of the in-line excitation, thus forming a
 ∞ ’ -shaped trajectory shown in Fig. 13 . An interesting ‘hel-
et’ shaped relative trajectory is found in cases 5 and 6. The
odal weights in the in-line direction increase considerably
ents x · D 

−1 of cases 1 (left) and 3 (right), w 

m 
x · D 

−1 . 
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Fig. 9. Development of vortices in the course of riser reversal in the strip at mid-span of the riser in case 1. 

Fig. 10. Time series of modal weights of the cross-flow displacements y · D 

−1 in cases 1 (left) and 3 (right), w 

m 
y · D 

−1 . 

Fig. 11. Relative trajectories of the vibrations of the riser in cases 1 (left) and 3 (right). 
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s  

1  
ith excitation amplitudes in the other direction. In all the
imulations excited in both directions, risers move upwards
n the cross-flow direction when passing the intersections
‘X’) of the actual ‘ ∞ ’ trajectories. Near the intersections are
he high-speed periods and consequently large drag forces,
ausing large deflections in the opposite directions of support
otion. High speeds also mean more intense vibrations in the

ocally cross-flow direction, forming the lower ‘crab plier’
haped parts. Thus the two ‘crab plier’-like parts in Figs.
2 (b and c) correspond to the ‘X’ parts in Figs. 13 (b and c)
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Fig. 12. Relative trajectories of the vibrations of the riser in cases 4 (left), 5 (middle), and 6 (right). 

Fig. 13. Actual trajectories of the vibrations of the riser in cases 4 (left), 5 (middle), and 6 (right). 
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while the top-end knots in Figs. 12 (b and c) correspond to
two sides in Figs. 13 (b and c), the zero in-line excitation
velocity periods. Some more complex trajectories may be
formed when the phase difference between excitations in
two directions becomes non-zero or when the frequency
relationship of excitations varies. 

Time series of modal weights of the in-line and cross-
flow displacements are presented in Figs. 14 and 15 , respec-
ively. It is clear that the excitations in the cross-flow di-
ection will influence the in-line displacement for that the
ctual vortex shedding direction has been changed, indicat-
ng that the so-called ‘in-line’ and ‘cross-flow’ directions lost
heir original meanings. Both drag and lift forces will con-
ribute to the ‘in-line’ and ‘cross-flow’ vibrations. The inten-
ified high-frequency components for case 6 in Fig. 14 can
e attributed to the increase in the lift force components and
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Fig. 14. Time series of modal weights of the in-line displacements x · D 

−1 in cases 4 (left), 5 (middle), and 6 (right), w 

m 
x · D 

−1 . 

Fig. 15. Time series of modal weights of the cross-flow displacements y · D 

−1 in cases 4 (left), 5 (middle), and 6 (right), w 

m 
y · D 

−1 . 
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also the decrease in the drag force components in the direc-
tion. The vibrations in both directions become quite similar
when the cross-flow excitation amplitude is large such as in
case 6. Larger cross-flow excitation amplitudes or reduced ve-
locities also mean larger resultant velocities, rendering more
intense vibrations. It is clearly seen from Fig. 15 that the
high-frequency component of the 1st modal weight in the
cross-flow direction decreases with increasing cross-flow ex-
citation amplitude. This may be due to that the vortex shed-
ding direction gets closer to the cross-flow direction, implying
larger low-frequency components and smaller high-frequency
components (but higher modes may be excited). The low-
frequency components discussed before due to the current
speed variation along the span appear in the 2nd or even the
3rd modal weights in both directions in cases 5 and 6. 

5. Conclusions 

Numerical simulations of a vertical riser subject to one-
direction or two-direction sinusoidal excitations at its top end
in still water have been conducted. The in-line vibrations are
found to consist of three components at low reduced veloci-
ties, the low-frequency oscillation due to the support motion,
the first-natural-frequency vibration during the riser rever-
sal, and the second-natural-frequency vibration due to vortex
shedding. The current speed variations along the span when
the riser is excited at its top end can cause low-frequency
oscillations at higher modes in the excitation direction. This
low-frequency oscillation may cause different phase differ-
ences between the in-line and cross-flow displacements, and
consequently form various trajectories at different positions
along the span when the riser is only excited in one direc-
tion. More complex trajectories are observed when the riser
is excited in two directions. 
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