Introduction to Marine Hydrodynamics (NA235)
 (2014-2015, $2^{\text {nd }}$ Semester)

Assignment No. 8

(7 problems, given on June $4^{\text {th }}$, submitted on June $11^{\text {th }}, 2015$)

Problem 1: A layer of heavy viscous fluid in gravity flows on an inclined surface. Give thickness of the layer h, atmospheric pressure P_{a}, fluid dynamic viscosity μ, and angle of the inclined surface with horizon α, please determine velocity distribution of the fluid layer and its flow rate.

Problem 2: Two parallel plates, apart with distance a, enclosed two separated fluids of dynamic viscosity, μ_{1}, μ_{2}, and thickness, a_{1}, a_{2}, respectively. The lower plate is horizontally fixed on the earth, while the upper one moves at a constant speed, u_{0}, along the plate. If horizontal pressure gradient along plates vanishes, please determine velocity and pressure distributions of the flow field.

Problem 3: Derive velocity distribution of a steady viscous flow of a liquid film on a vertical wall. Gravity is the only volumetric force. The
liquid is assumed incompressible, and the flow can be looked as laminar.

Problem 4: Consider a two dimensional viscous flow: u and v are velocity components along x - and y-axis respectively, and ς is the vorticity. Please derive vorticity transport equation from N-S equation, and explain each term physically.

Problem 5: Given two coaxial circular cylinders of length h, and radii r_{1} and $r_{2}\left(<r_{1}\right)$ respectively. When they rotate around the common axle with angular velocity ω_{1} and ω_{2} respectively, please (1) give out tangential velocity distribution, and (2) write down torque on the inner cylinder.

Problem 6: A pipe flow: its average velocity is $u_{m}=1 \mathrm{~m} / \mathrm{s}$, radius of the pipe is $r_{0}=0.1 m$. The pipe is assumed smooth. Calculate (1) velocity at the center of the pipe, and (2) the shear stress on the pipe wall, when temperature of the water in pipe is $20^{\circ} \mathrm{C}$.

Problem 7: Describe the difference of Moody chart from Nikuradse diagram.

